A. , C. D. Jenuwein, and T. , The molecular hallmarks of epigenetic control, Nat. Rev. Genet, vol.17, pp.487-500, 2016.

K. M. Mckenney and J. D. Alfonzo, From Prebiotics to Probiotics: The Evolution and Functions of tRNA Modifications, Life, vol.6, 2016.

S. Sharma and D. L. Lafontaine, View From A Bridge': A New Perspective on Eukaryotic rRNA Base Modification, Trends Biochem. Sci, vol.40, pp.560-575, 2015.
DOI : 10.1016/j.tibs.2015.07.008

Y. Fu, D. Dominissini, G. Rechavi, and C. He, Gene expression regulation mediated through reversible m(6)A RNA methylation, Nat. Rev. Genet, vol.15, pp.293-306, 2014.
DOI : 10.1038/nrg3724

K. D. Meyer and S. R. Jaffrey, The dynamic epitranscriptome: N 6-methyladenosine and gene expression control, Nat. Rev. Mol. Cell Biol, vol.15, pp.313-326, 2014.
DOI : 10.1038/nrm3785

URL : http://europepmc.org/articles/pmc4393108?pdf=render

, Biomolecules, vol.7, p.19, 2017.

D. Dominissini, S. Nachtergaele, S. Moshitch-moshkovitz, E. Peer, N. Kol et al., The dynamic N 1-methyladenosine methylome in eukaryotic messenger RNA, Nature, vol.530, pp.441-446, 2016.

S. Schwartz, D. A. Bernstein, M. R. Mumbach, M. Jovanovic, R. H. Herbst et al., Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA, Cell, vol.159, pp.148-162, 2014.

B. Delatte, F. Wang, L. V. Ngoc, E. Collignon, E. Bonvin et al., RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine, Science, vol.351, pp.282-285, 2016.

W. V. Gilbert, T. A. Bell, and C. Schaening, Messenger RNA modifications: Form, distribution, and function, Science, vol.352, pp.1408-1412, 2016.
DOI : 10.1126/science.aad8711

URL : https://science.sciencemag.org/content/sci/352/6292/1408.full.pdf

B. Polevoda and F. Sherman, Methylation of proteins involved in translation, Mol. Microbiol, vol.65, pp.590-606, 2007.

G. Giaever, A. M. Chu, L. Ni, C. Connelly, L. Riles et al., Functional profiling of the Saccharomyces cerevisiae genome, Nature, vol.418, pp.387-391, 2002.

S. K. Purushothaman, J. M. Bujnicki, H. Grosjean, and B. Lapeyre, Trm11p and Trm112p are both required for the formation of 2-methylguanosine at position 10 in yeast tRNA, Mol. Cell Biol, vol.25, pp.4359-4370, 2005.

M. H. Mazauric, L. Dirick, S. K. Purushothaman, G. R. Bjork, and B. Lapeyre, Trm112p is a 15-kDa zinc finger protein essential for the activity of two tRNA and one protein methyltransferases in yeast, J. Biol. Chem, vol.285, pp.18505-18515, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00509840

C. Chen, B. Huang, J. T. Anderson, and A. S. Bystrom, Unexpected accumulation of ncm 5 U and ncm 5 S 2 (U) in a trm9 mutant suggests an additional step in the synthesis of mcm 5 U and mcm 5 S 2 U, PLoS ONE, vol.6, 2011.

S. Figaro, L. Wacheul, S. Schillewaert, M. Graille, E. Huvelle et al., Heurgue-Hamard, V. Trm112 is required for Bud23-mediated methylation of the 18S rRNA at position G1575, Mol. Cell Biol, vol.32, pp.2254-2267, 2012.

Z. Hu, Z. Qin, M. Wang, C. Xu, G. Feng et al., The Arabidopsis SMO2, a homologue of yeast TRM112, modulates progression of cell division during organ growth, Plant J, vol.61, pp.600-610, 2010.

T. Gu, H. He, Y. Zhang, Z. Han, G. Hou et al., Trmt112 gene expression in mouse embryonic development, Acta Histochem. Cytochem, vol.45, pp.113-119, 2012.

V. Heurgue-hamard, M. Graille, N. Scrima, N. Ulryck, S. Champ et al., The zinc finger protein Ynr046w is plurifunctional and a component of the eRF1 methyltransferase in yeast, J. Biol. Chem, vol.281, pp.36140-36148, 2006.

