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Abstract

This work proposes an extension of the well-known random sequential adsorption (RSA) method in

the context of non-overlapping random mono- and polydisperse ellipsoidal inclusions. The algorithm is

general and can deal with inclusions of di�erent size, shape and orientation with or without periodic

geometrical constraints. Speci�cally, polydisperse inclusions, which can be in terms of di�erent size,

shape, orientation or even material properties, allow for larger volume fractions without the need of

additional changes in the main algorithm. Unit-cell computations are performed by using either the fast

Fourier transformed-based numerical scheme (FFT) or the �nite element method (FEM) to estimate

the e�ective elastic properties of voided particulate microstructures. We observe that an isotropic

overall response is very di�cult to obtain for random distributions of spheroidal inclusions with high

aspect ratio. In particular, a substantial increase (or decrease) of the aspect ratio of the voids leads to

a markedly anisotropic response of the porous material, which is intrinsic of the RSA construction. The

numerical estimates are probed by analytical Hashin-Shtrikman-Willis (HSW) estimates and bounds.

Key words: RSA algorithm, ellipsoidal inclusions, FFT-based numerical homogenization, e�ective

elastic properties, porous material

1. Introduction

The e�ective physical properties of random heterogeneous materials are strongly dependent upon their

microstructure. Therefore, the statistically accurate quantitative characterization of the microstructure

is of great importance in their modeling. Speci�cally, knowledge of microstructural statistical information

(e.g. volume fractions, shapes, connectivity, spatial distributions and orientations of constituents) is5

fundamental in understanding and interpreting the microstructure-property relationships. Statistical

descriptors such as n-point probability functions, are widely used to quantify mathematically this
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information in a broad class of random microstructures (see comprehensive reviews in [1, 2]). They are

useful in the random generation or stochastic reconstruction of realistic virtual microstructures.

Random generation or stochastic reconstruction of virtual microstructures needs to take into ac-10

count an in�nite amount of microstructural statistical properties. However, in practice, only limited

(lower-order) statistical information is available either experimentally or theoretically. The accessibility

of the high-level statistical information remains an important focus of research [3]. Statistical mi-

crostructural descriptors (e.g., n-point probability functions, lineal-path function, pore-size distribution

functions, etc.), are widely used to quantify mathematically this information in a broad class of random15

microstructures. A review of several distribution functions can be found in [4, 2, 5].

In homogenization based statistical continuum theories [6, 7, 8, 9, 2, 10], the microstructural

statistics of the representative volume element of random multiphase materials is assumed to be

spatially uniform and ergodic. This means that probability functions are insensitive to translations and

sample realizations. It follows that, the one-point probability function is simply the volume fraction20

of the phases. In turn, the phase distribution can be described by two- or higher order probability

functions and can be statistically isotropic or statistically anisotropic. A number of two-point correlation

function methods have been proposed in the literature. The ellipsoidal symmetry can be traced back to

Willis [11, 7] while Ponte Casta~neda and Willis [12] proposed estimates that allow for di�erent inclusion

shapes and distribution functions. In the present work, the focus is on \almost isotropic" responses25

with randomly oriented ellipsoidal voids and use will be made of the Hashin-Shtrikman-Willis (HSW)

estimates [13, 14, 15], which are considered to be su�cient for the purposes of the present study.

1.1. Random process based on molecular dynamics

The basic idea of this process is due to Lubachevsky and Stillinger [16] and Lubachevsky et al. [17]

who proposed an algorithm based on molecular dynamics for random packings of disks and spheres in a30

square primitive cell. This algorithm was extended for a system of non-spherical particles in [18]. The

algorithm treats all inclusions on an equal footing consisting in simultaneous generation of inclusions.

Recently, Ghossein and L�evesque [19] were inspired by this approach to propose a fully automated

numerical tool for a comprehensive validation of linear elastic homogenization models in the case of

spherical or ellipsoidal particles reinforced composites. Vincent et al. [20] have used a similar random35

process based of the molecular dynamics for the study of the e�ective plastic ow surface of a uid

saturated bi-porous material. The main advantage of this algorithm is that high volume fractions

(i.e. greater than 30% ) can be achieved. Polydisperse microstructures can be simply obtained by

considering nonuniform growth rates for the inclusions [21].
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1.2. General overview of the random sequential addition process40

The algorithm proposed in the present study is based on a consecutive generation of inclusions in a

periodic cell. It consists in placing randomly, irreversibly, and sequentially non-overlapping objects

into a volume (or onto a surface) [22, 23, 2]. In this process, the acceptance of subsequent inclusion is

constrained by some conditions reliant to the previously accepted inclusions and to the cell faces. Recent

investigations have used the RSA algorithm in the context of linear and non-linear computational45

homogenization of composites or porous materials containing spherical particles or pores [24, 25, 26, 27],

monodisperse spheroidal inclusions [28] or even inclusions with octahedral, tetrahydral or cubic shapes

[29]. The drawback of this algorithm is the fact that in the case of monodisperse microstructure, it is

di�cult to achieve volume fractions greater than 30%. To overcome this limitation, Segurado and Llorca

[24] (see also [30, 31]) developed a modi�ed version of the RSA algorithm applied to spherical particles50

to reach higher volume fractions. In an alternative perspective and perhaps more closely related

to analytical homogenization methods [11, 7], Lopez-Pamies et al. [27] applied the RSA algorithm

to polydisperse microstructures allowing for much higher volume fractions without any additional

operations and without percolation thresholds (but also look at multiscale morphological models such

as in [32] albeit for overlapping inclusions). Most of the studies in the literature pertain to two-phase55

composites. A recent extension of the RSA algorithms to N -phase composites that contain inclusions

with di�erent material constitutive response has been proposed in [33].

1.3. Scope of the study

In the present study, we propose an extension of the RSA algorithm to obtain random periodic (or

not) distributions of mono- and polydisperse non-overlapping ellipsoidal inclusions of arbitrary shape60

and orientation. The centers of the ellipsoidal inclusions are randomly generated in a cuboidal cell

following a uniform distribution probability. All ellipsoids that share the same shape and orientation

shall belong to the same particle family. In the case of polydisperse distributions (i.e. inclusions

of di�erent sizes), one can reach with appropriate selection of the inter-distance parameters rather

high volume fractions (> 60%) without need of additional operations contrary to previous studies65

[19]. Then, we consider the numerical computation of the e�ective linear elastic properties of porous

periodic microstructures by using a FFT-based numerical scheme and the FE method. We investigate

particularly the deviation from isotropy and compare them with HSW estimates [11] which in some

cases correspond to rigorous upper bounds. Voided microstructures are especially of interest in the

context of geomaterials and rock physics. We show that the HSW estimates, which correspond to70

in�nitely polydisperse matrix-inclusion systems, are extremely accurate for porous materials (but this

is not the case for rigid particles [27]) even for monodisperse microstructures up to fairly high volume

fractions (up to 35%). Beyond that volume fraction, the present algorithm needs to be modi�ed (e.g.
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as in [19]) to reach higher volume fraction of monodisperse inclusions but that is beyond the scope

of this work. Instead, higher and more realistic high-volume-fraction microstructures can be easily75

attained by using polydisperse sizes of inclusions.

