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Résumé We present the homogenization of a periodic array of elastic inclu-
sions embedded in an elastic matrix. We consider shear elastic waves with a
typical wavelength 1/k much larger than the array spacing h and thickness e.
Owing to the small parameter η = kh, with e/h = O(1), a matched asympto-
tic expansion technique is applied to the wave equation in the time domain.
The homogenized problem involves an equivalent interface associated to jump
conditions of the Ventcels type. Up to the accuracy of the model in O(η2),
different jump conditions are possible, which correspond to enlarged versions
of the interface ; these jump conditions are parametrized by the thickness a of
the homogenized interface. We inspect the influence of a (i) on the equation of
energy conservation in the homogenized problem and (ii) on the error of the
model for a simple scattering problem. We show that restoring the thickness
of the real array, a = e, is the optimal configuration regarding both aspects.

Keywords shear waves · interface homogenization · Matched asymptotic
expansion

1 Introduction

In previous papers, we addressed the problem wave propagation through
thin arrays of periodic cracks or voids, which are associated to Neumann boun-

J.-J. Marigo
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: the case of scalar shear waves
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Figure 1 The array of inclusions in the matrix, with thickness e, are replaced by a layer
of thickness a across which jump conditions apply.

dary condition on the boundaries of the cracks. This was done in the context
of acoustics for sound hard inclusions [1,2] and in the context of electroma-
gnetism for metallic inclusions [3,4], where the Neumann boundary conditions
also apply. Thanks to the small parameter η ≡ kh = O(ke), with k the typical
wavenumber imposed by the wave source and h, e the array spacing and the
array thickness, a homogenization method was applied, yielding an equivalent
problem where the array is replaced by a zero thickness interface across which
jump conditions apply, and the model is developed up to order O(η2). These
jump conditions can be rewritten in different forms being all equivalent up to
O(η2) when considering a non zero thickness interface, with a thickness artifi-
cially set to some a = O(h, e) value. The different forms of the jump conditions
have been discussed in [5,6] in terms of the stability of the obtained conditions
(with respect to η and with respect to the frequency) and models up to O(η3)
were considered in these references. In a different perspective, when numerical
implementation of the homogenized problem in the time domain is sought,
a negative interface energy is not acceptable since it produces instabilities in
time [11]. In [1,2,3] and in [11], we followed the intuitive argument that the
equivalent interface has to occupy the same region as the original array, and
we used a = e.

In the present paper, we extend these works, where cracks (or their acous-
tic and electromagnetic counterparts) were considered, to the case of elastic
inclusions supporting wave propagation. We restrict our study to the scalar
case of shear waves, and at some point to rectangular inclusions, which allows
for explicit calculations. Next, the influence of the thickness a of the enlarged
interface is considered in terms (i) of the condition under which the interface
energy is positive and (ii) of the accuracy of the homogenized solution with
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respect to the solution of the actual problem. The paper is organized as fol-
low. In Section 2, we derive the effective jumps of the displacement and of
the normal stress across the equivalent interface with arbitrary thickness a,
Eqs. (42), which involve effective parameters being dependent of a, Eqs. (40).
The equation of energy conservation is obtained, Eq. (44), with a contribution
due to the non smoothness of the fields and which corresponds to the energy
supported by the homogenized interface. In Section 3, we discuss the influence
of a on the accuracy of the homogenized solution with respect to the exact
one, that is computed in the real problem and on the sign of the interface
energy. Our findings show that a = e is indeed the best choice, which reduces
the discrepancy between the homogenized and the actual solutions and which
ensures a positive energy supported by the interface.

2 The interface model

We start with the wave equation for the elastic displacement U(X, t) and
stress vector Σ(X, t) associated to shear waves, written in the time domain

ρ
∂2U

∂t2
= divΣ, Σ = µ∇U, (1)

with time t and spatial coordinate X = (X1, X2) ; ρ denotes the mass density
and µ the shear modulus, both being spatially dependent. (1) can be written
using V ≡ ∂U/∂t 

∂Σ

∂t
= µ∇V,

ρ
∂V

∂t
= divΣ.

(2)

Next, in a bounded domain D, the energy conservation reads

d

dt
E −

∫
∂D

dS Π.n = 0,

with E the elastic energy and Π the Poynting vector, or elastic energy flux,

E =

∫
D
dV

[
ρ

2
V 2 +

1

2µ
Σ2

]
, Π = VΣ.

We consider wave sources imposing in the elastic matrix a minimum wave-
length 2π/k larger than the periodicity of the array h, such that

η ≡ kh� 1,

and the array thickness e = O(h). Next, to be consistent, we shall work in
dimensionless coordinates, and we define

x ≡ kX, τ ≡ k
√
µm

ρm

t,
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and
Σ(X, t) ≡ √ρmµmσ(x, τ), V (X, t) ≡ v(x, τ),

where (ρm, µm) are the mass density and the shear modulus of the elastic
matrix, and we denote (ρi, µi) those of the inclusions. Now, the Eqs. (2) read
in dimensionless form 

∂σ

∂τ
=

µ

µm

∇xv,

ρ

ρm

∂v

∂τ
= divxσ,

(3a)

(3b)

with x ∈ R2. At the boundaries between the matrix and the inclusions,
the continuities of the displacement, and thus of its time derivative v, and
the continuity of the normal stress σ.n apply ; finally, appropriate boundary
condition at |x| → +∞, often referred to as radiation conditions, apply once
the wave source has been defined ; they are in general of the Sommerfeld type,
and consist in selecting the waves propagating away from the sources (by
opposition to their time reversed counterparts which propagate from infinity
toward the sources). For the time being, we do not need to specify their form.

2.1 The inner and outer expansions

The solutions of Eqs. (3) can be expanded with respect to the small para-
meter η, namely v = v0(x, τ) + ηv1(x, τ) + η2v2(x, τ) + . . . ,

σ = σ0(x, τ) + ησ1(x, τ) + η2σ2(x, τ) + . . . .
(4)

While in principle the above expansion could be used in the whole space, we
consider a separation of the space into an inner region (|x1| � 1) and an outer
region (|x1| � η), which correspond in terms of wavefield to the near field
and to the far field, respectively. In the outer region, the natural coordinate
x ≡ (x1, x2) is adapted to describe the slow variations (in 1/k) of the wavefield,
and the expansions in Eq. (4) are used. In the inner region, a new system of
coordinates y = x/η is used which accounts for the rapid variations (in h)
of the evanescent fields. Next, the slow variations along x2 are accounted for
by keeping x2 as additional coordinate. Owing to these considerations, the
expansions read

Outer exp.

 v = v0(x, τ) + ηv1(x, τ) + . . . ,

σ = σ0(x, τ) + ησ1(x, τ) + . . . ,

Inner exp.

 v = w0(y, x2, τ) + ηw1(y, x2, τ) + . . . ,

σ = τ 0(y, x2, τ) + ητ 1(y, x2, τ) + . . . ,

(5)
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and the terms (wn, τn), n = 0, 1, . . . , of the inner solution are assumed to be
periodic w.r.t. y2. Thus, we shall consider in the outer region x ∈ R2, and in
the inner region y ∈ R× Y , with Y = (−1/2, 1/2) (Fig. 2).

Now, Eqs. (3) can be written in the inner and in the outer regions, owing
to the expressions of the differential operator∇→∇x, in the outer problem,

∇→ 1

η
∇y +

∂

∂x2
e2, in the inner problem.

