A. Agrawal, T. Yun, S. L. Pesek, W. G. Chapman, and R. Verduzco, Shape-responsive liquid crystal elastomer bilayers, Soft Matter, vol.10, pp.1411-1415, 2014.
DOI : 10.1039/c3sm51654g

A. L. Alexe-ionescu, G. Barbero, and I. Lelidis, Periodic deformations in nematic liquid crystals, Physical Review E, vol.66, 2002.

T. J. Atherton and J. R. Sambles, Orientational transition in a nematic liquid crystal at a patterned surface, Physical Review E, vol.74, 2006.

B. Audoly and A. Boudaoud, Buckling of a stiff film bound to a compliant substrate-part i:: Formulation, linear stability of cylindrical patterns, secondary bifurcations, J. Mech. Phys. Solids, vol.56, pp.2401-2421, 2008.

G. Barbero and G. Durand, On a possible mechanism for the spontaneous freedericksz effect, Liquid Crystals, vol.2, pp.401-403, 1987.

O. Bíró and K. Preis, On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents, IEEE TRANSACTIONS ON MAGNETICS, vol.25, p.3145, 1984.

P. Bladon, E. Terentjev, and M. Warner, Transitions and instabilities in liquid crystal elastomers, Physical Review E, vol.47, p.3838, 1993.

L. Blinov, Domain instabilities in liquid crystals, Le Journal de Physique Colloques, vol.40, pp.3-247, 1979.
URL : https://hal.archives-ouvertes.fr/jpa-00218744

J. M. Boothby and T. H. Ware, Dual-responsive, shape-switching bilayers enabled by liquid crystal elastomers, Soft Matter, vol.13, pp.4349-4356, 2017.
DOI : 10.1039/c7sm00541e

R. Bustamante, A. Dorfmann, and R. W. Ogden, Nonlinear electroelastostatics: a variational framework, Zeitschrift für angewandte Mathematik und Physik, vol.60, pp.154-177, 2009.
DOI : 10.1007/s00033-007-7145-0

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, Instability of cholesteric liquid crystals in an electric field, Soviet Journal of Experimental and Theoretical Physics, vol.50, p.994, 1979.

K. Danas, Effective response of classical, auxetic and chiral magnetoelastic materials by use of a new variational principle, J. Mech. Phys. Solids, vol.105, pp.25-53, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01627522

K. Danas and N. Triantafyllidis, Instability of a magnetoelastic layer resting on a non-magnetic substrate, Journal of the Mechanics and Physics of Solids, vol.69, pp.67-83, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00995717

J. Ericksen, Nilpotent energies in liquid crystal theory, Archive for Rational Mechanics and Analysis, vol.10, pp.189-196, 1962.

F. C. Frank, 1958. I. liquid crystals. on the theory of liquid crystals, Discussions of the Faraday Society, vol.25, pp.19-28

V. Fréedericksz and A. Repiewa, Theoretisches und experimentelles zur frage nach der natur der anisotropen flüssigkeiten, Zeitschrift für Physik A Hadrons and Nuclei, vol.42, pp.532-546, 1927.

C. Gerritsma, W. De-jeu, and P. V. Zanten, Distortion of a twisted nematic liquid crystal by a magnetic field, Physics Letters A, vol.36, pp.389-390, 1971.

G. W. Gray and S. M. Kelly, Liquid crystals for twisted nematic display devices, Journal of Materials Chemistry, vol.9, pp.2037-2050, 1999.
DOI : 10.1039/a902682g

A. W. Hauser, D. Liu, K. C. Bryson, R. C. Hayward, and D. J. Broer, Reconfiguring nanocomposite liquid crystal polymer films with visible light, Macromolecules, vol.49, pp.1575-1581, 2016.
DOI : 10.1021/acs.macromol.6b00165

P. P. Karat and N. V. Madhusudana, Verification of leslie's expression for the threshold field of a twisted nematic cell, Molecular Crystals and Liquid Crystals, vol.40, pp.171-175, 1977.

A. Kaznacheev and A. Sonin, Mechanism of spontaneous fredericks effect, 1983.

M. A. Keip and M. Rambausek, Computational and analytical investigations of shape effects in the experimental characterization of magnetorheological elastomers, International Journal of Solids and Structures, vol.121, pp.1-20, 2017.

S. Kelly and M. O'neill, Liquid crystals for electro-optic applications, Handbook of Advanced Electronic and Photonic Materials and Devices, pp.1-66, 2001.
DOI : 10.1016/b978-012513745-4/50057-3

U. Kini, Magnetic field induced generalized freedericksz transition in a rigidly anchored simple twisted nematic, Journal de Physique, vol.48, pp.1187-1196, 1987.
URL : https://hal.archives-ouvertes.fr/jpa-00210543

P. Kirsch and M. Bremer, Nematic liquid crystals for active matrix displays: Molecular design and synthesis, Angewandte Chemie, vol.39, pp.4216-4235, 2000.
DOI : 10.1002/1521-3773(20001201)39:23<4216::aid-anie4216>3.0.co;2-k

O. D. Lavrentovich and V. M. Pergamenshchik, Periodic domain structures in thin hybrid nematic layers, Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, vol.179, pp.125-132, 1990.
DOI : 10.1080/00268949008055362

O. D. Lavrentovich and V. M. Pergamenshchik, Patterns in thin liquid crystal films and the divergence ("sufacelike") elasticity, in: Liquid Crystals in the Nineties and Beyond, pp.251-299, 1996.