In Section 2, we discuss in detail the extension of the RSA algorithm in the context of random mono-

and polydisperse ellipsoids. Subsequently, in Section 3, boundary conditions are briey presented and

some details on the FFT and FEM methods, needed to carry out our numerical analysis of the e�ective

elastic properties, are given. In Section 4, we show representative results for \almost" isotropic porous80

materials with random spherical, oblate and prolate voids and discuss their e�ect on the e�ective bulk

and shear moduli, as well as their deviation from a purely isotropic response. The complete RSA

algorithm is presented in appendix together with a convergence analysis of the FFT computations in

terms of number of pores, voxel size and number of realizations.

2. Extension of the RSA algorithm for ellipsoidal heterogeneities85

In this section, we extend previous approaches to include non-overlapping ellipsoids of arbitrary

orientation and relative size. The extension consists in the generalization of the RSA algorithm proposed

in [24, 27] for polydisperse inclusions. First, we de�ne the microstructural parameters used in our

process. Then, similar to most studies in the literature using the RSA algorithms, we introduce the

geometric conditions imposed in order to allow for an adequate spacial discretization. Three types of90

geometric constraints are generally imposed:

1. For non-overlapping inclusions, the spacing between the inclusions must exceed a minimum

value noted s1 for proper discretization. Assuming periodicity of the inclusion distribution, this

condition has to be checked 26 times for each pair of inclusions, i.e. between the newly added

inclusion and any previously accepted inclusion as well as its periodic images near the opposite95

faces.

2. The inclusion surface must be su�ciently far from the cuboidal boundary faces to prevent, for

example, the presence of distorted �nite elements during meshing. This imposes that the distance

from a point on the surface of the inclusion to any of the faces of the cuboidal cell must take a

minimum value s2. Note, however, that this is less constraining in the context of FFT calculations100

mainly used in the present work.

3. In the case of periodic microstructures, any inclusion which intersects with any of the cuboidal-

cell boundary faces must be copied to the opposite face in order to impose periodicity of the

microstructure.
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Note that, by contrast with Pierard et al. [34], the extension of the RSA algorithm proposed here105

takes into account an arbitrary orientation of inclusions. This algorithm can be used to generate

random microstructures containing spherical, spheroidal or general ellipsoidal inclusions distributed in

a monodisperse or polydisperse manner.

2.1. Microstructure description

Let us consider a cuboidal unit-cell (UC) with dimensions L1,L2 and L3 and made of Np phases110

with volumes V (r) (r = 1; � � � ; Np), such that
PNp
r=1 V (r) = V . The UC comprises distinct families

of ellipsoidal inclusions with volume fraction f (r) = V (r)=V , aspect ratios !(r)
1 = c(r)=a(r) and

!(r)
2 = c(r)=b(r) (r = 2; : : : ; Np) embedded in a matrix phase (r = 1). The vectors n(r)

i (i = 1; � � � ; 3)

form an orthonormal basis attached to the ellipsoid (Figure 1). A family of inclusions is a phase

characterized by N (r) inclusions which have the same elastic properties, size, shape and orientation.115

For simplicity in the following, attention is restricted to inclusions which have the same constitutive

properties. The extension to di�erent ones is straightforward and has been described for spherical

inclusions in [33].

Figure 1: Cubic unit-cell and reference ellipsoid geometry, de�ned by the aspect ratios !(r)
1 = c(r)=a(r) and !(r)

2 = c(r)=b(r)

and the orientation vectors n(r)
i (with i = 1; 2; 3).

In this study, a monodisperse periodic microstructure is represented by a UC with randomly

orientated inclusions having the same size and shape while a polydisperse microsctructure refers to120

inclusions of di�erent (relative) size and/or shape. Following [27] for the generation of polydisperse

microstructure, we de�ne a reference size of inclusion which is used to calibrate every other inclusion

phase/size. The reference size, for consistency with the monodisperse microstructures, is de�ned via a

reference number of monodisperse inclusions, Nref , so that Nref � N with N =
PNp
r=2N (r) being the

total number of inclusions with volume fraction f =
PNp
r=2 f (r) and aspect ratios !ref1 and !ref2 . The125

number Nref , the volume fraction f and the reference shape (!ref1 ; !ref2 ) allows to obtain uniquely the

reference size of the inclusions in the unit-cell. In the following, we identify the di�erent cases resulting

from the above descriptions.
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2.1.1. Polydisperse only in size

We consider inclusions of di�erent size but same shape implying that the shape of all inclusions

coincides with the reference one: !ref1 = !(r)
1 and !ref2 = !(r)

2 (r = 2; � � � ; Np). For instance, one can

take the �rst family of inclusions to be the reference one and set one of its axes, say for instance cref

equal to 1. The lengths of the semi-axes of the reference inclusions are then given by

aref =
cref

!ref1

; bref =
cref

!ref2

; cref =

 
3V f!ref1 !ref2

4�Nref

!1=3

: (1)

The semi-axes lengths of the other inclusions are determined by using cref and the size coe�cient �(r),

such that

c(r) = �(r)cref a(r) =
c(r)

!(r)
1

; b(r) =
c(r)

!(r)
2

; �(r) � 1: (2)

In practice, the microstructure is generated by starting with the phase (r) which has the largest size130

�(r) until its concentration fr is reached. The process is continued sequentially with the second largest

phase and so on until
PNp
r=2 f (r) ’ f . Note that contrary to the monodisperse case, the targeted volume

fraction is only approximately attained. The addition of inclusions of decreasing sizes allows to get a

better accuracy on the volume fraction and to reach higher volume fractions.

2.1.2. Polydisperse only in shape135

In this case, the inclusions are de�ned by di�erent shapes (i.e. di�erent !(r)
1 and !(r)

2 for di�erent

r) but have the same volume. The reference inclusion is then for simplicity taken to be a sphere of

radius Rref , and the calibration is done with respect to the volume of this sphere by setting

Rref =

 
3V fref

4�Nref

!1=3

: (3)

This amounts to de�ne the characteristic lengths of the semi-axes of each family of inclusion as

a(r) =
c(r)

!(r)
1

; b(r) =
c(r)

!(r)
2

; c(r) =
�
!(r)

1 !(r)
2

�1=3
Rref : (4)

In this case, there is no preferential order in the random generation of inclusion/phases since they

all have the same relative size. One can then begin with the phase r which has the smallest volume

fraction f (r) and progress until
PNp
r=2 f (r) ’ f . It is worth noticing that instead of using a reference

number of inclusions Nref to de�ne a reference size, one can use directly a reference radius Rref .

6



2.1.3. Polydisperse in shape and size140

This case is a simple combination of the two previous cases. In this general case, the relative size

of each family of inclusions is determined using V (r) = 4�(�(r)Rref )3=3, where Rref is given by (3).

Again, the sequential addition process needs not to have a preferential order neither in terms of size

nor in shape. Nonetheless, as mentioned previously, starting with the largest size of inclusion proves

useful for attaining a better accuracy on the volume fraction as well as for reaching higher compacities.145

2.2. Description of the extended RSA algorithm

In this section, we describe briey the main steps of the extended RSA algorithm (see A for more

details). The inputs of the algorithm are: the dimensions of the cuboidal cell L1, L2 and L3, the volume

fraction f , the number of phases Np, the number Nref of reference inclusions, the microstructural

parameters !(r)
1 , !(r)

2 , �(r), fr and two o�sets distance �1 and �2 used in the calculation of the minimum150

distance parameters s1 and s2, respectively. In this work, these parameters are �xed at �1 = 0:02

and �2 = 0:05, however they are user-de�ned and can be changed at will. In general, the highest the

volume fraction the smallest should be �1 and �2. When the desired volume fraction of the inclusions is

moderate to low (< 20%), one can increase those values to obtain more uniform distributions. The

outputs of the algorithm are: the position vector of the center of the ellipsoid v(r)
i , the semi-axes155

lengths (a(r)
i ; b(r)i ; c(r)i and the Euler angles (�(r)

i ; �(r)
i ;  (r)

i ) of the ellipsoidal inclusion i belonging to

the phase r. To determine periodic images of an inclusion, 26 vectors m = (m1;m2;m3) are de�ned,

where m1, m2 and m3 take the values (0;�L1; L1), (0;�L2; L2) and (0;�L3; L3), respectively.