Figure 2 The array of inclusions in x-coordinates, with x ∈ R2, and the elementary cell
in y-coordinates with y ∈ R × Y (Y = (−1/2, 1/2)). In y-coordinates, we define Ω =
(−ym1 , ym1 )× Y , with ym1 > e/h (in practice ym1 → +∞ will be considered) ; Ω = Ωi ∪Ωm,
with Ωi and Ωm the domains occupied by the inclusion and by the matrix, respectively.

In the following, we shall use the domain Ω = (−ym1 , ym1 ) × Y in y coor-
dinate containing a single inclusion (Fig. 2). Ωi and Ωm are the subdomains
occupied by the inclusion and by the matrix respectively (Ω = Ωi ∪Ωm) ; the
continuities of the displacement and of the normal stress apply on ∂Ωi. We
shall use also Ω∞ = lim

ym1 →+∞
Ω.

2.2 Boundary conditions and matching conditions

Because of the separation of the space into two regions, something has to
be said on the boundary conditions. By construction, the continuity relations
at the boundary of the inclusions apply for the inner solution only, whence

wn and τn.n are continuous on ∂Ωi, for n = 0, 1, . . . (6)

but boundary conditions at |y1| → +∞ are missing. Reversely, the outer solu-
tion is submitted to the radiation conditions at |x| → +∞ but the boundary
conditions for x1 → 0± are unknown a priori, and it is in fact the boundary
conditions that will provide the jump conditions. These missing conditions
for the inner and outer terms are given simultanesouly by so-called matching
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conditions, which tell us that the two solutions have to match in some interme-
diate region. Following [7] the matching is written for x1 → 0± corresponding
to y1 → ±∞ (and we denote f(0±) the limit values of f for x1 → 0±).
To do so, we use the Taylor expansions of v0(x1, x2, τ) = v0(0±, x2, τ) +
x1∂x1

v0(0±, x2, τ) + · · · = v0(0±, x2, τ) + ηy1∂x1
v0(0±, x2, τ) + . . . , same for

σ0. Identifying the terms in ηn, n = 0, 1 in the inner and outer expansions,
Eqs. (5), we get, for n = 0

v0(0±, x2, τ) = lim
y1→+∞

w0(y, x2, τ),

σ0(0±, x2, τ) = lim
y1→+∞

τ 0(y, x2, τ),

(7a)

(7b)

and for n = 1,
v1(0±, x2, τ) = lim

y1→+∞

[
w1(y, x2, τ)− y1

∂v0

∂x1
(0, x2, τ)

]
,

σ1(0±, x2, τ) = lim
y1→+∞

[
τ 1(y, x2, τ)− y1

∂σ0

∂x1
(0, x2, τ)

]
.

(8a)

(8b)

When not needed, the dependance of the functions on the spatial variables
and on the time will be omitted for readability.

2.3 Jump conditions at the first order

We start with the jump conditions at the first order
q
v0

y
and

q
σ0
1

y
, where

we defined for any outer terms f

JfK ≡ f(0+, x2, τ)− f(0−, x2, τ). (9)

Eqs. (3) at the leading order in η−1 give

∇yw
0 = 0, divyτ

0 = 0, (10)

from which we deduce that

v0(0, x2, τ) = v0(0±, x2, τ) = w0(x2). (11)

Next, integrating divyτ
0 = 0 over Ω, and using (i) the continuity of τ 0.n on

∂Ωi, Eq. (6), and (ii) the periodicity of τ 0, we get∫
Y

dy2
[
τ01 (+ym1 , y2, x2, τ)− τ01 (−ym1 , y2, x2, τ)

]
= 0.

Finally, taking the limit ym1 → +∞ in the above equation and integrating the
matching condition (7b) over Y , we get∫

Y

dy2 τ
0
1 (±∞, y2, x2, τ) = σ0

1(0±, x2, τ). (12)
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We deduce from (11)-(12) the jump conditions at the first order

q
u0

y
=

q
σ0
1

y
= 0. (13)

2.4 Elementary problems and jump of u1

To get the jumps at second order, we need to define the problem satisfied
by (w1, τ 0). To do that, we use the time derivative of (10)

divy
∂τ 0

∂τ
= 0. (14)

Eq. (3a) written at the order η0 for the inner solution, along with (11), gives

∂τ 0

∂τ
=
µ(y)

µm

(
∇yw

1 +
∂v0

∂x2
(0, x2, τ) e2

)
. (15)

It follows that the system satisfied by w1 reads

divy

[
µ(y)

(
∇yw

1 +
∂v0

∂x2
(0, x2, τ)

)]
= 0,

w1 and µ(y)

(
∇yw

1 +
∂v0

∂x2
(0, x2, τ)

)
.n continuous on ∂Ωi,

lim
y1→±∞

∇yw
1 =

∂v0

∂x1
(0, x2, τ) e1.

(16)

The first equation in the bulk uses simply (14)-(15). The continuity relations
on ∂Ωi come from (6) (for τ 0.n, it is the time derivative version of the conti-
nuity relation). The third equation is less immediate although straightforward ;
consider the time derivative of Eq. (7b), with Eq. (15)

∂σ0

∂τ
(0±, x2, τ) = lim

y1→±∞
∇yw

1 +
∂v0

∂x2
(0, x2, τ) e2,

where we used that µ(y) → µm for y1 → ±∞. It is now sufficient to use (3a)
at the order η0 for the outer solution, namely

∂σ0

∂τ
=∇xv

0,

which leads to the desired (third) equation in (16). The system (16) is linear
with respect to ∂x1v

0(0, x2, τ) and ∂x2v
0(0, x2, τ). Thus, to ensure that w1

satisfies (16), it is sufficient to define W (1) and W (2) such as

w1(y, x2, τ) =
∂v0

∂x1
(0, x2, τ) [W (1)(y) + y1] +

∂v0

∂x2
(0, x2, τ)W (2)(y) +W (x2, τ),

(17)
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with W (i), i = 1, 2, satisfying
div [µ∇ (W (i) + yi)] = 0,

W (i) and µ∇ (W (i) + yi) .n are continuous on ∂Ωi,

lim
y1→±∞

∇W (i) = 0,

(18)

The field W (1) and W (2) at y1 → ±∞ are evanescent fields up to a constant,
being possibly different at the two limits. In the following, we define Bi, i = 1, 2,
as

Bi ≡W (i)(+∞, y2)−W (i)(−∞, y2). (19)

Finally, note that W (x2, τ) has been introduced in (17) since the Eqs. (16) de-
fine w1 up to a function independent of y ; we shall see that the determination
of W is not needed. The jump of v1 is obtained from the matching condition
(8a), with (17) and (19), namely

q
v1

y
= B1

∂v0

∂x1
(0, x2, τ) + B2

∂v0

∂x2
(0, x2, τ). (20)

Note that ∂x1v
0 is continuous at x1 = 0, since ∂τσ

0
1 = ∂x1v

0, from (3a), and
σ0
1 is continuous ; obviously, ∂x2

v0 is continuous also, with v0(0, x2, τ) being
continuous.

2.4.1 Jump of σ1
1

The derivation of the jump condition on σ1
1 is less straightforward. We shall

integrate (3b) at order η0 for the inner solution over Ω, specifically

ρ(y)

ρm

∂v0

∂τ
(0, x2, τ) = divyτ

1 +
∂τ02
∂x2

, (21)

where we used (11). Before doing so, we inspect the term τ02 which is needed
in the equation above. From (15) and (17), we have

∂τ02
∂τ

=
µ(y)

µm

[
∂v0

∂x1
(0, x2, τ)

∂W (1)

∂y2
+
∂v0

∂x2
(0, x2, τ)

(
∂W (2)

∂y2
+ 1

)]
.

