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NEURAL CELL SEGMENTATION IN LARGE-SCALE 3D COLOR FLUORESCENCE
MICROSCOPY IMAGES FOR DEVELOPEMENTAL NEUROSCIENCE

F. Nourbakhsh T, L. Abdeladim *, S. Clavreul', K. Loulier', E. Beaurepaire™, J. Livet' and A. Chessel*

t Sorbonne Université
Institut de la Vision, INSERM, CNRS, Paris

ABSTRACT

The cells composing brain tissue, neurons, and glia, form ex-
traordinarily complex networks that support cognitive func-
tions. Understanding the organization and development of
these networks requires quantitative data resolved at the sin-
gle cell level. To this aim, we apply novel large-scale 3D
multicolor microscopy methodologies in combination with
”Brainbow”, a transgenic approach enabling to label neural
cells with diverse combinations of spectrally distinct fluo-
rescent proteins. In this paper, we present a pipeline based
on Convolutional Neural Network (CNN) to detect and seg-
ment individual astrocytes, the main type of glial cells of the
brain, and map the domains occupied by their fine processes.
This bioimage analysis approach successfully handles the
challenging variety of astrocyte shape, color, size and their
overlap with background elements. Our method shows sig-
nificant improvement compared with classical techniques,
opening the way to varied biological inquiries.

Index Terms— deep learning, segmentation,

1. INTRODUCTION

A major goal in neuroscience is to understand how the com-
plex structure of brain circuits is organized and emerges
through development. To this aim, it is essential to access the
layout of the cells that participate in these circuits, neurons
and glial cells, and to trace back their lineage (i.e. understand
how they are generated during development by the division
of neural progenitor cells). Optical imaging combined with
transgenic cell labeling is one of the main approaches to fulfil
this aim. In particular, ”Brainbow” multicolor labeling makes
it possible to mark neural cells with color labels resulting
from combinations of 3-4 spectrally distinct fluorescent pro-
teins (e.g. cyan, yellow and red) [1]. These color labels can be
used to 1) image individual neural cells in mature tissue and
spatially reconstruct their processes [1, 2]; 2) mark individual
neural progenitor cells during development and identify the
ensemble of neural cells (clone) that they generate [3]. Apply-
ing these approaches over entire brain structures such as the
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cerebral cortex requires imaging cubic millimeters of intact
neural tissue in 3 dimensions at near-micrometric resolution,
which can be achieved with recent two-photon multicolor mi-
croscopy approaches [4]. The resulting image datasets weight
tens to hundreds of Gb and are too large to be conveniently
analyzed by human observers. Automated tridimensional
segmentation of labeled cellular objects is therefore essential,
but poses unique challenges: different types of neural cells
are labeled by Brainbow labels; cells of the same type come
with a great variability of shapes; and their processes are
often juxtaposed or intermingled. Moreover, the 3D trichro-
matic fluorescence microscopy images are anisotropic (with
different planar and axial resolution) and noisy at the single
pixel level (precluding simple colorimetric approaches).

In the field of bioimage informatics [5], the detection and
segmentation of complex biological objects have received a
lot of attention using classical [6] and machine learning based
approaches [7]. Su et al. [8] proposed a semi-supervised seg-
mentation clustering method to detect cells in microscopy im-
ages based on a dictionary of different patterns and clustering
of neighboring pixels. Mualla et al. [9] presented a detec-
tion algorithm for unstained cells relying on scale invariant
feature transform (SIFT). Massoudi et al. [10] proposed a
pixel level segmentation method based on interactive graph
cut clustering method. But deep convolutional neural net-
works (CNNs) are now arguably the state of the art, using
GPU and large training sets to train deep neural networks on
supervised problems. CNNs show good performance on seg-
mentation applications [11, 12, 13] and have been success-
fully used in microscopy image analysis. For instance, Cire-
san et al. [14] presented a sliding-window system to predict
the class label of each pixel on 3D grayscale images. Ron-
neberger et al. [15] used data augmentation to compensate
for lack of training data and improved segmentation by re-
placing pooling with upsampling operators. Xie et al. [16]
implemented an automated cell counter in microscopy images
based on fully convolutional regression networks. Chen et al.
[17] proposed cascade networks based on [16] to get a proba-
bility map of candidates of mitosis and then detect them in de-
tails. Xue and Ray [18] presented a CNN-based cell detection
method that uses sparsely labeled pixel locations followed by
CNN regresses and L1-norm optimization to recover sparse