Speci�cally, for each phase r = 2; � � � ; Np, the RSA algorithm can be decomposed into four steps:

Step 1: Compute the semi-axis lengths of inclusion (i)

c(r)i = �(r)�!(r)
1 !(r)

2
�1=3Rref ; b(r)i = c(r)i =!(r)

2 and a(r)
i = c(r)i =!(r)

1

with Rref given by (1). For non-spherical inclusions, specify the orientation with Euler angles160

(�(r)
i ; �(r)

i ;  (r)
i ).

Step 2: In the sequential addition, generate a random center position vector v(r)
i for inclusion i in

phase r. Compute the minimum distance �1 between a new inclusion i and any previously

accepted inclusion j = 1; : : : ; i� 1 including its 26 periodic images, and compare this distance to

the minimum value s1

s1 =
�

max
�
a(r)
i ; b(r)i ; c(r)i

�
+ max

�
a(r)
j ; b(r)j ; c(r)j

��
� �1

In this step, the algorithm for �nding the minimum distance between two ellipsoids (see Algorithm
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2 in A) is called. If �1 < s1, generate a new inclusion center position and recheck the overlapping

and minimum distance from existing ellipsoids. If �1 � s1 proceed to Step 3.

Step 3: Use the algorithm for �nding the minimum distance between ellipsoid and plane (see Algorithm

3 in A) to determine �2 and �2. Compare the distance �2 with the minimum value s2

s2 = (max (a(r)
i ; b(r)i ; c(r)i )) � �2

If �2 < s2, then generate a new center position of inclusion i, otherwise accept the inclusion i.165

Step 4: Ensure periodicity of the cuboidal cell by considering periodic images of the inclusion (see

Section 2.5 below).

In the following, we describe in details the last three steps of the RSA procedure.

2.3. RSA Step 2: Minimum distance between two ellipsoids

In this section, we discuss the evaluation of the distance between two ellipsoidal inclusions. This170

step is extremely important since it allows to decide if a newly added inclusion is accepted or rejected.

Speci�cally, the distance between two non-spherical inclusions is not simply determined by using the

center-to-center distance, as is the case with spheres. There are many studies in literature devoted

to the determination of the minimum distance between two implicit algebraic surfaces. For example,

in the recent work of Chen et al. [35], a useful analytical method has been proposed to compute this175

distance. The drawback is that this method leads to a very complicated system of three non-linear

equations of degrees 2, 3 and 6 to be solved, at least in the case of two ellipsoids. In the work of Pierard

et al. [34] on elasto-plastic composite materials reinforced with aligned elastic ellipsoidal particles, an

algorithm proposed by Lin and Han [36] is used to determine iteratively the minimum distance between

two ellipsoids. This algorithm based on the local approximation of the ellipsoid by a spherical ball180

has excellent convergence properties. This approach is simple and easy to implement in the present

study. Hence, following [36], we implement and embed in the RSA algorithm a slightly modi�ed

version of the algorithm. The modi�cation consists in a much simpler and more general way to check

the non-overlapping condition of inclusions during the sequential addition. In Lin’s algorithm, the

non-overlapping is checked by solving two one-dimensional quadratic inequalities at each iteration.185

With our modi�cation, we are able to check this condition once by using a lemma on the intersection of

ellipsoids proposed in the book of Kurzhanski and V�alyi [37]. For clarity, in this section, the superscript

(r) denoting the di�erent ellipsoidal families is omitted.
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2.3.1. Statement of the problem

Given two non-overlapping arbitrarily oriented ellipsoids E1 and E2 de�ned respectively by En =

E(vn; Zn), n = 1; 2, such that

E(vn; Zn) := fx : Qn(x) � 0g : (5)

Qn denotes a quadratic function which reads

Qn(x) = (x� vn)TZn(x� vn)� 1 (6)

with vn rhe vector position of the center of the ellipsoid. In turn, the matrix Zn describess the shape

and the orientation of the ellipsoid En and is a positive de�nite square 3� 3 matrix. Its eigenvalues are

the reciprocals of the squares of the semi-axes lengths of the ellipsoid (i.e., a; b; c and equivalently the

aspect ratios !1 and !2) and its eigenvectors ni (i = 1; 2; 3) de�ne the principal axes of the ellipsoid En

(Figure 1). For an arbitrarily oriented ellipsoid E(v; Z) with center position v, the matrix Z is de�ned

as

Z =
1
c2
�
!2

1 n1 
 n1 + !2
2 n2 
 n2 + n3 
 n3

�
: (7)

The orientation of the ellipsoid is speci�ed by the rotation matrix R(�; �;  ) such that ni = Rei

(i = 1; 2; 3). (e1; e2; e3) de�nes an orthonormal basis of the reference frame (Figure 1). When R = I, E

is thus an axis-aligned ellipsoid (i.e. its principal axes coincide with the reference frame axes). The

minimum distance between two ellipsoids reads

d(E1; E2) = min
x12
1;x22
2

kx1 � x2k (8)

where 
1 and 
2 represent the boundaries of the ellipsoids E1 and E2.190

2.3.2. Algorithm on the local approximation of the ellipsoid by ball

Before we proceed further, it is recalled that one of the main conditions that need to be checked

is that the distance between the ellipsoids shall not exceed a user-de�ned value s1. Therefore, the

procedure of evaluating the distance between two di�erent ellipsoids can be split in two main parts.

The �rst part consists in checking whether the ellipsoids overlap/intersect. Provided that the ellipsoids195

do not overlap, one can then proceed to the second part and evaluate the distance between the two

ellipsoids.

First part. In the present work, we propose a simple method to check if the ellipsoids intersect at
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one or more point by using the lemma of Kurzhanski and V�alyi [37] which reads: 1

Two ellipsoids E1 and E2 have a nonempty intersection if, and only if, there exists an ellipsoid

E� = E(v�; Z�), for any � 2 [0; 1], such that det(Z�) > 0 with

Z� =
1

1� h�

2X

n=1

�nZn; �1 = �; �2 = 1� �; (9)

where

h� =
2X

n=1

�n
�
vn �Zn �vn

�
�
� 2X

n=1

�nZn �vn
�
�v� and v� =

� 2X

n=1

�nZn
��1� 2X

n=1

�nZn �vn
�
:

The use of this lemma has the advantage of checking only once the overlapping condition of any pair200

of ellipsoids.

Second part. If the ellipsoids do not intersect, we proceed to solve the minimization problem (8).

The basic idea for solving numerically this problem is due to Lin and Han [36], who proposed an

iterative resolution in which each ellipsoid En is approximated locally in its interior by a spherical

ball which marches along the internal surface of the ellipsoid, i.e. the spherical ball is tangent to the

ellipsoid at a single point xn 2 
n (Figure 2). The spherical ball Bn = B(cn; rn) (n = 1; 2) is de�ned by

B(cn; rn) := fy : ky� cnk � rng ; (10)

with

cn = xn �
n
2

Nn and rn =
n
2
kNnk:

Here, Nn = rQn is the normal to the ellipsoid En at the point xn 2 
n. The parameter n is a

measure (matrix norm) of the matrix Zn related to its spectral radius �(Zn), such that

0 < n �
1

�(Zn)
and n =

1
kZnkF

(11)

where k � kF indicates the Frobenius (Euclidean) norm.