It is now sufficient to use (3a) for the outer problem at the order η0 to get

∂σ0
1

∂τ
=
∂v0

∂x1
,

∂σ0
2

∂τ
=
∂v0

∂x2
,

and thus

τ02 =
µ(y)

µm

[
σ0
1(0, x2, τ)

∂W (1)

∂y2
+ σ0

2(0, x2, τ)

(
∂W (2)

∂y2
+ 1

)]
. (22)

We have assumed that σ0 = 0 and τ 0 = 0 at τ = −∞ (the source has been
switched on at some initial time), so that the above identity has been written
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omitting the time derivative. We can come back to the Eq. (21), integrated
over Ω,

∂v0

∂τ
(0, x2, τ)

∫
Ω

dy
ρ(y)

ρm

−
∫
Ω

dy

[
divyτ

1 +
∂τ02
∂x2

]
= 0. (23)

Eq. (23) involve three integrals. The first integral is

∂v0

∂τ
(0, x2, τ)

∫
Ω

dy
ρ(y)

ρm

=
∂v0

∂τ
(0, x2, τ)

[
2ym1 +

eϕ

h

(
ρi

ρm

− 1

)]
, (24)

with eϕ/h the surface of the inclusion in y-coordinate (ϕ is the filling fraction
of inclusion for y1 ∈ (0, e/h), see Fig. 2). The second integral, of divyτ

1, is
obtained owing to the continuity of τ1.n and its periodicity w.r.t. y2, and we
get

−
∫
Ω

dy divyτ1 = −
∫
Y

dy2
[
τ11 (+ym1 , y2, x2, τ)− τ11 (−ym1 , y2, x2, τ)

]
. (25)

For the third integral, with ∂τ02 /∂x2 given by (22), we have

−
∫
Ω

dy
∂τ02
∂x2

= −∂σ
0
1

∂x2
(0, x2, τ)

∫
Ω

µ(y)

µm

∂W (1)

∂y2

−∂σ
0
2

∂x2
(0, x2, τ)

[∫
Ω

µ(y)

µm

∂W (2)

∂y2
+ 2ym1 +

eϕ

h

(
µi

µm

− 1

)]
.

(26)
Two terms, in (24) and in (26), are linear in ym1 . Let us sum them

2ym1

[
∂v0

∂τ
(0, x2, τ)− ∂σ0

2

∂x2
(0, x2, τ)

]
= 2ym1

∂σ0
1

∂x1
(0, x2, τ), (27)

where we have used (3b) for the inner problem at order η0, namely

∂σ0
1

∂x1
+
∂σ0

2

∂x2
=
∂v0

∂τ
. (28)

Now, we gather the two terms in (25) and (27) using the matching conditions
(8b) written in a different form

σ1
1(0−, x2, τ) = lim

ym1 →+∞

[
τ11 (−ym1 , y2, x2, τ) + ym1

∂σ0
1

∂x1
(0−, x2, τ)

]
,

σ1
1(0+, x2, τ) = lim

ym1 →+∞

[
τ11 (ym1 , y2, x2, τ)− ym1

∂σ0
1

∂x1
(0+, x2, τ)

]
,

(29)

and owing to the continuity of σ0
1 at y1 = 0, we get

q
σ1
1

y
= lim
ym1 →∞

[
τ11 (ym1 , y2, x2, τ)− τ11 (−ym1 , y2, x2, τ)− 2ym1

∂σ0
1

∂x1
(0, x2, τ)

]
.

(30)
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Collecting Eqs. (24) to (27) in (23) for ym1 → +∞, and using (30), we get

q
σ1
1

y
=
∂v0

∂τ
(0, x2, τ)

eϕ

h

(
ρi

ρm

− 1

)
− ∂σ0

1

∂x2
(0, x2, τ)

∫
Ω∞

µ(y)

µm

∂W (1)

∂y2

−∂σ
0
2

∂x2
(0, x2, τ)

[∫
Ω∞

µ(y)

µm

∂W (2)

∂y2
+
eϕ

h

(
µi

µm

− 1

)]
.

(31)

Finally, with (28), the jump of σ1
1 reads

q
σ1
1

y
=
eϕ

h

(
ρi

ρm

− 1

)
∂σ0

1

∂x1
(0, x2, τ)− C1

∂σ0
1

∂x2
(0, x2, τ)

−
[
C2 +

eϕ

h

(
µi

µm

− ρi

ρm

)]
∂σ0

2

∂x2
(0, x2, τ),

(32)

where we have defined, for i = 1, 2,

Ci ≡
∫
Ω∞

dy
µ(y)

µm

∂W (i)

∂y2
. (33)

2.5 Final jump conditions

It has already been stressed in [1,2,5,6] that the jump conditions can be
expressed in a different form, equivalent up to O(η2) to those obtained for
v0 + ηv1 and for σ0

1 + ησ1
1 . This form relies on the following consideration.

With e the thickness of the inclusions, the array in y-coordinates has a rescaled
thickness ke = ηe/h in x-coordinate. We consider a > 0 the size of the enlarged
interface in the real space, and we assume that a/h = O(1). Thus, for any f = v
or f = σ1, we have

f(ka, x2, τ) = f(0+, x2, τ) + η
a

h

∂f

∂x1
(ka, x2, τ) +O(η2), (34)

from which, defining JfKa ≡ f(a)−f(0−) for the a-enlarged interface, we have

JfKa = JfK + η
a

h

∂f

∂x1
(ka, x2, τ) +O(η2). (35)

With f = f0 + ηf1 +O(η2), (35) gives

JfKa =
q
f0

y
a

+η
q
f1

y
a

+O(η2) = η

[
a

h

∂f0

∂x1
(ka, x2, τ) +

q
f1

y]
+O(η2), (36)

where we have used that
q
f0

y
= 0 and that

q
f1

y
a

=
q
f1

y
+ O(η). We shall

use also that, with

〈f〉 ≡ 1

2

[
f(0−) + f(0+)

]
, 〈f〉a ≡

1

2

[
f(0−) + f(ka)

]
, (37)

we have
〈f〉a =

〈
f0
〉
a

+O(η) = f0(0, x2, τ) +O(η), (38)
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since f0 is continuous at x1 = 0. We use (36) and (38) in the jump conditions
(20) and (32) to finally get

JvKa = ηB
〈
∂v

∂x1

〉
a

+ ηB2
〈
∂v

∂x2

〉
a

+O(η2),

Jσ1Ka = η

[
S〈divσ〉a − C1

〈
∂σ1
∂x2

〉
a

− C
〈
∂σ2
∂x2

〉
a

]
+O(η2),

(39)

with

B ≡ a

h
+ B1, C ≡

a

h
+
eϕ

h

(
µi

µm

− 1

)
+ C2,S ≡

a

h
+
eϕ

h

(
ρi

ρm

− 1

)
. (40)

Following [8], we define the final jump condition for the field (vh,σh) satisfying
the Helmholtz equation in the matrix and the jump conditions

q
vh

y
a

= ηB
〈
∂vh

∂x1

〉
a

+ ηB2
〈
∂vh

∂x2

〉
a

,

q
σh1

y
a

= η

[
S
〈
divσh

〉
a
− C1

〈
∂σh1
∂x2

〉
a

− C
〈
∂σh2
∂x2

〉
a

]
,

(41)

and it is easy to see that (vh,σh) have the same expansions as (v,σ) up to
O(η2). Coming back to the real space in X- coordinate, we get the final jump
conditions at the second order

JV Ka = hB
〈
∂V

∂X1

〉
a

+ hB2
〈
∂V

∂X2

〉
a

,

JΣ1Ka =

[
hS 〈divΣ〉a − hC1

〈
∂Σ1

∂X2

〉
a

− hC
〈
∂Σ2

∂X2

〉
a

]
.