V. Lefèvre, K. Danas, and O. Lopez-pamies, A general result for the magnetoelastic response of isotropic suspensions of iron and ferrofluid particles in rubber, with applications to spherical and cylindrical specimens, Journal of the Mechanics and Physics of Solids, vol.107, pp.343-364, 2017.

F. M. Leslie, Some constitutive equations for liquid crystals, Archive for Rational Mechanics and Analysis, vol.28, pp.265-283, 1968.
DOI : 10.1201/9780203022658.ch6c

F. M. Leslie, Distortion of twisted orientation patterns in liquid crystals by magnetic fields, Molecular Crystals and Liquid Crystals, vol.12, pp.57-72, 1970.

D. Liu, L. Liu, P. R. Onck, and D. J. Broer, Reverse switching of surface roughness in a self-organized polydomain liquid crystal coating, Proceedings of the National Academy of Sciences, vol.112, pp.3880-3885, 2015.

Q. Liu, Y. Zhan, J. Wei, W. Ji, W. Hu et al., Dual-responsive deformation of a crosslinked liquid crystal polymer film with complex molecular alignment, Soft Matter, vol.13, pp.6145-6151, 2017.

F. Lonberg and R. B. Meyer, New ground state for the splay-fréedericksz transition in a polymer nematic liquid crystal, Physical review letters, vol.55, p.718, 1985.

C. Oseen, The theory of liquid crystals, Transactions of the Faraday Society, vol.29, pp.883-899, 1933.

G. Pampolini and N. Triantafyllidis, Continuum electromechanical theory for nematic continua with application to freedericksz instability, Journal of Elasticity, vol.132, issue.2, pp.219-242, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01722107

E. Psarra, L. Bodelot, and K. Danas, Two-field surface pattern control via marginally stable magnetorheological elastomers, Soft Matter, vol.13, pp.6576-6584, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01627525

R. Rosso, E. G. Virga, and S. Kralj, Local elastic stability for nematic liquid crystals, Physical Review E, vol.70, 2004.

H. Schad, G. Baur, and G. Meier, Elastic constants and diamagnetic anisotropy of p-disubstituted phenylcyclohexanes (PCH), The Journal of Chemical Physics, vol.70, pp.2770-2774, 1979.

M. Schadt and W. Helfrich, Voltage-dependent optical activity of a twisted nematic liquid crystal, Applied Physics Letters, vol.18, pp.127-128, 1971.

T. Scheffer and J. Nehring, Supertwisted nematic (stn) liquid crytal displays, Annual Review of Materials Science, vol.27, pp.555-583, 1997.

G. Sfyris, K. Danas, G. Wen, and N. Triantafyllidis, Freedericksz instability for the twisted nematic device: A threedimensional analysis, Physical Review E, vol.94, p.12704, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01360374

A. M. Sonnet and E. G. Virga, Bistable curvature potential at hyperbolic points of nematic shells, Soft matter, vol.13, pp.6792-6802, 2017.

A. Sparavigna, O. D. Lavrentovich, and A. Strigazzi, Periodic stripe domains and hybrid-alignment regime in nematic liquid crystals: Threshold analysis, Physical Review E, vol.49, pp.1344-1352, 1994.

H. A. Sprang and R. G. Aartsen, Torsional anchoring of 5cb and 5pch on various substratest, Molecular Crystals and Liquid Crystals, vol.123, pp.355-368, 1985.

S. Stark, A. S. Semenov, and H. Balke, On the boundary conditions for the vector potential formulation in electrostatics, International Journal for Numerical Methods in Engineering, vol.102, pp.1704-1732, 2015.

I. W. Stewart, The static and dynamic continuum theory of liquid crystals: a mathematical introduction, 2004.

A. Sugimura, G. R. Luckhurst, and O. Y. Zhong-can, Director deformation of a twisted chiral nematic liquid crystal cell with weak anchoring boundaries, Physical Review E, vol.52, pp.681-689, 1995.

A. Sugimura, T. Miyamoto, M. Tsuji, and M. Kuze, Determination of the unified surface-anchoring energy of a nematic liquid crystal on a polymer substrate, Applied Physics Letters, vol.72, pp.329-331, 1998.

E. Virga, Variational Theories for, Liquid Crystals. Applied Mathematics and Mathematical Computation, 1994.

Q. Wang and X. Zhao, Creasing-wrinkling transition in elastomer films under electric fields, Physical Review E, vol.88, 2003.

J. Wysocki, J. Adams, and W. Haas, Electric-field induced phase change in cholesteric liquid crystals, Molecular Crystals, vol.8, pp.471-487, 1969.