M. Badiale and E. Serra, ƒemiline—r ellipti™ equ—tions for ˜eginners

R. F. Bass, hi'usions —nd ellipti™ oper—tors. Probability and its Applications, 1998.

M. Bossy, N. Champagnat, H. Leman, S. Maire, L. Violeau et al., Monte Carlo methods for linear and non-linear Poisson-Boltzmann equation. giw‚egƒ PHIQ"modelling —nd simul—tion of ™omplex systemsX sto™h—sti™ —nd deterministi™ —ppro—™hesD iƒesw €ro™F ƒurveys, p.420446, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01088930

B. Bouchard and S. Menozzi, Strong approximations of BSDEs in a domain, Bernoulli, vol.15, issue.4, p.11171147, 2009.
DOI : 10.3150/08-BEJ181

URL : https://hal.archives-ouvertes.fr/hal-00446316

B. Bouchard and N. Touzi, Discrete-time approximation and Monte-Carlo simulation of backward stochastic dierential equations. ƒto™h—sti™ €ro™esses —nd their eppli™—tions, p.175206, 2004.

B. Bouchard, S. Geiss, and E. Gobet, First time to exit of a continuous Itô process: General moment estimates and L1-convergence rate for discrete time approximations. erˆiv eEprints, 2013.

D. J. Daley, Quasi-stationary behaviour of a left-continuous random walk. enn—ls of w—them—ti™—l ƒt—tisti™s, p.532539, 1969.

R. W. Darling and E. Pardoux, Backwards sde with random terminal time and applications to semilinear elliptic pde. „he enn—ls of €ro˜—˜ility, p.11351159, 1997.

F. Delarue, Estimates of the Solutions of a System of Quasi-linear PDEs. A Probabilistic Scheme, ƒémin—ire de €ro˜—˜ilités ˆˆˆ†ss, p.290332, 2003.
DOI : 10.1007/978-3-540-40004-2_12

O. Faure, ƒimul—tion du mouvement ˜rownien et des di'usions, Ecole Nationale des Ponts et Chaussées, 1992.

M. Freidlin, pun™tion—l integr—tion —nd p—rti—l di'erenti—l equ—tions, volume 109 of enn—ls of w—theE m—ti™s ƒtudies, 1985.

A. Friedman, €—rti—l di'erenti—l equ—tions of p—r—˜oli™ type, N.J, 1964.

D. Gilbarg and N. S. Trudinger, illipti™ p—rti—l di'erenti—l equ—tions of se™ond order, 2015.

E. Gobet, Revisiting the Greeks for European and American Options, Stochastic Processes and Applications to Mathematical Finance, p.5371, 2004.
DOI : 10.1142/9789812702852_0003

E. Gobet, J. Lemor, and X. Warin, A regression-based Monte Carlo method to solve backward stochastic dierential equations, p.21722202, 2005.

P. Henry-labordere, X. Tan, and N. Touzi, A numerical algorithm for a class of BSDEs via the branching process. ƒto™h—sti™ €ro™esses —nd their eppli™—tions, p.11121140, 2014.

P. Henry-labordere, N. Oudjane, X. Tan, N. Touzi, and X. Warin, Branching diusion representation of semilinear PDEs and Monte Carlo approximation. erˆiv ITHQFHIUPU, 2016.

N. Ikeda, M. Nagasawa, and S. Watanabe, Branching Markov processes. I. tF w—thF uyoto …nivF, p.233278, 1968.

N. Ikeda, M. Nagasawa, and S. Watanabe, Branching Markov processes. II. tF w—thF uyoto …nivF, p.365410, 1968.

N. Ikeda, M. Nagasawa, and S. Watanabe, Branching Markov processes. III. tF w—thF uyoto …nivF, p.95160, 1969.

O. A. Ladyºenskaja, V. A. Solonnikov, and N. N. , Ural ceva. vine—r —nd qu—siline—r equ—tions of p—r—˜oli™ type. Translated from the Russian by S, Smith. Translations of Mathematical Monographs, vol.23, 1968.

A. Lejay, exitbm: a library for simulating Brownian motion's exit times and positions from simple domains

P. L. Lions, On the existence of positive solutions of semilinear elliptic equations. ƒsew ‚eview, p.441467, 1982.

H. P. Mckean, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. gommuni™—tions on €ure —nd epplied w—them—ti™s, p.323331, 1975.

G. N. Milstein and M. V. Tretyakov, Simulation of a space-time bounded diusion. enn—ls of epplied €ro˜—˜ility, p.732779, 1999.

É. Pardoux, Backward stochastic dierential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order, ƒto™h—sti™ —n—lysis —nd rel—ted topi™sD †s @qeiloD IWWTA, p.79127, 1998.

É. Pardoux and S. G. Peng, Adapted solution of a backward stochastic dierential equation. ƒystems 8 gontrol vetters, p.5561, 1990.

R. G. Pinsky, €ositive h—rmoni™ fun™tions —nd di'usion, volume 45 of g—m˜ridge ƒtudies in edv—n™ed w—them—ti™s, 1995.

A. Rasulov, G. Raimova, and M. Mascagni, Monte carlo solution of cauchy problem for a nonlinear parabolic equation. w—them—ti™s —nd gomputers in ƒimul—tion, p.11181123, 2010.

A. V. Skorohod, Branching diusion processes. ek—demij— x—uk ƒƒƒ‚F „eorij— †eroj—tnoste¨%†eroj—tnoste¨% i ee €rimenenij—, p.492497, 1964.

A. Thalmaier, On the dierentiation of heat semigroups and Poisson integrals. ƒto™h—sti™s —nd ƒto™h—sE ti™s ‚eports, p.297321, 1997.

S. Watanabe, On the branching process for Brownian particles with an absorbing boundary. tourn—l of w—them—ti™s of uyoto …niversity, p.385398, 1965.

J. Zhang, A numerical scheme for BSDEs. „he enn—ls of epplied €ro˜—˜ility, p.459488, 2004.