(42)

2.6 Energy conservation in the homogenized problem

Below, we address the equation of energy conservation. In the original
problem, the elastic energy is

E =

∫
D
dV

[
ρ

2
V 2 +

1

2µ
Σ2

]
,

and in the homogenized problem, it is

Eh =

∫
D\Da

dV

[
ρ

2
V 2 +

1

2µ
Σ2

]
+ Ea,

where Ea is the energy of the equivalent interface of thickness a, that we
expect to account for the elastic energy in the original interface of thickness
e containing the inclusions, thus that we expect to be positive (Fig. 3). Let
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(a) (b)

Figure 3 (a) In the real problem, the elastic energy is defined in D = Di ∪Dm, (b) in the
homogenized problem, the energy is defined in D\Da ; an additional term arises from the
jump conditions between the boundaries of the equivalent interface Da of thickness a.

us inspect the expression of Ea. The energy conservation in the homogenized
problem reads

d

dt

∫
D\Da

dV

[
ρ

2
V 2 +

1

2µ
Σ2

]
−
∫
∂(D\Da)

dS Π.n = 0.

The fluxes of the Poynting vector −
∫
∂(D\Da)

dS Π.n (with Π = VΣ) involve

notably I ≡
∫

dX2 JV Σ1Ka inside the domain ; the change in the sign is due
to the convention of outer pointing normal vector n for ∂(D\Da).

We shall see that I is the time derivative of an energy supported by the
interface. Applying the jump conditions, Eqs. (42), we get

I =

∫
dX2 h

[
B
〈
∂V

∂X1

〉
a

+ B2
〈
∂V

∂X2

〉
a

]
〈Σ1〉a

+

∫
dX2 h

[
S〈divΣ〉a − C1

〈
∂Σ1

∂X2

〉
a

− C
〈
∂Σ2

∂X2

〉
a

]
〈V 〉a,

and using Eqs. (2) (with µ = µm and ρ = ρm),

I =
d

dt
Ea + h (B2 + C1)

∫
dX2

〈
∂V

∂X2

〉
a

〈Σ1〉a =
d

dt
Ea, (43)

with

Ea =

∫
dX2 h

[
ρm

2
hS〈V 〉a

2
+

1

2µm

(
B〈Σ1〉a

2
+ C〈Σ2〉a

2
)]
. (44)

We have used that B2 + C1 = 0, and the proof is reported in Appendix
A. Also, (44) has been obtained using integrations by parts, for instance of∫

dX2 ∂X2V 〈Σ1〉a ; this makes additional terms at the upper and lower boun-
daries of Da (along X1) to appear and something should be said at these
boundaries ; this is disregarded in this paper.
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Ea is the energy associated to the equivalent interface ; as previously said,
Ea has to be positive in order to ensure that the homogenized problem is well
suited for numerical purpose (the dependence of Ea on the thickness a is in the
parameters (B, C,S) in (44)). In the following section, we inspect this condition
with respect to the value of a.

3 Optimal value of a in the homogenized problem

In this section, we inspect the influence of the thickness a = O(e, h) in the
homogenized problem. This is done first considering the equation of energy
conservation, and it is shown that for a ≥ e, the interface parameters (S,B, C)
entering in the definition of the energy supported by the interface are positive,
thus ensuring Ea ≥ 0 in (44). Next, the error between the solution of the
homogenized problem and the solution of the actual problem is considered ;
this is done in the particular scattering problem of a plane wave at oblique
incidence on an array of rectangular inclusions, which leads to substantial
simplifications. Notably, an easy procedure based on multimodal method can
be used to calculate the effective parameters (see Appendix B).

3.1 Influence of a on the energy Ea supported by the interface in the
homogenized problem

From (44), the energy supported by the homogenized interface is guarantied
to be positive if (S,B, C) are positive. We shall see that this is guarantied if
a ≥ e.

3.1.1 Minimum value of a ensuring Ea ≥ 0

• An obvious parameter is S in (40) and it is easy to see that

S ≥ 0, if
a

e
≥ ϕ

(
1− ρi

ρm

)
. (45)

Next, to find bounds for B and C, we shall use variational formulations of
(18), yielding to principles of energy minimization.

• The parameter B is defined in (40), B = B0 + a/h, with B0 in (19). We start
with 0 =

∫
Ω∞

dy div [µ∇(W (1) + y1)] W̃ , with W̃ and its derivatives being
square integrable, continuous at the boundaries between the matrix and the
inclusions, and periodic with respect to y2 ; this defines the set of admissible
(or trial) fields W̃ . We get∫
Ω∞

dy µ∇W (1).∇W̃+

∫
Ω∞

dy µ∇W̃ .e1−µm

[
W̃ (+∞, y2)− W̃ (−∞, y2)

]
= 0,

(46)
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from which we define the energy

E(W̃ ) =
1

2

∫
Ω∞

dy µ|∇W̃ |2+

∫
Ω∞

dy µ∇W̃ .e1−µm

[
W̃ (+∞, y2)− W̃ (−∞, y2)

]
.

(47)
The field W (1) minimizes E , whence E(W̃ ) ≥ E(W (1)) for any admissible W̃ .
Now, we need to express E(W (1)) as a function of B0. To do so, we use W̃ =
W (1) in (46), from which∫

Ω∞

dy µ|∇W (1)|2 +

∫
Ω∞

dy µ∇W (1).e1 − µmB0 = 0. (48)

Starting from 0 =
∫
Ω

dy div [µ∇ (W (1) + y1)] y1, we get

0 = −
∫
Ω

dy ∇W (1).e1 −
∫
Ω

dy µ+

∫
∂Ω

dl µy1∇ (W (1) + y1) .n.

The two last integrals diverge, but it is easy to see that their sum is finite, with∫
Ω

dy µ = 2µmy
m
1 + eϕ/h(µi − µm) and

∫
∂Ω

dl µy1∇ (W (1) + y1) .n = 2ym1 .
Thus, summing them and taking the limit ym1 → +∞, we get∫

Ω∞

dy µ∇W (1).e1 =
eϕ

h
(µm − µi). (49)

It is now sufficient to use (48)-(49) to get

E(W (1)) =
1

2

∫
Ω∞

dy µ|∇W (1)|2 +

∫
Ω∞

dy µ∇W (1).e1 − µmB0

=
1

2

[eϕ
h

(µm − µi)− µmB0
]
.

and lower bounds of B0 are deduced

B0 ≥
eϕ

h

(
1− µi

µm

)
− 2

µm

E(W̃ ),

for any admissible field W̃ (and E(W̃ ) defined in (47)). To get an explicit
bound, we consider the admissible function W̃ (y1) independent of y2 and with
W̃ (y1 < −e/(2h)) = −b, W̃ (−e/(2h) ≤ y1 < e/(2h)) = 2bhy1/e and W̃ (y1 ≥
e/(2h)) = b, and at least for the time being b is a free parameter. From (47),
we get

E(W̃ ) = αb2 + βb, with α =
2h

e
[ϕµi + (1− ϕ)µm] , β = 2ϕ(µi − µm).