The algorithmic process involving both parts is schematically explained in Figure 2 and can be

described as follows:

Step 1: Check the overlapping at the beginning of iterations using (9). If det(Z�) > 0, then set the205

minimum distance d(E1; E2) = 0 and terminate, otherwise continue to Initialization.

1Alternatively, one could check the intersection of two ellipsoids by solving two one-dimensional quadratic inequalities
at each iteration, as in [36], but this is more time consuming.
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Figure 2: Geometrical representation of iterative steps for �nding the minimum distance between two ellipsoids.

Initialization: Choose the centers v1 and v2 of E1 and E2 as starting interior points c1 and c2,

respectively.

Step 2: Let us denote by ck1 and ck2 two arbitrary interior points at the kth iteration of the ellipsoids

E1 and E2, respectively. We generate two points xk+1
1 and xk+1

2 as the intersections of the

segment
�
ck1 ; ck2

�
with the ellipsoid surfaces 
1 and 
2, so that xk+1

1 = ck1 + t1(ck2 � ck1) and

xk+1
2 = ck1 + t2(ck2 � ck1), where t1 and t2 are solutions of the two one-dimensional quadratic

equations:

tn =
�
t 2 [0; 1] : Ant2 +Bnt+ Cn = 0

	
; n = 1 or 2; (12)

with An = (ck2�ck1)T Zn (ck2�ck1), Bn = (ck1�vn)T Zn (ck2�c1) and Cn = (ck1�vn)T Zn (ck1�vn).

These two points are the closest points and hence the best candidate of the minimum distance if210

and only if the normals Nk+1
1 and Nk+1

2 and the vector xk+1
1 � xk+1

2 are colinear.

Step 3: If the angles \(Nk+1
1 ;xk+1

2 � xk+1
1 ) and \(Nk+1

2 ;xk+1
1 � xk+1

2 ) are null, set d(E1; E2) =

kxk+1
1 �xk+1

2 k, accept the new ellipsoid and move on to the addition of a new ellipsoid, otherwise

continue to Step 4.

Step 4: Construct two new ball centers ck+1
1 and ck+1

2 of B1 and B2, respectively, as

ck+1
n = xk+1

n �
n
2

Nk+1
n ; n = 1; 2 (13)

and return to Step 2.215

This algorithm is given in full detail in A.

11



2.4. RSA Step 3: Minimum distance between an ellipsoid and a plane

In this section, we determine the minimum distance between an ellipsoid E and a plane P. It is

worth noting that if the ellipsoid intersects a plane, the terminology minimum distance from a point

lying on an ellipsoid to a plane is more appropriate. Then, this distance is obtained by solving a220

geometrical problem for �nding the closest point on the boundary 
 of the ellipsoid E where the normal

N = rQ(x) is collinear to the normal of the plane. Knowing this closest point, one can verify the

second geometric condition and then impose the periodicity condition mentioned previously.

Any surface of the cuboidal cell is de�ned by a plane equation given as

P(n; �) := fy : y � n + � = 0g (14)

where n is the normal unit vector of the plane P , and d is a constant obtained as a scalar product of n

and a known point on P. For a cuboidal cell with dimensions L1, L2 and L3, with a corner as origin,

let us adopt the following convention: n = (�1; 0; 0) and � = 0 ! face 1, n = (1; 0; 0) and � = �L1

! face 2, n = (0;�1; 0) and � = 0 ! face 3, n = (0; 1; 0) and � = �L2 ! face 4, n = (0; 0;�1) and

� = 0 ! face 5 and n = (0; 0; 1) and � = �L3 ! face 6. The problem to solve then reads

N� n = 0 and Q(x) = 0: (15)

The solutions of (15) are two points x1 and x2 representing the closest and the farthest points, or

vice versa depending on the face of the cuboidal cell. The related minimum or the maximum distance,

denoted as d(E ;P), is obtained by using the formula giving the distance of a point x to a plane

d(E ;P) =
jx � n + �j
knk

(16)

Obviously, the farthest point from a plane with � = 0 is the closest one to the opposite plane with

� = �L1. In practice, to distinguish the nearest and the farthest points, one can determine the two225

distances corresponding to the two solutions at �xed n and � and then take the minimum. We denote by

xmin the solution (15) which minimizes the distance d(E ;P). The corresponding algorithm is detailed

in A. �2 is the minimum distance and �2 denotes the quantity n�xmin + �.

2.5. RSA Step 4: Enforce periodicity of the cuboidal cell

To impose the periodicity of the microstructure in the cuboidal cell, any inclusion i that intersects230

any of the cuboidal cell faces j de�ned by the normal n and � is relocated at the opposite face by adding

or subtracting the vector m to the center of the inclusion. To do this, the sign of �2 = n � xmin + �

must be checked. If the inclusion intersects the face j, 8 j 2 f1; 3; 5g, �2 < 0, and 8 j 2 f2; 4; 6g,
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�2 > 0. In the more general case that the ellipsoid intersects three orthogonal faces, it is duplicated to

the remaining seven corners of the cuboid. If the ellipsoid intersects only two faces then it is duplicated235

to the three faces that share the same normals. Finally if the ellipsoid intersects only one face, it is

duplicated to the opposite face of the cuboid.

2.6. Illustrative examples

Figure 3 shows four representative microstructures obtained with the proposed RSA algorithm for a

volume fraction f = 20%.

(a) (b)

(c) (d)

Figure 3: Illustrative examples of microstructures obtained with the proposed RSA algorithm. Volume fraction f = 20%.
(a) and (b): randomly oriented monodisperse in size and shape with !1 = !2 = 0:2 (oblate) and !1 = !2 = 5 (prolate),
(c): unidirectional polydisperse in size with !1 = !2 = 3 (prolate) and (d): randomly oriented polydisperse in size and
shape.

240

3. Determination of e�ective elastic properties

In this section, we discuss the computation of the e�ective elastic properties of periodic porous

random particulate materials with an elastic isotropic matrix by considering 3D cubic unit-cells V
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(L1 =L2 =L3 =L=1) with periodic boundary conditions. We analyse monodisperse and polydisperse

microstructures consisting of random and uniform void distributions with three types of shapes; (i)245

spherical pores, (ii) prolate spheroidal pores (!1 = !2 = ! > 1) with aspect ratios ! = 2 and ! = 5

and (iii) oblate spheroidal pores with aspect ratios ! = 0:1 and ! = 0:5. The e�ective elastic properties

of those microstructures are obtained through numerical periodic homogenization. In all subsequent

calculations, the elastic properties of the matrix phase are set to: Young’s modulus E = 1 GPa and

Poisson’s ratio � = 0:3.250

3.1. Numerical homogenization

The numerical computation of the linear e�ective elastic properties is carried out using the fast

Fourier Transform (FFT) numerical scheme and the �nite element (FE) method. The FEM calculations

have been performed with the commercial software ABAQUS in the context of linear elasticity and small

strains. The application of the periodicity conditions is discussed in the next section. The FFT-based

numerical approach has been proposed by Moulinec and Suquet [38] to solve periodic boundary-valued

heterogeneous unit-cell problems. The principle of this method is to solve iteratively the implicit

integral equation for the strain �eld " (x)

" (x) = E +
Z

V
�(0)(x� x0) : � (x0)dx0; � (x) = (C(x)� C(0)) : " (x) (17)

with E the macroscopic strain and �(0) denoting the strain Green operator corresponding to a reference

homogeneous medium with elasticity C(0). Following [39], (17) is usually called the Lippman-Schwinger

equation by analogy with the quantum mechanics scattering theory. Developments of the FFT-based

method have been proposed by several authors, in particular to improve its convergence in the case of255

a high mechanical contrast on the local properties [see, among others, 40, 41, 42, 43]. In the present

study, we have used the augmented Lagrangian scheme originally proposed by Michel et al. [41] and

later reinterpreted by Moulinec and Silva [44] as a special case of the polarization-based scheme of

Monchiet and Bonnet [43].