D. Liger, L. Mora, N. Lazar, S. Figaro, J. Henri et al., Mechanism of activation of methyltransferases involved in translation by the Trm112 'hub' protein, Nucleic Acids Res, vol.39, pp.6249-6259, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00624935

J. Letoquart, E. Huvelle, L. Wacheul, G. Bourgeois, C. Zorbas et al., Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes, Proc. Natl. Acad. Sci, vol.111, pp.5518-5526, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01107275

J. Letoquart, N. V. Tran, V. Caroline, A. Aleksandrov, N. Lazar et al., Insights into molecular plasticity in protein complexes from Trm9-Trm112 tRNA modifying enzyme crystal structure, Nucleic Acids Res, vol.43, pp.10989-11002, 2015.
DOI : 10.2210/pdb5cm2/pdb

URL : https://hal.archives-ouvertes.fr/hal-01303131

X. Robert and P. Gouet, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Res, vol.42, pp.320-324, 2014.
DOI : 10.1093/nar/gku316

URL : https://academic.oup.com/nar/article-pdf/42/W1/W320/17422987/gku316.pdf

F. Halbach, M. Rode, and E. Conti, The crystal structure of S. cerevisiae Ski2, a DExH helicase associated with the cytoplasmic functions of the exosome, RNA, vol.18, pp.124-134, 2012.

W. A. Cantara, P. F. Crain, J. Rozenski, J. A. Mccloskey, K. A. Harris et al., The RNA Modification Database, RNAMDB: 2011 update, Nucleic Acids Res, 2011.
DOI : 10.1093/nar/gkq1028

URL : https://academic.oup.com/nar/article-pdf/39/suppl_1/D195/7625118/gkq1028.pdf

, Biomolecules, vol.7, p.19, 2017.

K. Kobayashi, K. Saito, R. Ishitani, K. Ito, and O. Nureki, Structural basis for translation termination by archaeal RF1 and GTP-bound EF1alpha complex, Nucleic Acids Res, vol.40, pp.9319-9328, 2012.

L. Aravind and E. V. Koonin, THUMP-A predicted RNA-binding domain shared by 4-thiouridine, pseudouridine synthases and RNA methylases, Trends Biochem. Sci, vol.26, pp.215-217, 2001.

J. M. Bujnicki, L. Droogmans, H. Grosjean, S. K. Purushothaman, and B. Lapeyre, Bioinformatics-guided identification and experimental characterization of novel RNA methyltransferases, Practical Bioinformatics

J. M. Bujnicki, . Ed, and . Springer, , vol.15, pp.139-168, 2004.

A. Hirata, S. Nishiyama, T. Tamura, A. Yamauchi, and H. Hori, Structural and functional analyses of the archaeal tRNA m2G/m22G10 methyltransferase aTrm11 provide mechanistic insights into site specificity of a tRNA methyltransferase that contains common RNA-binding modules, Nucleic Acids Res, vol.44, pp.6377-6390, 2016.

S. Menezes, K. W. Gaston, K. L. Krivos, E. E. Apolinario, N. O. Reich et al., Formation of m2G6 in Methanocaldococcus jannaschii tRNA catalyzed by the novel methyltransferase Trm14, Nucleic Acids Res, vol.39, pp.7641-7655, 2011.

M. Fislage, M. Roovers, I. Tuszynska, J. M. Bujnicki, L. Droogmans et al., Crystal structures of the tRNA: m2G6 methyltransferase Trm14/TrmN from two domains of life, Nucleic Acids Res, vol.40, pp.5149-5161, 2012.

P. Neumann, K. Lakomek, P. T. Naumann, W. M. Erwin, C. T. Lauhon et al., Crystal structure of a 4-thiouridine synthetase-RNA complex reveals specificity of tRNA U8 modification, Nucleic Acids Res, vol.42, pp.6673-6685, 2014.

J. Armengaud, J. Urbonavicius, B. Fernandez, G. Chaussinand, J. M. Bujnicki et al., N2-methylation of guanosine at position 10 in tRNA is catalyzed by a THUMP domain-containing, S-adenosylmethionine-dependent methyltransferase, conserved in Archaea and Eukaryota, J. Biol. Chem, vol.279, pp.37142-37152, 2004.

K. Okada, Y. Muneyoshi, Y. Endo, and H. Hori, Production of yeast (m2G10) methyltransferase (Trm11 and Trm112 complex) in a wheat germ cell-free translation system, Nucleic Acids Symp. Ser. (Oxf.), vol.53, pp.303-304, 2009.

G. Bourgeois, J. Marcoux, J. M. Saliou, S. Cianférani, and M. Graille, Activation mode of the eukaryotic m2G10 tRNA methyltransferase Trm11 by its partner protein Trm112, Nucleic Acids Res, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01953006

M. Kohli, S. M. Riska, D. W. Mahoney, H. S. Chai, D. W. Hillman et al., Germline predictors of androgen deprivation therapy response in advanced prostate cancer, Mayo Clin. Proc, vol.87, pp.240-246, 2012.