With α > 0, the minimum of E(W̃ ) is realized for b = −β/(2α) yielding
E(W̃ ) = −β2/(4α). The resulting lower bound for B0 reads

B0 ≥
eϕ

h

1− µi/µm

ϕµi/µm + 1− ϕ
,
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and obviously at this stage, B0 can be negative. Now, the minimum value of
a which ensures that B ≥ 0 in (40) is given by

B =
a

h
+ B0 ≥ 0, if

a

e
≥ ϕ µi/µm − 1

ϕµi/µm + 1− ϕ
≡ F (µi/µm, ϕ). (50)

• As for B, we want to get a condition on a in order to ensure C ≥ 0, with
C defined in (40) as a function of C0 (in (33), with (18)). We shall proceed as
previously, except that we shall consider here the dual variational problem. To
do so, we define

S(2) ≡ µ∇ [W (2) + y2] .

S(2) is associated to the following variational problem. For any admissible field
S̃ being divergence free, with S̃.n continuous at the boundaries between the
matrix and the inclusions and S̃ → µme2 at y1 → ±∞, we have

E∗(S̃) ≥ E∗(S(2)), with E∗(S̃) ≡ 1

2

∫
Ω∞

dy µ

[
S̃

µ
− e2

]2
, (51)

and it is easy to see that

E∗(S(2)) = −µm

2
C0. (52)

To get the above relation, we start with 0 =
∫
Ω∞

dy div [µ∇(W (2) + y2)]W (2),
whence

0 =

∫
Ω∞

dy µ|∇W (2)|2 +

∫
Ω∞

dy µ
∂W̃

∂y2

=

∫
Ω∞

dy µ

[
S(2)

µ
− e2

]2
+ µmC0.

(53)

Now, a lower bound of C0 can be found, owing to

µm

2
C0 ≤ −E∗(S̃), (54)

once an admissible field S̃ has been chosen. We built such S̃ being piecewise
constant along y1 and independent of y2, with S̃(|y1| < e/(2h)) = c e2 and
S̃(|y1| ≥ e/(2h)) = µme2, and the c-value minimizing E∗(S̃) is sought. We get

E∗(S̃) =
e

2h

[
αc2 − 2c+ β

]
, with α =

1− ϕ
µm

+
ϕ

µi

, β = (1− ϕ)µm + ϕµi.

(55)
With α > 0, the minimum of E∗(S̃) is reached for c = 1/α, and E∗(S̃) =
(αβ − 1)/α. The corresponding lower bound is

C0 ≥ −
e

h

ϕ(1− ϕ) (µi/µm − 1)2

ϕ+ (1− ϕ)µi/µm

, (56)
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and C0 is clearly not always positive. Now, from (40)

C =
a

h
+
eϕ

h
(µi/µm − 1) + C0, (57)

from which

C ≥ 0 if
a

e
≥ −ϕ 1− µi/µm

ϕ+ (1− ϕ)µi/µm

= −F (µi/µm, ϕ). (58)

3.1.2 Remarks on the bounds – The case a = e

From what precedes, the interface energy (44) is positive if the thickness a
satisfies

a ≥ e Max (|F (µi/µm, ϕ)|, ϕ(1− ρi/ρm)) . (59)

If we want this to be verified for any contrast µi/µm and any ϕ, the condition
becomes a ≥ e (because F ≤ 1 reaches its maximum F = 1 for ϕ = 1 and
µi/µm = 0). In the case a = e, Eqs. (45), (50), (58) give

S ≥ e

h
(1− ϕ+ ϕρi/ρm) ,

B ≥ e

h

1

ϕµi/µm + 1− ϕ
,

C ≥ e

h

µi/µm

ϕ+ (1− ϕ)µi/µm

,

(60)

which guaranty that S, B and C are positive.

(a) (b)

Figure 4 Interface parameters B and C, Eqs. (40), as a function of the contrast in the shear
modulus µi/µm for e/h = 0.5, 1 and 2 for a = e. Plain lines are the parameters calculated
by solving (18), dotted lines are the bounds given by (60).

For inclusions being rectangular voids or cracks, being the limiting case
ρi/ρm = µi/µm = 0, estimates of the parameters have been given in [1,2] (note
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that different notations are used in these references) ; with the notations used
presently, they read

SN =
e

h
(1− ϕ),

BN '
e

h

1

1− ϕ
+

2

π
log

(
sin

π(1− ϕ)

2

)−1
,

CN ' π
(1− ϕ)2

8
, if

e

h
<
π(1− ϕ)

8
, CN ' 0, otherwise,

(61)

and these values are in agreement with our bounds (60) for ρi = µi = 0 ; the
value of BN for e = 0, which is always positive, has been obtained in [9] using
technics of complex variables.

Finally, we report in Fig. 4 the variations of B and C as a function of
the contrast µi/µm (the parameters have been calculated using the scripts
given in Appendix B for ϕ = 0.5). The bounds found in (60) are reported for
comparison.

3.2 Error of the model as a function of a

In this section, we address the error of the homogenized solution when
compared to the solution of the actual problem. This is done varying a, which
affects the values of the effective parameters (B, C,S) in the jump conditions
(42), as it affects the size of the region Da of the enlarged interface (Fig. 3). The
error in the homogenized solution cannot be predicted within mathematical
considerations and it has to be considered in a particular scattering problem ;
below, this is done in the case of a plane wave at oblique incidence on the
array, which allows for an explicit homogenized solution. In the harmonic
regime, the waves have a time dependence e−iωt with frequency ω = 2πf ; in
the following, we omit the time dependance with V (X, t) = V (X)e−iωt. We
consider an incident wave, in X1 < 0, written as

V inc(X) = eik(cos θX1+sin θX2).

Regarding the material properties and inclusion shape, we shall consider
rectangular fibers of steel in concrete, with ρi = 7700 kg.m−3, µi = 78 GPa,
ρm = 2500 kg.m−3 and µm = 12 GPa. Note that for rectangular inclusions,
being symmetric with respect to y2, W (1) is symmetric and W (2) is antisym-
metric with respect to y2 ; it follows that B2 = C1 = 0, in (19) and (33), and
only (S,B, C) are needed in the jump conditions.

Examples of the displacement fields in the harmonic regime are reported
in Fig. 5 for e/h = 2, ϕ = 0.5, and frequency f such that kh = 0.5 ; typical
configurations for such kh value would correspond to centimetric sizes of the
fibers in the kilohertz regime. In the real problem, the incident wave hitting the
array generates an evanescent field. Although vanishing far from the fibers, the
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influence of this field cannot be neglected since it modifies the scattering pro-
perties of the propagating wave [2]. Thus a simple plane wave analysis would
result in a high error in the real solution, and a full wave numerical method
is required. We use a multimodal method (see e.g. [10]) and denote V num(X)
the computed solution. It is worth noting that the direct numerics has been
demanding, although the frequency is not high in the reported example (thus
the difference between the wavelength and the fiber size is low) ; translating
the number of modes considered in the numerics in terms of mesh size, the
spatial step needed to get a converged solution was δx/h = 5.10−3 and this is
the price to pay to capture accurately the near field ; a more detailed discus-
sion on the requirement on the mesh size can be found in [2] for calculations
performed in the harmonic regime and in [11] for calculations performed in
the time domain.