At this point it is important to note that the FE approach may require tedious meshing that more260

than often does not converge, especially for penny-shaped (resp. elongated) inclusions presenting very

low (resp. high) aspect ratios. This is the case in the present work for oblate spheroids with aspect

ratio lower than 0:3 and for prolate spheroids with aspect ratio higher than 3. By contrast, in the FFT

method, a regular grid is employed to discretize the unit-cell (i.e. voxel-based meshing). To describe

accurately the highly elongated ellipsoids, a large number of voxels is required but �nally yields to265

converged results. A convergence analysis with respect to the number of voxels, the number of pores

and the number of realizations is presented in B. To assess the relative accuracy of the results obtained
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with the FFT-based method and the FE method, we carry out in Section 3.2 calculations for randomly

oriented, monodisperse pore microstructures with aspect ratios equal to 0:5, 1 and 2.

3.1.1. Periodic Boundary conditions and e�ective sti�ness tensor270

For both numerical techniques, the unit-cell is subjected to periodic boundary conditions [45, 46].

The displacement �eld u can be split into an a�ne part E�x and a periodic correction term u�(x) such

that

u(x) = E�x + u�(x); 8x 2 V; (18)

where E is the overall strain which is equal to the average strain in the unit-cell (E = h" i)2 and

u� is a periodic �eld characterizing the uctuation of the displacement due to the presence of the

heterogeneities. The local strain �eld " (x) deriving from the displacement u thus admits the following

decomposition " (x) = E + " �(x) with h" �(x)i = hrsu�(x)i = 0. The components of u� take identical

values at points on opposite faces of the unit-cell, in such a way that, considering a Cartesian frame of275

reference with origin placed at a corner of the cubic unit cell and axes ek (k = 1; 2; 3) are aligned with

the principal axes of the cubic unit cell, we have [47]

uk(L; x2; x3)� uk(0; x2; x3) = Ek1L;

uk(x1; L; x3)� uk(x1; 0; x3) = Ek2L;

uk(x1; x2; L)� uk(x1; x2; 0) = Ek3L

(19)

with k = (1; 2; 3). These relations constitute simple linear constraints that can be entered in any

numerical code with a number of available techniques, such as elimination, Lagrange multipliers and

penalty methods. In the context of our FE calculations in the Abaqus software, the linear constraint280

equations (19) are implemented by use of the �Equation command, which uses the elimination technique.

As a practical remark for the �nite element calculations, keeping the origin of the unit-cell �xed, loadings

were done at its three corners having coordinates (L; 0; 0), (0; L; 0) and (0; 0; L) since the periodic

boundary conditions (19) can be rewritten in terms of the displacements of these three corner nodes

(see details in Appendix B of [48]). The equations relating the displacements of the nodes on opposite285

faces of the unit-cell were coupled to those of the corner nodes. Note that the above procedure can be

applied to any cuboidal shape. In the special case of voids, one should make sure that no void (nodeless

point) is lying in any of the above four corners.

Once the local stress and strain �elds are calculated, the e�ective sti�ness tensor eC is obtained with

2In the sequel, the angular brackets h�i denote the average of a �eld over the unit-cell.
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the relation between average stress and strain tensors

h� i = eC :h" i (20)

The computation of the twenty-one independent coe�cients of eC is classically done by considering six

independent macroscopic strain loadings.290

3.1.2. Deviation from isotropy

Theoretically, a completely random distribution and orientation of ellipsoidal inclusions leads to

an isotropic e�ective response. In practice, due to the �nite number of inclusions and/or pores in the

unit-cell, the resulting numerical e�ective sti�ness tensor eC is not exactly isotropic. To evaluate the

deviation from isotropy of the tensor eC, use is made of its isotropic projection eCiso on the fourth-order

deviatoric and hydrostatic isotropic tensors

eCiso = 3e� J + 2e�K with e� =
1
3
eC :: J =

1
9
eCiijj and e� =

1
10
eC :: K =

1
10

�
eCijij � 9e�

�
: (21)

Here, e� and e� are the isotropic bulk and shear moduli. The isotropic projectors are de�ned by

J =
1
3
i
 i and K = I� J (22)

with i and I the identity tensors, respectively for symmetric second and fourth-order tensors. Note that

J and K are orthogonal idempotent tensors, i.e J : J = J, K : K = K, and J : K = K : J = O.

The deviation from isotropy can be quanti�ed in two ways: either geometrically (material symmetry)

or mechanically (elasticity symmetry). On the one hand, the geometrical approach3 makes use of295

morphological descriptors such as statistical correlation functions to characterize statistically the

microstructure (e.g. two-point probability function is often used to quantitatively ascertain at least

lower-order information on the geometrical arrangement of phases). On the other hand, the mechanical

approach consists in evaluating the deviation from elastic isotropy by choosing an appropriate measure

of the elasticity tensor. One of the �rst measure of this kind is the well-known Zener ratio [50], for300

cubic symmetry materials, which is simply the ratio of the shear moduli. Later on, several authors have

adressed the more general question of the distance between two elasticity tensors of given symmetry [see,

for instance, 51, 52, 53, 54]. At this point, it is worth recalling that the symmetry of a physical property

(elasticity, for instance) is necessarily equal or higher than the material symmetry. Consequently, the

3This approach has been used by many authors. For instance, Kanit et al. [49] quantitatively characterized the
geometry of 3D Vorono�� tesselation based on the covariance function related to the covariograms of plane section images
of the microstructure while Segurado and Llorca [24] have used the radial distribution function of sphere centroids to
assess the randomness of the particle distribution, and hence the isotropy of the microsctructure.
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geometrical isotropy implies the mechanical isotropy but not the other way around. In addition, in the305

RVEs studied here one can never obtain an exact geometrical isotropy due to the �nite number of the

embedded inclusions and the periodicity of the unit cell. In this case then, it is extremely di�cult to

estimate quantitatively the deviation from mechanical isotropy (which is the measure of interest in this

study) by using the deviation from geometrical isotropy.

The present study is, thus, focused on the analysis of the isotropy of the overall elastic response for

di�erent random distributions of ellipsoidal voids in the matrix. The deviation from isotropy �iso of the

e�ective elasticity tensor eC is evaluated with the normalized common Euclidean distance

�iso =
keC� eCisokF
keCkF

(23)

where kAkF =
q

tr
�
A : AT

�
is the Frobenius norm of the tensor A. The value of �iso = 0 thus310

corresponds to isotropy. This approach has been previously used, for example, in [55] for the case of

linear elastic response of ellipsoidal particles reinforced composites, as well as for nonlinear mechanical

responses [27, 20].