cell locations. Dong et al. [19] utilized CNNs as a feature
selection for Support Vector Machine classifier (SVM) to de-
tect cells in larval zebrafish brain microscopy images. Cires-
san et al. [20] used deep max-pooling CNNs to detect mi-
tosis in breast histology images. Similarly Chen et al. [21]
applied CNNs to produce probability maps of immune cell
locations on different color channels and then detect the cen-
ter of each cell by non-max suppression. However, the diver-
sity of datasets, acquisition methods and associated biological
questions has made the development of generic segmentation
algorithms challenging. Moreover, the above approaches are
mostly limited to 2D monochromatic (grayscale) images and
not adapted to 3D multicolor volumes.

In this paper, we propose a CNN-based segmentation
technique for automated cell detection and segmentation in
3D multichannel microscopy image datasets acquired by
two-photon microscopy [4] from brain samples labeled with
Brainbow color markers [3]. Our CNN trained based on
annotated data and complemented by 3D connected com-
ponent elements distinguishes labeled astrocytes (the main
glial cell type of the brain) from other cell types, and enables
to position these cells in 3D, segment their cell body and
main branches and map the domains occupied by their fine
processes. Comparison of our method with techniques com-
monly used in biology and evaluation of its final segmentation
accuracy demonstrate its performance.

2. METHODOLOGY

2.1. Brain Tissue Labeling and Image Acquisition

Astrocytes and neurons of the mouse cerebral cortex were
labeled with the MAGIC Markers strategy [3]. Briefly, a
Brainbow transgene was electroporated in utero in mouse
embryos at 15 days of development. This transgene, capa-
ble of integrating in the genome of transfected cells under
the action of a transposase, randomly expresses cyan, yel-
low and red fluorescent proteins upon rearrangement by a
co-expressed Cre recombinase. This procedure sparsely dis-
tributes varied combinations of the three fluorescent proteins
in the cells originating from electroporated cortical progeni-
tors: upper layer excitatory neurons and later-born glial cells,
mostly astrocytes [3]. Electroporated animals were allowed
to develop until 2 months of age prior imaging. After sac-
rifice and fixation of brain tissue, 3-dimensional 3-channel
images of labeled brains were acquired with wavelength-
mixing two-photon fluorescence microscopy [4]. The dataset
used in this study corresponds to a 1.2 x 2 x 2 mm? volume
of cerebral cortex continuously sampled with 0.4 x 0.4 x 1.5
um? voxel size. Image processing was done using Fiji [22]
and Matlab. Illumination inhomogeneities in the field of view
were corrected post acquisition, and mosaic stitching was
performed using the Grid/Collection Stitching plugin of Fiji
[23]. Finally, linear unmixing was applied to correct the lim-

ited bleedthrough between channels. Full details concerning
the microscopy methodology will be published elsewhere.

2.2. Convolutional Neural Networks (CNNs)

The vast majority of modern CNNs are applied to object clas-
sification and use alternating convolution and max-pooling
layers followed by a small number of fully connected layers.
Pooling layers, in particular, combines the outputs of a neuron
of a given layer into a single neuron in the next layer. One of
the common used pooling layers approach, max-pooling, se-
lects the maximum value of a cluster of neurons for the next
layer. Researchers have made considerable efforts over the
last years to improve the performance of this basic pipeline.
In particular, Springenberg et al. [24] pointed out that as long
as the main contribution of pooling in CNNss is defined as spa-
tial dimensionality reduction, the max-pooling step may be
replaced by a strided (larger than one) convolution and fully
connected layers may be replaced by simple 1-by-1 convo-
lutions. The resulting overall architecture is thus reduced to
convolutional layers with rectified linear non-linearities and
an averaging followed by softmax layer for classification.

Background-Neurons
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Background-Black Neurons

Fig. 1. Example of an image plane from one 3D stack, with
the 3 categories of segmented elements.