Figure 5 Fields V num(X) in the actual configuration of a matrix of concrete with fibers of
steel. The dimensionless frequency is kh = ke/2 = 0.5. The 3 fields V (X) in the homogenized
problem, Eqs. (62)- (63), for an equivalent interface of thickness a = 0, e and 2e. The
discrepancy EH1 , Eq. (64) for X1 < 0, is 40% for a = 0, 2% for a = e, and 30% for a = 2e.
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In the homogenized problem, the story is different ; the boundaries of the
equivalent interface are flat and the problem is one dimensional ; thus, the
solution is simply a superposition of plane waves, with

V (x) =

 eik sin θX2
[
eik cos θX1 +Re−ik cos θX1

]
, X1 < 0,

eik sin θX2Teik cos θ(X1−a), X1 > a,
(62)

where the scattered waves (V −V inc) satisfy the radiation condition (outgoing
waves are considered). Using (42), the scattering properties (R, T ) are obtained
explicitly, namely

R =
1

2

[
z∗2
z2
− z∗1
z1

]
, T =

1

2

[
z∗2
z2

+
z∗1
z1

]
,

z1 ≡ 1− ik

2
B cos θ, z2 ≡ cos θ − ik

2

(
S − C sin2 θ

)
,

(63)

where z∗i denotes the complex conjugate of zi. The field V is parametrized by
a since (S,B, C) depend on a. Next, it differs from the solution that would
be obtained using a plane wave analysis in the real problem. In fact, the
influence of the evanescent field has been encapsulated in the interface pa-
rameters (S,B, C) ; this is possible since for low frequency, the near field is
essentially a static field (and loosely speaking, it is a combination of our ele-
mentary problems (18)).

In Fig. 5, we reported the solutions V (X) of the homogenized problem,
(62) with (63), for a zero thickness interface a = 0, e and 2e. The interface
parameters (40) for a = 0 are : S(a = 0) = 2.12, B(a = 0) = −1.39 and
C(a = 0) = 1.54 (next, the values for a = e are deduced by adding the factor
e/h = 2 to each parameter, and the values for a = 2e are deduced by adding
the factor 2e/h = 4 to each parameter). Qualitatively, a very good agreement
is observed for a = e, much better than for a = 0 and a = 2e.

To be more quantitative, we define

EH1 =
||V − V num||H1

||V num||H1

, (64)

the relative error in H1 norm, with ||V ||H1 ≡
√
k2V 2 + (∇V )2 and for simpli-

city, we consider the reflected field only (in X1 < 0), for which no ambiguity
on the computational domains occurs. Next, the error is calculated for X1 < 0
which means that the evanescent near field is considered in addition to the
propagating field or it is calculated for X1 < −e, thus interrogating the far
field only. Results are reported in Fig. 6 for a varying continuously in [0, 2e]
and for various kh from kh = 10−3 to 1. As expected, the error when including
the near field is significantly higher than when considering only the far field.
Indeed, the homogenized solution does not reproduce the evanescent field in
the actual problem. This solution contains only a propagating field which de-
pends of boundary layer problems encapsulated in the interface parameters.
In the actual problem, the propagating field depends also on boundary layer
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effects encapsulated in the evanescent field (and the evanescent field occupies
a region near the fibers).

Figure 6 Discrepancy on the total field EH1 , Eq. (64) calculated for X1 < 0, as a function
of a/e. The same configuration as in Fig. 5 has been considered, for various kh-values
(ke = 2kh increases accordingly).

Figure 7 Discrepancy on the far field EH1 calculated for X1 < −e (far field) as a function
of a/e. The same configuration as in Fig. 5 has been considered, for various kh-values
(ke = 2kh increases accordingly).

From Fig. 6, the a-value which produces the minimum of the error is at
a = e ; a small shift is observed for kh close to unity which may happen for
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slightly smaller or larger value than e, with no systematic tendance (we observe
here an increase in the optimum a-value while other contrast or size produce a
decrease ; in all cases, the shift appears for kh close to 1). The improvement in
using a = e is not incremental, with a decrease in the error on the scattering
coefficients (Fig. 7) from typically 10 to 100 when compared to the case a = 0
or a = 2e. Note that it is difficult to draw a tendency in the improvement
as a function of kh since for very small error, the error due to the numerical
method may become dominant when compared to the error due to the model ;
besides, the norm H1 requires a numerical derivation along X1 in the direct
numerics, which increases the numerical error (this is particularly true when
the near field, with rapid variations, is considered).

4 Concluding remarks

We have presented an interface model to identify the effective behavior
of an array of elastic inclusions embedded in an elastic matrix. Parameters
characteristic of the interface enter in jump conditions for the displacement
and the normal stress of the shear waves. These parameters are given by
the resolution of elementary problems written in the static limit, and they
are therefore wave independent by construction. We have inspected different
forms of the jump conditions, being all equivalent up to the order of validity
of the model and concluded that an equivalent interface being enlarged of the
same thickness as the original array was a good choice to ensure that (i) the
homogenized problem is well suited for numerical resolution (which means free
of numerical instabilities in the time computation) and (ii) the error in the
model is reduced when compared to the case of zero thickness interface (or
other thickness of the homogenized interface). Obviously, the two questions
are of different nature : if a positive interface energy is a prerequisite for any
consistent computational method in the time domain (and as so, it is not
optional), a low error in the model is only a wishful thinking.

Références

1. Marigo, J.-J. , Maurel, A. : Homogenization models for thin rigid structured surfaces and
films. J. Acoust. Soc. Am. 140(1), 260-273 (2016)

2. Marigo, J.-J. , Maurel, A. : An interface model for homogenization of acoustic metafilms,
unpublished (2016).

3. Maurel, A., Marigo, J.-J., Ourir, A. : Homogenization of ultrathin metallo-dielectric
structures leading to transmission conditions at an equivalent interface. J. Opt. Soc. Am.
33(5) 947-956 (2016).

4. Marigo, J.-J. , Maurel, A. : Two scale homogenization to determine effective parameters
of thin metallic structured films. Proc. R. Soc. A. 472(2192) 20160068 (2016).

5. Delourme, B., Haddar, H. , Joly, P. : Approximate models for wave propagation across
thin periodic interfaces. J. Math. Pures Appl. 98, 28-71 (2012)

6. Delourme, B. : High-order asymptotics for the electromagnetic scattering by thin periodic
layers. Math. Meth. Appl. Sciences, 38(5) 811-833 (2015)



22 Jean-Jacques Marigo et al.

7. Marigo, J.-J., Pideri, C. : The effective behavior of elastic bodies containing microcracks
or microholes localized on a surface. Int. J. Damage Mech. 1056789511406914 (2011)

8. David, M., Marigo, J. J., Pideri, C. : Homogenized interface model describing inhomo-
geneities located on a surface. Journal of Elasticity. 109(2), 153-187 (2012).