3.2. Assessment of FFT and FE numerical computations

FE calculations of the e�ective elastic properties were carried out using the FE package [56], only on315

monodisperse microstructures with pores aspect ratios 0:5, 1 and 2 and volume fractions 5% and 15%.

The mesh generator NETGEN [57] was used to create meshes of the unit-cell with ten-node quadratic

tetrahedral elements (C3D10 in ABAQUS notation). For certain microstructures containing spheroidal

pores, we faced severe convergence issues with the meshing procedure when using quadratic ten-node

elements. To overcome these di�culties, we have resorted to linear four-node tetrahedral elements320

(C3D4 in ABAQUS notation) and substantial increase of the number of elements to compensate for the

inaccuracy of the linear shape functions. For microstructures with spherical voids, a number of pores

N = 30 is found to be su�cient for convergence. However, for non-spherical voids and large porosities,

convergence could require a much larger number of pores (more than N = 500). Unfortunately, in

that case the FEM calculations become substantially heavy. To keep the number and time of FEM325

calculations tractable, we have chosen to use N = 100 for microstructures with spheroidal pores to get

only an idea of the FEM outcome. This issue has motivated the use of the FFT numerical scheme in

the rest of this study.

The FFT calculations have been performed on a regular grid with 128 � 128 � 128 voxels. The

choice of this spatial resolution is justi�ed by the convergence analysis in terms of number of voxels330

presented in B (Figure 1). In particular, for monodisperse prolate and oblate spheroids with aspect

ratios !1 = !2 = 2 and 0:5, respectively, a number of pores N = 500 was found to be su�cient for
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achieving representativity (Figure 2). In the case of spherical voids, N = 30 pores are su�cient to

obtain accurate results as for the FE computations. Note that the material properties have been

assigned to each voxel as follows: if the center of a voxel does not belong to any ellipsoid, then the entire335

voxel has the mechanical properties of the matrix, otherwise the voxel has null mechanical properties

(void). It can be mentioned that improved methods allowing for the use of \�ltered" elastic properties

(smoother transitions) between neighboring phases have been proposed [42, 58].

In Table 1, the e�ective bulk and shear moduli (e�; e�) computed with the FFT method are compared

to those calculated with the FEM. The comparison is done by calculating the relative di�erences �e� and340

�e�. Note that in all calculations, the e�ective moduli obtained with the FFT scheme are smaller than

the one obtained with the FE method. It can be observed in Table 1 that for all microstructures the

di�erences are relatively small, keeping in mind that the FE results are obtained for a smaller number

of pores than the FFT ones for ellipsoidal voids. Consistently, in the case of spherical voids, the FE

and FFT results are in very good agreement. For the reasons evoked above, all results reported in the345

sequel have been obtained with the FFT numerical method.

f (%) Monodisperse microstructures

Sphere Oblate (! = 0:5) Prolate (! = 2)
(�e�, �e�) (%) (�e�, �e�) (%) (�e�, �e�) (%)

5 (0.82, 0.86) (2.2, 1.71) (1.51, 0.86)
15 (2.12, 1.75) (6.32, 5.24) (8.73, 7.43)

Table 1: Relative di�erence between the FE and FFT computations of the e�ective bulk and shear moduli for three
di�erent microstructures

In closing this section, it is relevant to mention that the present RSA algorithm can deal with

extremely elongated inclusion shapes, such as aspect ratios of 0.001 or 1000. Nonetheless, their

discretization becomes prohibitive in the FEM context, while extremely large numbers of voxels would

be required to achieve convergence with the FFT formulation. Furthermore, one should also be careful350

when analyzing very elongated ellipsoids since they tend to cracks and thus can lead to numerical

singularities. In those cases, perhaps the analytical approach would be more appropriate, especially in

the linear elasticity context.

4. Results

The FFT results have been obtained with Nref = 50 for the spherical voids and Nref = 500 for the355

spheroidal voids. To make the present section concise but representative, we have chosen to consider

spheroidal prolate and oblate void (i.e. !1 = !2 = !). In the sequel, ! = 1 refers to spherical, ! < 1 for

oblate and ! > 1 for prolate voids.
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Next, it is recalled that Nref = N = 500 for the case of monodisperse microstructures. For

the case of polydisperse microstructures, we have used four di�erent phases or equivalently four360

di�erent relative sizes of voids (but same shapes) with size coe�cient �(r) = 1; 0:7; 0:4; 0:1 (i.e.

the volume of the larger inclusion is ten times the one of the smaller one) and volume fraction

distribution f (r) = f0:5; 0:3; 0:15; 0:05g � f such that
PN
r=2 pf

(r) = f (with Np = 4 being the number

of families/phases). A value of Nref = 500 leads on average to 800-1500 inclusions of di�erent sizes.

The �nal number depends on the random process, the choice of the number of families/phases Np and365

the size coe�cient. In this connection, it is perhaps important to mention that at high volume fractions,

where lies the main di�culty in obtaining elongated inclusion shapes, the resulting polydisperse

microstructures with di�erent �nal number of voids provide almost identical responses, which for

the case of voids are in close agreement with the corresponding monodisperse ones. This is a strong

indication of convergence given the Nref used in our calculations. In addition to this observation, the370

deviation between various realizations both in mono- and polydisperse microstructures is extremely

small and for that reason no error bars are shown in the results that follow.

The numerical FFT results are also compared with HSW analytical estimates which are obtained by

employing the approach proposed by Gatt et al. [15], see also [59], for isotropic composites comprising

randomly oriented polydisperse ellipsoidal voids. In Figure 4, the deviation from isotropy �iso (c.f.
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Figure 4: Deviation from isotropy in monodisperse microstructures compared against that in polydisperse microstructures
for di�erent pores aspect ratios ! = 0:1, 0:5, 1, 2 and 5.

375

equation (23)) is shown for monodisperse and polydisperse microstructures. Hence, the spherical voids

lead to the most isotropic e�ective response with �iso < 0:5% for both monodisperse and polydisperse

distributions. As one increases or decreases the aspect ratios from unity to get either prolate or oblate

shapes, the deviation from isotropy increases. Even for a high number of inclusions, the transversely

isotropic shape of the void a�ects the evaluation of the elastic properties. The deviation is markedly380

strong for oblate voids with aspect ratios ! = 0:1, where �iso � 24% for both monodisperse and
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polydisperse distributions at volume fractions f > 15%. This implies that even if theoretically one can

consider very large number of orientations, in practice, with our present RSA method, a signi�cant

e�ect of the void shapes remains and lead to an anisotropic response.

In the rest of the study, we show only the isotropic parts corresponding to spheroidal voids and385

compare them with exactly isotropic (i.e. in�nite number of orientations) analytical results. Nonetheless,

their interpretation should be done with caution since the numerical estimates exhibit in some cases

(such as ! = 0:1) strong deviation from isotropy. Moreover, it is noted that using a larger number

of realizations does not reduce signi�cantly the deviation from isotropy in these extreme cases since

already a very large number of voids (� 1500) is considered in a single unit-cell.390

4.1. Numerical versus analytical estimates for spherical, prolate and oblate pores

Figure 5 shows numerical (FFT) and analytical (HSW) results for monodisperse and polydisperse

spherical voids. We observe that up to f = 30%, the numerical results for monodisperse and polydisperse

microstructures are almost identical and only slightly lower than the HSW estimates, which in that

case are also rigorous upper bounds. Of course, it is progressively more and more di�cult to generate395

monodisperse distributions when the targeted volume fraction f gets closer to the theoretical saturation

value fsat = 38:4% [60]. By contrast, the polydisperse microstructures can easily reach higher volume

fraction. In this work, results are shown up to f = 50% but it is indeed possible to reach even higher

volume fraction [61].
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Figure 5: Comparison between FFT and HSW estimates for monodisperse and polydisperse microstructures with spherical
pores. E�ective moduli as a function of porosity: (a) normalized bulk modulus e�=�1 and (b) shear modulus e�=�1

In Figure 6, FFT and HSW estimates for prolate monodisperse and polydisperse voids with aspect400

ratios ! = 2 and 5 are reported. First, it should be noted that by referring to Figure 4, the maximum

deviation from isotropy occurs for ! = 5 and is �iso = 6%. Therefore, the curves shown correspond to
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only the isotropic part of the elastic properties as de�ned in (21). Again a minor di�erence is observed

between the mono- and polydisperse microstructures with the later being only slightly more compliant.