2.3. Overall Architecture

We adapted the CNN model from [24] to our experiment.
This CNN contains sixteen layers with weights; five of the
layers are convolutional, three of them are fully connected and
the remaining two are strided convolutions designed to reduce
layer dimensionality. The output of the last fully-connected
layer is replaced by simple 1-by-1 convolutions and fed to a
3-way softmax which produces a distribution over the three
classes of labels. The network maximizes the multinomial lo-
gistic regression objective. The characteristics of the network



are detailed in Table 1 with the output size of each layer, the
type of activation function and the number of parameters. The
CNNs method was implemented in Python 3.5 and Matlab.
For the deep learning implementation, we used keras and ten-
sorflow. Training computations were conducted on a PC with
two processor of 2.10 GHz Intel Core, 32 GB RAM memory
and an NVIDIA GeForce GTX 1080 Ti.

\ | Layer (type) | OutputSize | Param # |  Description |

1 Conv2d-1 (32, 32,96) 2688 ReLU,strides 1
2 Dropout-1 (32, 32, 96) 0 Dout 0.2, strides 1
3 Conv2d-2 (32, 32,96) 83040 ReLU, strides 1
4 Conv2d-3 (16, 16, 96) 83040 ReL U, strides 2
5 Dropout-2 (16, 16, 96) 0 Dout 0.5, strides 1
6 Conv2d-4 (16, 16, 192) | 166080 ReLU, strides 1
7 Conv2d-5 (16, 16, 192) | 331968 ReLU, strides 1
8 Conv2d-6 (8,8,192) 331968 ReLU, strides 2
9 Dropout-3 (8,8,192) 0 Dout 0.5, strides 1
10 Conv2d-7 (8,8,192) 331968 strides 1

11 | activation-1 (8,8,192) 0 ReLU

12 Conv2d-8 (8,8,192) 37056 strides 1

13 | activation-2 (8,8,192) 0 ReLU

14 Conv2d-9 (8,8,192) 579 strides 1

15 | GAV Pooling 3) 0

16 | activation-3 3) 0 Softmax

Table 1. Architecture of our CNN network. The total number
of parameters is 1,368,387

3. EXPERIMENTAL RESULTS

3.1. Dataset

Analysis of large-volume, high-resolution tridimensional
multichannel microscopy images of brain tissue requires ef-
ficient procedures for automated segmentation of cellular
objects. To explore the potential of CNNs for this purpose,
we used a three color dataset encompassing a column of an
adult mouse cerebral cortex labeled and imaged as described
above. The dataset was partitioned in two sets of image
stacks of 4782 x 2940 pixels, comprising 390 layers. These
images contained large numbers of labeled astrocytes, here
the object of the experiment, distributed throughout the entire
cortex, but also excitatory neurons, marked in upper cortical
layers in the present experimental conditions. These two
cell types could be identified based on the following char-
acteristics: for astrocytes, star-like morphology of the cell
body and main branches, surrounded by dense fine processes
that defined a tridimensional domain of brain tissue [25]; for
neurons, round cell body and presence of long processes. De-
spite these characteristic features, individual astrocytes and
neurons displayed strong variation in shape, size and color.
Moreover, labeled astrocytes were often juxtaposed with one
another, and each of them engulfed several labeled or un-
labeled neurons. Unlabeled neurons appeared in reversed
contrast as black holes within the domain of labeled astro-

cytes, while the signal from labeled neurons could overlap
with that of the astrocytes.