9. Morse, P. M., Ingard, K. U. : Theoretical acoustics, Princeton university press, (1968)

10. Maurel, A., Mercier, J.-F., Félix, S. : Wave propagation through penetrable scatterers
in a waveguide and through a penetrable grating. J. Acoust. Soc. Am. 135(1), 165-174
(2014)

11. Lombard, B., Maurel, A., Marigo, J.-J. : Numerical modeling of the acoustic wave
propagation across an homogenized rigid microstructure in the time domain, unpublished
(2016)

A Proof of the relation B2 + C1 = 0 used in (44)

We recall the definitions of B2 and C1 :

B2 = W (2)(+∞, y2)−W (2)(−∞, y2), C1 =

∫
Ω∞

dy
µ(y)

µm

∂W (1)

∂y2
. (65)

with W (i) satisfying (18), and we will show that

B2 = −C1 =

∫
Ω∞

dy
µ(y)

µm

∇W (1)∇W (2). (66)

We start with

0 =

∫
Ω

dy div
[
µ∇

(
W (1) + y1

)]
W (2)

= −
∫
Ω

dy µ∇
(
W (1) + y1

)
∇W (2) +

∫
∂Ω

dl µ∂n(W (1) + y1)W (2)
(67)

The second integral in (70) simplifies because of (i) the continuity of µ∂n(W (1) + y1) and of
W (2) on ∂Ωi and (ii) the periodicity of W (i) with respect to y2. Only the integrals on the
boundaries at y1 = ±ym1 give a contribution, whence∫

∂Ω
dl µ∂n(W (1) + y1)W (2) = µm

[
W (2)(ym1 )−W (2)(−ym1 )

]
→ µmB2, (68)

where the arrow indicates the limit for ym1 → +∞ (we also used that ∂y1W
(1) vanishes at

y1 → ±∞). The first integral in (70) reads
∫
Ω dy µ∇

(
W (1) + y1

)
∇W (2) =

∫
Ω dy µ∇W (1)∇W (2)+∫

Ω dy µ∇W (2).e1 and we shall show that
∫
Ω∞

dy µ∇W (2).e1 = 0. To do so, we use that

0 =

∫
Ω∞

dy div
[
µ∇(W (2) + y2)

]
y1 = −

∫
Ω∞

dy µ∇W (2).e1+

∫
∂Ω∞

dl µ∂n(W (2)+y2)y1.

(69)
Again, the integral over ∂Ω∞ simplifies, but now it simply vanishes. Coming back to (70),

we get B2 = lim
ym1 →+∞

∫
Ω

dy µ∇W (1)∇W (2).

We now inspect C1 ; we use

0 =

∫
Ω

dy div
[
µ∇

(
W (2) + y2

)]
W (1)

= −
∫
Ω

dy µ∇
(
W (2) + y2

)
∇W (1) +

∫
∂Ω

dl µ∂n(W (2) + y2)W (1).
(70)
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It is easy to see that the second integral vanishes when ym1 → +∞, and we simply get

0 = −
∫
Ω∞

dy µ∇W (1)∇W (2) −
∫
Ω∞

dy µ
∂W (1)

∂y2
, (71)

which allows us to conclude.

B Solutions of the elementary problems

Mode matching is a simple way to solve the elementary problem for rectangular inclu-
sions. The basic idea is to expand the solution onto an basis being adapted in each part of
the unit cell. The solutions are periodic with respect to y2, and for |y1| > e/2, the adapted
transverse functions are simply

f+n (y2) = e2inπy2 , (72)

which are orthogonal for the usual scalar product

(f, g)1 ≡
∫

dy f(y)g∗(y), (73)

with g∗ the complex conjugate of g. For |y1| ≤ e/2, an adapted basis f0n has to be found,
and adapted means here that the f0n have to be periodic and have to satisfy the boundary
condition at y2 = ±ϕ/2, (f0n)′(ϕ/2−) = a0(f0n)′(ϕ/2+) (the same at y2 = −ϕ/2). It is easy
to see that the f−n are orthogonal for the scalar product

(f, g)2 =

∫
|y|≤ϕ/2

dy f(y)g(y) + ξ

∫
|y|>ϕ/2

dy f(y)g(y). (74)

Next, the elementary solution will be expressed as a function of a field V (y) written in
a generic form

V (y) =



V −(y) = L(y) +

N−∑
n=−N−

q−n e
bn(y1+e/2)f+n (y2), y1 ≤ −e/2,

W (y) = L(y) +

N∑
n=1

[
W−n e

bn(y1−e/2) +W+
n e
−bn(y1+e/2),

]
f−n (y2), |y1| ≤ e/2

V +(y) = L(y) +

N+∑
n=−N+

q+n e
−bn(y1−e/2)f+n (y2), y1 ≥ e/2,

(75)
with L(y) the loading being defined piecewise.

Now, we will ask to V − and W to match (on average) their values and their first
derivatives at y1 = −e/2 (same for V + and W at y1 = e/2). To that aim, we use the
following continuity relations at |y1| = e/2

at y1 = −e/2


(V −, f+m)1 = (W, f+m)1,(
∂V −

∂y1
, f−m

)
1

=

(
∂W

∂y1
, f−m

)
2

,
at y1 = e/2


(W, f+m)1 = (V +, f+m)1,(
∂W

∂y1
, f−m

)
2

=

(
∂V +

∂y1
, f−m

)
1

.

(76)
The matching conditions on the derivatives of (V ±,W ) w.r.t. y1 naturally account (on
average) the exact conditions

∂W

∂y1
(e/2, y2) =

∂V +

∂y1
(e/2, y2), |y2| ≤ ϕ/2,

∂W

∂y1
(e/2, y2) =

1

ξ

∂V +

∂y1
(e/2, y2), |y2| > ϕ/2,

(77)
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(3) provide a matrix system for the vectors W± = (W±n )n=1,...,N and V± = (V ±n )n=0,...,N±

of the form 
I 0 −FE −F

−tF∗B 0 BE −B
0 −I F FE
0 tF∗B B −BE




V−

V+

W+

W−

 = S (78)

with I the N− × N− identity matrix, B ≡ diag(|2nπ|), E ≡ diag(e−|2nπ|e). The matrix
Fmn ≡ (f0n, fm)1 depend on the basis f0n and the source term S depends on the loading L(y) ;
it is worth nothing that the above system has to be written accounting for the symmetry
of the problem, which is accounted for in the choice of the (fn, f0n). The system is of the
form Mq = s with the matrix M being square (this is not always the case in systems written
using mode matching). Next, M is invertible if one has taken care to consider the correct
symmetry. Thus, the system can be solved to find q by inverting M or it can be solved in
the least squares sense (as done by the operation M\s in Matlab).

In general, the f0n have to be determined numerically. An exception for ϕ = 1/2 is given
below.

B.1 B0 in the elementary W (1) problem

For ϕ = 1/2, a simple adapted basis f−n for symmetric solutions is

f−n (y2) =


A cos(2nπy2), n even

B cos(2nπy2)×
{

1, |y2| > 1/4,
ξ, |y2| ≤ 1/4,

n odd
(79)

with A ≡ 2/
√

1 + ξ, B = 2/
√
ξ + ξ2. We get the matrix F

Fmn =

{
A [gmn +Gmn] , n even,
B [ξgmn +Gmn] , n odd,

(80)

with 
gmn =

1

4

[
sinc

(n−m)π

2
+ sinc

(n+m)π

2

]
,

Gmn =
1

2
[sinc ((n−m)π) + sinc ((n+m)π)]− 2gmn.