The numerical estimates are still lower than the HSW ones with their di�erence being larger for the405

shear modulus e�.
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Figure 6: Comparison between FFT and HSW estimates for monodisperse and polydisperse microstructures with prolate
spheroidal pores. E�ective moduli as a function of porosity: (a) normalized bulk modulus e�=�1 and (b) shear modulus
e�=�1

Similar observations can be done also in the context of oblate voids in Fig. 7. The estimates

corresponding to the very elongated voids with ! = 0:1 are substantially more compliant than the rest.

It is interesting to observe that the HSW analytical estimates are very close to the numerical estimates

but it is recalled that for ! = 0:1 the deviation from isotropy is very large �iso = 24%. Moreover, one410

can observe that the e�ect of the aspect ratio is more pronounced on the bulk modulus e� than in the

shear modulus e�. We also note that in such extreme cases of elongated ellipsoids, it is progressively

more di�cult to reach higher volume fractions even with polydisperse sizes. For instance, in the case of

! = 0:1, we were able to reach f = 20% for the monodisperse and f = 25% for the polydisperse.

4.2. E�ect of aspect ratio in polydisperse microstructures415

Figure 8 shows a comprehensive plot of the e�ect of the aspect ratio for polydisperse microstructures

upon the e�ective bulk and shear moduli. We observe that spheroidal (prolate and oblate) voids tend

to make the material more compliant as already seen in a number of studies [see, for instance, 15]. The

oblate voids tend to lead to stronger drops of both e� and e� than prolate ones but one again should recall

the strong deviation from isotropy for the oblate voids. We close by noting that the spherical voids420

lead to the less compliant response and hence are better candidates for materials that can approach

the Hashin-Shtrikman bounds.
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Figure 7: Comparison between FFT and HSW estimates for monodisperse and polydisperse microstructures with oblate
spheroidal pores. E�ective moduli as a function of porosity: (a) normalized bulk modulus e�=�1 and (b) shear modulus
e�=�1.
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Figure 8: Inuence of the pore aspect ratio ! on the evolution of the e�ective moduli as a function of the porosity: (a)
normalized bulk modulus e�=�1 and (b) shear modulus e�=�1.

5. Concluding Remarks

In the present study, we extend the classical Random Sequential Adsorption (RSA) algorithm to

the context of randomly oriented ellipsoidal inclusions of arbitrary size, shape and orientation (i.e.425

polydisperse). The main algorithm is based upon a proper simpli�cation of Lin and Han [36] algorithm,

which consists in employing a more general way to check the non-overlapping condition of inclusions

during the sequential addition process. In that algorithm, the non-overlapping condition is checked by

solving two one-dimensional quadratic inequalities at each iteration. Instead, with our modi�cation, we

are able to check this condition once by using a lemma on the intersection of ellipsoids proposed in the430
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book of Kurzhanski and V�alyi [37]. The proposed algorithm is described in detail, is robust and can be

easily implemented.

Secondly, the present study analyzes numerically the e�ective elastic properties of a large number of

representative volume elements (RVEs) including monodisperse as well as polydisperse voids randomly

distributed in the unit cell. Those numerical estimates are probed by the classical Hashin-Shtrikman-435

Willis (HSW) bounds and estimates. The deviation from isotropy of the numerically-obtained e�ective

elastic tensors is critically assessed by using a simple measure based on a normalized Euclidean distance

between two fourth order tensors and the Frobenius norm. In simple words, we project the numerically

obtained e�ective elastic tensor (which may exhibit certain degree of anisotropy) to the isotropic fourth

order tensor space to obtain an \isotropized" one. The Euclidean di�erence of the original tensor and440

the isotropized one, gives a simple to understand scalar measure of the deviation of isotropy.

In this regard, we �nd that as the aspect ratios of the voids increase (or decrease) substantially,

the proposed RSA algorithm leads to substantially anisotropic porous materials which can deviate

from isotropy by as much as 24% for oblate voids with aspect ratio !1 = !2 = 0:1. This deviation is

present even for very large number of voids N > 500 both in the case of monodisperse and polydisperse445

microstructures. The polydisperse microstructures exhibit in principle lower anisotropy albeit an

important one for !1 = !2 = 0:1 (reaching 20%). Interestingly, the isotropized shear and bulk moduli

corresponding to the very elongated void aspect ratios remain in good agreement with the corresponding

isotropic HSW estimates. As expected by previous works, the spherical voids exhibit the sti�est

response out of all cases considered.450

In closing, we remark that the present RSA microstructures can be used as a test bed for nonlinear

analytical homogenization models in the context of �nite strains and nonlinear mechanical and multi-

physics responses (see for instance studies in nonlinear elasticity [27], in elasto-plasticity [47, 62], as

well as in nonlinear magneto-elasticity [48, 63]). Furthermore, with the current 3D printing technology

such RVEs can be readily printed and experimentally tested in the lab. Such work is in progress [61].455

Finally, the present algorithm can be potentially used to generate, 3D print and analyze microstructures

where the aspect ratios of the inclusions are provided by external sources (for instance imaging or 3D

tomography) via the use of su�ciently de�ned probability density functions (PDFs) (see for instance

the very recent work of [64] in this context).
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A. Extended RSA algorithm for randomly oriented mono- and polydisperse inclusions

Nomenclature:

� L1; L2; L3: dimensions of the cuboidal unit cell

� f : total volume fraction of inclusions

� Nref : reference number of inclusions in the unit-cell (equal to number of inclusions when470

monodisperse)

� Rref : Reference radius of a spherical inclusion

� Np: number of phases/families of inclusions (di�erent shapes or sizes correspond to di�erent

families/phases)

� !(r)
1 ; !(r)

2 : aspect ratios of the inclusions belonging to family r475

� �(r): size coe�cient de�ning the allocation of sizes to the di�erent families

� f (r): volume fraction of each family r

� �1; �2: coe�cients controlling the minimum distance between inclusions and between the unit-cell

faces and the inclusions

� v(r)
i (i = 1; 2; 3): position vector of the center of an inclusion belonging to family r480

� a(r)
i ; b(r)i ; c(r)i : lengths of semi-axes of an inclusion belonging to family r

� �(r)
i ; �(r)

i ;  (r)
i : the three Euler angles de�ning the orientation of the elliptical inclusion belonging

to family r

� m = (m1;m2;m3): total of 27 vectors de�ning the translational periodicity of the cuboidal

unit cell, where m1, m2 and m3 take the values in all combinations 0;�L1; L1, 0;�L2; L2 and485

0;�L3; L3.