3.2. CNN Training

Our main purpose was to segment 1) the cell body of each
astrocyte from the rest of elements in the image and 2) its
associated domain. We selected three categories for the seg-
mentation task: astrocyte cell body, astrocyte domain and
background (comprising labeled neurons and other unlabeled
elements). Within the two image stacks, the cell bodies of
all labeled astrocytes (respectively 546 and 534) were man-
ually pointed in 3D using Fiji, as well as unlabeled neural
cells engulfed within astrocyte domains. This constituted the
ground truth. Data were stored as 32 x 32 x 3 RGB patches.
Figure 1 shows one image plane from the dataset and ele-
ments from the different classes. As can be seen, astrocyte
cell bodies represented a smaller fraction of the dataset com-
pared to astrocyte domains, themselves sparsely distributed
within background. From the first image stack (comprising
546 astrocytes), we manually extracted 14,280 RGB patches
for background, 8,601 for astrocyte domains, and 4,020 for
astrocyte cell bodies. To deal with unbalanced class size, we
used data augmentation to bring each class size to 54,000 by
random translation of a few pixels. 45,000 RGB patches were
randomly selected in each of the 3 categories to train the CNN
network and 9,000 for testing. Figure 2 provides an outline of
the method. Equivalent AlexNet with maxpooling and fully
connected layers was tested on our training and testing data.
Our CNN architecture had a better performance, although the
difference was minor. In addition, we noticed that the per-
formance increased by adding more conventional steps. We
achieved 99.53% accuracy on testing data. We compared the
performance of our CNN with the following classical classi-
fiers: Nearest Neighbor Classifier (NN), Sparse Representa-
tion Classification (SRC) [26], Robust Sparse Coding (RSC)
[27] and CNN with four convolutional layers (CNN4C). Table
2 shows the results of the comparison. Because the training
dataset was too large for some of the classifiers, it was re-
duced by applying K-means clustering and random fashion
[28, 29, 30]. Average accuracy is reported based on five it-
erations. The result indicates that classifiers with random se-
lection were not as robust as those with K-means atoms selec-
tion. The NN classifier provided higher accuracy with a lower
number of atoms compared to SRC and RSC, but converged
faster as the number of atoms increased. SRC and RSC pro-
vided slightly higher accuracy than NN with 900 atoms but
were too slow to be applied on the entire dataset. Overall, our
CNN method provided the highest accuracy compared with
NN and CNN4C on the full size dataset. Results of the NN
were quantitatively very close but were qualitatively much
less satisfying than ours in term of continuity and regularity
of the segmented volumes, thanks to the regularizing effect of
the translation applied for data augmentation.
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Fig. 2. Schematic presentation of the CNN based method with example of final segmentation

3.3. Detection and Segmentation

The trained CNN model was then applied on the second 3D
image stacks for segmentation and detection, using a sliding
window approach with 32 x 32 x 3 pixels patches, layer by
layer. 3D connected component was then used on the result to
individualize astrocytes based on the 3D continuity and size
of their cell body, and infer the spatial position of their cen-
ter. This could then be compared to the ground truth position.
Figure 2 shows the different steps of the methodology and an
example of segmentation result. Evaluation of the final result
with respect to the ground truth on the entire image dataset
showed that our procedure correctly detected 95% of astro-
cyte cell bodies. A possible comparison gaining traction in
bioimaging is U-net [15], which directly performs a segmen-
tation on full size images. Our initial tests yielded much lower
accuracy, due to false positives created by background neu-
rons, and additional work would be needed to adapt the train-
ing set. Moreover the standard U-net method solves a two-
class problem while we need at least three classes, with astro-
cyte domains in addition to cell bodies. Overall this proves
that our CNN approach performs satisfyingly and gives re-
sults accurate enough for further biological interpretation.

4. CONCLUSION

Automated quantification of 3D multicolor microscopy is
challenging but necessary to unlock the potential of this tech-
nique in advancing our understanding of living systems. Here
we show an application of convolutional network for the de-

Partial Training Data
# Atoms 3 ‘ 30 ‘ 900

SRC + Random | 34.13+2.22 | 53.50+ 1.81 | 78.93+1.11
SRC+KMeans | 39.20+0.00 | 61.30+0.32 | 85.53+0.09
RSC + Random | 36.8 +1.87 | 57.214+1.72 | 79.10 +1.10
RSC + KMeans | 40.38+£0.00 | 62.404+0.23 | 86.15+0.15
NN + Random | 18.30 £3.30 | 65.12+ 2.40 | 82.33 +2.20
NN + KMeans | 61.53+0.00 | 81.42+ 0.22 | 84.53+0.16

# Atoms All Data
NN 92.25%
CNN4C 96.61%
Our-CNN 99.53%

Table 2. Accuracy comparison of classification methods

tection and segmentation of one neural cell type, astrocytes,
in Brainbow-labeled mouse brain. Further work on the algo-
rithm pipeline shall focus on extending it to other cell types as
well as speeding up the application of the trained network on
large datasets using a multi-resolution strategy, and ensuring
its robustness across experiments.
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