(81)

The basis (fn, f0n) are adapted for V = W (1) + y1 satisfying ∆V = 0 in each medium,
with V with a∇V.n being continuous ; next, V → e1 for y1 → ±∞, which gives the loading

L(|y1| > e/2, y2) = y1, L(|y1| ≤ e/2) =
2y1

a0 + 1
. (82)

The form of L for |y1| ≤ e/2) is chosen to ensure that the integral form of the equation
div(a∇W (1)) = 0, namely

∫
dy2a(y)∂W (1)/∂y1 = 1, is satisfied. The resulting source term

S reads tS = t(S1,S2,S1,S2) with S1 a 2N± + 1 term vector and S2 a N term vector

(S1)n =
e

2

1− ξ
1 + ξ

δn0, (S2)n = B
ξ − 1

2
sinc

(nπ
2

)
, (83)

with sincx ≡ sinx/x (and sinc0 = 0). The system (78) can be solved and B is given by

B0 = V +
0 − V

−
0 . (84)
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B.2 The elementary W (2) problem

Here, we consider V = W (2) + y2 which satisfies ∆V = 0 in each medium, with V and
a∇V n being continuous at each interface and V → y2 for y1 → ±∞ (V − y2 is periodic).
The solution being now antisymmetric w.r.t. y2, a simple adapted basis is

f−n (y2) =


A sin(2nπy2), n odd

B sin(2nπy2)×
{

1, |y2| > 1/4,
ξ, |y2| ≤ 1/4,

n 6= 0 even
(85)

with the same normalizations (A,B). It follows that Fmn = (f0n, fm)1 is defined as in (80),
but now 

gmn =
1

4i

[
sinc

(n−m)π

2
− sinc

(n+m)π

2

]
,

Gmn =
1

2i
[sinc ((n−m)π)− sinc ((n+m)π)]− gmn,

(86)

For n = 0, f00 (y2) is a linear (periodic) function of y2

f00 (y2) =
1− ξ
1 + ξ


y2 − 1/2, y2 > 1/4,

−y2, |y2| ≤ 1/4,

y2 + 1/2, y2 < −1/4,

(87)

In this case, the loading contains not only the term y2 but also f00 (y2) and this is to
ensure that the term in V linear in y2 satisfies the right boundary condition at |y2| = 1/4
for e→ 0 (V ±n and W±n vanish) ; it is worth noting that setting W0 = 1 is possible since V
is defined up to a constant. Thus

L(|y1| > e/2, y2) = y2, L(|y1| ≤ e/2, y2) =

{
y2, |y2| > 1/4,
y2 + f00 (y2) |y2| ≤ 1/4,

(88)

resulting in a source term tS = t(S1,0,S1,0) with S1 a 2N± + 1 term vector

(S1)m = (f00 , fm)1 =
ξ − 1

ξ + 1

sinc(mπ/2)

2imπ
.

Once the problem is solved, we want to determine

C0 =

∫
dy a(y)

∂W (2)

∂y2
=

∫ e/2

−e/2
dy1

(
1,
∂W

∂y2
− 1

)
2

(89)

where we have used that aW (2)(|y1| ≥ e/2, y2) = V ±(y)− y2 is periodic, thus of vanishing
contribution. It results

C0 =
1− ξ

2

[
−

1− ξ
1 + ξ

e+A

N∑
n=1

(W−n +W+
n ) sinc

nπ

2

(
1− e−2nπe

)]
(90)

B.3 Matlab scripts

Below, we give the scripts to calculate B0 and C0 in Matlab.
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1 f u n c t i o n B0=Pb_elem1 ( e , xi , Np ,N)
2

3

4 n =1:N; m=−Np : Np ;
5 betam =2∗m∗ p i ; bm= abs ( betam ) ;
6 bn= abs (2∗ n∗ p i ) ;
7

8 f o r i i =1 : l e n g t h (m) , mm=m( i i ) ;
9 f o r j j =1 : l e n g t h ( n ) , nn=n ( j j ) ;

10 gmn = 1 / 4∗ ( s i n c ( ( nn−mm) / 2 ) + s i n c ( ( nn+mm) / 2 ) ) ;
11 Gmn= 1 / 2∗ ( s i n c ( nn−mm)+ s i n c ( nn+mm) )−gmn ;
12 i f nn /2− f l o o r ( nn / 2 ) = = 0 ,
13 F ( i i , j j ) = 2 / s q r t (1+ x i ) ∗ ( gmn+Gmn ) ;
14 e l s e
15 F ( i i , j j ) = 2 / s q r t ( x i + x i ^ 2 )∗ ( x i ∗gmn+ Gmn ) ;
16 end
17 end
18 end
19

20 Bp= d i a g (bm ) ; B= d i a g ( bn ) ; E= d i a g ( exp(−bn∗e ) ) ;
21 Ip =eye (2∗Np + 1 ) ; Opp= z e r o s (2∗Np+1 ,2∗Np + 1 ) ; Op= z e r o s (N, 2∗Np + 1 ) ;
22

23 M=[ Ip , Opp , −F∗E , −F ;
24 −F ’∗Bp , Op , B∗E , −B ;
25 Opp , −Ip , F , F∗E ;
26 Op , F ’∗Bp , B , −B∗E ] ;
27

28 S1=0∗m’ ; S1 ( Np+1)=−e /2∗(1− x i ) / ( 1 + x i ) ;
29 S2 =2/ s q r t ( x i + x i ^ 2 )∗ ( x i / 2∗ s i n c ( n / 2 ) + s i n c ( n ) −1/2∗ s i n c ( n / 2 ) ) . ’ ;
30

31 S=[ S1 ; S2 ; S1 ; S2 ] ;
32 V=M\ S ;
33 Vm=V( 1 : 2∗Np + 1 ) ;
34 Vp=V(2∗Np+2:2∗ (2∗Np + 1 ) ) ;
35

36 B0=Vp ( Np+1)−Vm( Np + 1 ) ;

1 f u n c t i o n C0=Pb_elem2 ( e , xi , Np ,N)
2

3 n =1:N; m=−Np : Np ;
4 betam =2∗m∗ p i ; bm= abs ( betam ) ;
5 bn= abs (2∗ n∗ p i ) ;
6

7 f o r i i =1 : l e n g t h (m) , mm=m( i i ) ;
8 f o r j j =1 : l e n g t h ( n ) , nn=n ( j j ) ;
9 gmn = 1 / ( 4 i ) ∗ ( s i n c ( ( nn−mm)/2) − s i n c ( ( nn+mm) / 2 ) ) ;

10 Gmn= 1 / ( 2 i ) ∗ ( s i n c ( nn−mm)− s i n c ( nn+mm) )−gmn ;
11 i f nn /2− f l o o r ( nn / 2 ) = = 0 ,
12 F ( i i , j j ) = 2 / s q r t ( x i + x i ^ 2 )∗ ( x i ∗gmn+Gmn ) ;
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13 e l s e
14 F ( i i , j j ) = 2 / s q r t (1+ x i ) ∗ ( gmn+Gmn ) ;
15 end
16 end
17 end
18

19 Bp= d i a g (bm ) ; B= d i a g ( bn ) ; E= d i a g ( exp(−bn∗e ) ) ;
20 Ip =eye (2∗Np + 1 ) ; Opp= z e r o s (2∗Np+1 ,2∗Np + 1 ) ; Op= z e r o s (N, 2∗Np + 1 ) ;
21

22 M=[ Ip , Opp , −F∗E , −F ;
23 −F ’∗Bp , Op , B∗E , −B ;
24 Opp , −Ip , F , F∗E ;
25 Op , F ’∗Bp , B , −B∗E ] ;
26

27

28 S1 =( xi −1 ) / ( x i +1)∗ s i n c (m’ / 2 ) . / ( 2 i ∗m’∗ p i ) ; S1 ( Np+1)=0 ;
29 S=[ S1 ; 0∗ n ’;−S1 ; 0∗ n ’ ] ;
30 V=M\ S ;
31

32 Wm=V(1+2∗ (2∗Np + 1 ) : 2∗ ( 2∗Np+1)+N ) ;
33 Wp=V( 2∗ ( 2∗Np+1)+N+1:2∗ (2∗Np+1)+2∗N ) ;
34

35 C0=−(1−x i ) / 2 ∗ ( e∗(1− x i ) / ( 1 + x i )−2/ s q r t (1+ x i )∗ sum ( s i n ( n∗ p i / 2 ) . / ( n∗ p i / 2 ) . ∗ (Wm+Wp ) . ’ . . .
36 .∗(1− exp (−2∗n∗ p i ∗e ) ) ) ) ;
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