� �1;�2;�2: Distances between inclusion-inclusion and inclusion-cuboidal face

� Z(r): matrix describing the shape and orientation of inclusion belonging to family r
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Algorithm 1: Main program

1: Input: L1, L2, L3, f , Nref , Np, !
(r)
1 , !(r)

2 , �(r), f (r), �1 and �2.
2: Ouput: v(r)

i , a(r)
i ,b(r)i , c(r)i , �(r)

i ,�(r)
i , (r)

i

3: Compute the characteristic length Rref =
�
3V f=4�Nref�1=3, and vectors m

4: Initialize the number of inclusions i = 1, and the actual volume fraction fi = 0
5: while fi � f do
6: for r = 2 to Np do
7: if f �

PNp�r+2
s=1 f (s) � fi � f (r) then

8: Compute the dimensions of the inclusion of each phase
c(r)i = �(r)�!(r)

1 !(r)
2
�1=3Rref , b(r)i = c(r)i =!(r)

2 and a(r)
i = c(r)i =!(r)

1

9: if !(r)
1 6= 1 and !(r)

2 6= 1 then
10: Give Euler angles �(r)

i , �(r)
i , and  (r)

i
11: end if
12: Assign a random center position vector v(r)

i
13: end if
14: end for
15: for j = 1 to i� 1 do
16: for k = 1 to 27 do
17: Compute s1 =

�
max (a(r)

i ; b(r)i ; c(r)i ) + max (a(r)
j ; b(r)j ; c(r)j )

�
� �1

18: if kv(r)
i � v(r)

j + mkk � s1(1 + ��1
1 ) then

19: Compute the minimum distance �1 using Algorithm 2
20: if �1 < s1 then
21: go to 5
22: end if
23: end if
24: end for
25: end for
26: Compute s2 = (max (a(r)

i ; b(r)i ; c(r)i )) � �2
27: for face = 1 to 6 do
28: Compute the minimum distance �2 and �2 using Algorithm 3
29: if �2 < s2 then
30: go to 5
31: end if
32: end for
33: Update the volume fraction fi = fi + (4=3)�a(r)

i b(r)i c(r)i =LxLyLz and set i = i+ 1
34: end while
35: Create periodic images of inclusions using instructions given in Section 2.5
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Algorithm 2: Minimum distance between two ellipsoids
1: for each pair of inclusions i and j (including its 26 periodic images which centers are de�ned using

the vectors m) do
2: De�ne v1 = v(r)

i and v2 = v(r)
j �mk with k = 1 to 27

3: De�ne Z1 = Z(r)
i and Z2 = Z(r)

j
4: Set � to any value in interval [0; 1]
5: Compute Z� using (2.3.2)
6: if det(Z�) > 0 then . the two ellipsoids overlap
7: �1 = 0
8: else
9: Initialize the two ball centers c1 and c2

10: c1 = v1 and c2 = v2 at iter = 1
11: Assign the minimum distance �1 = d(Ei; Ej) = 0
12: De�ne a maximum number of iterations (maxiter)
13: while iter <= maxiter do
14: Compute t1 and t2 by solving (12)
15: Compute the angles between the normals and the vector x1 � x2
16: if \(x2 � x1;N1) = 0 and \(x1 � x2;N2) = 0 then
17: �1 = kx1 � x2k
18: exit . jump out of the do loop
19: else
20: update the center of the balls: cn = xn �

n
2

Nn, n = 1; 2
21: end if
22: iter = iter + 1
23: end while
24: end if
25: end for

Algorithm 3: Minimum distance from an inclusion surface point to the cell faces
1: for each inclusion i do
2: for each face do . face = 1 to 6
3: Compute the two points x1 and x2 where N is collinear to n using (15)
4: Compute the minimum distance �2 = min

x2(x1;x2)

�
d(Ei;P)

�
using (16)

5: Set the closest point xmin to the solution xn which minimizes d(Ei;P)
6: Compute the algebraic measure of the segment de�ned by the distance �2

�2 = n � xmin + �
7: end for
8: end for
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B. Convergence analysis

B.1. Convergence of FFT spatial resolution490

The convergence analysis in terms of the number of voxels is conducted for three di�erent mi-

crostructures made up of monodisperse pores with volume fraction 20% at a �xed realization. Cubic

unit cells were generated comprising a number of pores N = 50 for microstructure with spherical pores,

and N = 500 for microstructures with oblate (! = 0:5) and prolate (! = 2) spheroidal pores.
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Figure 1: Convergence analysis in terms of the number of voxels performed on three di�erent microstructures
made up of monodisperse with volume fraction 20% at �xed realization: (a) error on the volume fraction � f

and (b) deviation from isotropy � iso as a function of the number of voxels along each side of the unit-cell (32,
64, 128 and 256).

Speci�cally, each microstructure was discretized with grid of 323, 643, 1283 and 2563 voxels. The

error committed on the real volume fraction, denoted by �f , was evaluated for each discretization

(Figure 1(a))

�f =
jf � fvoxelj

f
(24)

where fvoxel is the volume fraction of pore voxels.495

The e�ective bulk and shear moduli were derived from eC using 21. The deviation of eC from isotropy,

�iso is evaluated for each discretization using (23)(Figure 1(b)). The choice of a su�cient number of

voxels is determined by the convergence of �f and �iso to an asymptotic value. Following Ghossein and

L�evesque [65], we introduce a tolerance of 3% on �f and �iso as a criterion of convergence. We observe

that both variables tend to converge for 1283 and 2563 voxels.500

B.2. Convergence in terms of number of inclusions/pores

In this section, a convergence analysis in terms of the number of pores was performed on microstruc-

tures with prolate (! = 2) and oblate (! = 0:5) spheroidal pores with a volume fraction of 20%. At
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�xed realization, cubic unit cells containing monodisperse randomly distributed and oriented spheroidal

pores were generated. Each microstructure was discretized with 1283 voxels, as discussed in the previous505

section.
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Figure 2: Convergence in terms of the number of spheroidal pores with aspect ratios ! = 2 and ! = 0 :5
conducted on monodisperse microstructures. E�ective moduli and the deviation from isotropy as a function
of the number of pores (50, 100, 200, 300, 400, 500 and 1000): (a) normalized bulk moduluse�=� 1, (b) shear
modulus e�=� 1 and (c) isotropy measure.

We can observe in Figure 2(a; b) that for a number of spheroidal pores N = 500, the normalized

elastic moduli e� and e� do not change signi�cantly. In parallel, a convergence is also obtained on the

result for �iso (Figure 2(c)). Nonetheless, this converged value does not vanish and takes values which

can be rather high for oblate voids with very low aspect ratio (Figure 4). This implies that further510

increase of very elongated inclusions might not necessarily lead to a fully isotropic response. This point

deserves further investigation.
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B.3. Convergence in terms of realizations

Convergence of the e�ective moduli is studied in terms of realizations at �xed number of pores,

volume fraction and discretization. Monodisperse microstructures containing 50 spherical pores (! = 1)515

and 500 spheroidal pores with aspects ratios ! = 0:5; 2; 5 were investigated at volume fraction 20% and

discretized with 1283 voxels.
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Figure 3: E�ective moduli for �ve di�erent realizations of monodisperse microstructures with 50 spherical pores (! = 1)
and 500 spheroidal pores with aspects ratios ! = 0:5; 2; 5 and porosity f = 20%: (a) normalized bulk modulus e�=�1 and
(b) shear modulus e�=�1.

On Figure 3, it can be observed that the normalized e�ective moduli do not signi�cantly change for

di�erent realizations. All reported results in the main text have been averaged over �ve realizations.
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