Y. P. Yu, Y. Ding, Z. Chen, S. Liu, A. Michalopoulos et al., Novel fusion transcripts associate with progressive prostate cancer, Am. J. Pathol, vol.184, pp.2840-2849, 2014.

A. Lunardi, G. Di-minin, P. Provero, M. Ferro, M. Carotti et al., A genome-scale protein interaction profile of Drosophila p53 uncovers additional nodes of the human p53 network, Proc. Natl. Acad. Sci, vol.107, pp.6322-6327, 2010.

A. C. Gavin, M. Bosche, R. Krause, P. Grandi, M. Marzioch et al., Functional organization of the yeast proteome by systematic analysis of protein complexes, Nature, vol.415, pp.141-147, 2002.

H. R. Kalhor and S. Clarke, Novel methyltransferase for modified uridine residues at the wobble position of tRNA, Mol. Cell Biol, vol.23, pp.9283-9292, 2003.

B. Huang, J. Lu, and A. S. Bystrom, A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae, RNA, vol.14, pp.2183-2194, 2008.

S. Glatt, J. Letoquart, C. Faux, N. M. Taylor, B. Seraphin et al., The Elongator subcomplex Elp456 is a hexameric RecA-like ATPase, Nat. Struct. Mol. Biol, vol.19, pp.314-320, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02179591

S. Glatt, R. Zabel, O. Kolaj-robin, O. F. Onuma, F. Baudin et al., Structural basis for tRNA modification by Elp3 from Dehalococcoides mccartyi, Nat. Struct. Mol. Biol, vol.23, pp.794-802, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01413474

, Biomolecules, vol.7, p.19, 2017.

A. Noma, Y. Sakaguchi, and T. Suzuki, Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions, Nucleic Acids Res, vol.37, pp.1335-1352, 2009.

J. Lu, B. Huang, A. Esberg, M. J. Johansson, and A. S. Bystrom, The Kluyveromyces lactis ?-toxin targets tRNA anticodons, RNA, vol.11, pp.1648-1654, 2005.

U. Begley, M. Dyavaiah, A. Patil, J. P. Rooney, D. Direnzo et al., Trm9-catalyzed tRNA modifications link translation to the DNA damage response, Mol. Cell, vol.28, pp.860-870, 2007.

W. Deng, I. R. Babu, D. Su, S. Yin, T. J. Begley et al., Trm9-Catalyzed tRNA Modifications Regulate Global Protein Expression by Codon-Biased Translation, PLoS Genet, vol.11, 2015.

A. Patil, C. T. Chan, M. Dyavaiah, J. P. Rooney, P. C. Dedon et al., Translational infidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNA modifications, RNA Biol, vol.9, pp.990-1001, 2012.

D. Fu, J. A. Brophy, C. T. Chan, K. A. Atmore, U. Begley et al., Human AlkB homolog ABH8 Is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival, Mol. Cell Biol, vol.30, pp.2449-2459, 2010.

Y. Fu, Q. Dai, W. Zhang, J. Ren, T. Pan et al., The AlkB domain of mammalian ABH8 catalyzes hydroxylation of 5-methoxycarbonylmethyluridine at the wobble position of tRNA, Angew. Chem. Int. Ed. Engl, vol.49, pp.8885-8888, 2010.

C. Pastore, I. Topalidou, F. Forouhar, A. C. Yan, M. Levy et al., Crystal structure and RNA binding properties of the RNA recognition motif (RRM) and AlkB domains in human AlkB homolog 8 (ABH8), an enzyme catalyzing tRNA hypermodification, J. Biol. Chem, vol.287, pp.2130-2143, 2012.

K. Shimada, M. Nakamura, S. Anai, M. Velasco, M. Tanaka et al., A novel human AlkB homologue, ALKBH8, contributes to human bladder cancer progression, Cancer Res, vol.69, pp.3157-3164, 2009.

U. Begley, M. S. Sosa, A. Avivar-valderas, A. Patil, L. Endres et al., A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-alpha, EMBO Mol. Med, vol.5, pp.366-383, 2013.

V. Leihne, F. Kirpekar, C. B. Vagbo, E. Van-den-born, H. E. Krokan et al., Roles of Trm9-and ALKBH8-like proteins in the formation of modified wobble uridines in Arabidopsis tRNA, Nucleic Acids Res, vol.39, pp.7688-7701, 2011.

B. P. Klaholz, Molecular recognition and catalysis in translation termination complexes, Trends Biochem. Sci, vol.36, pp.282-292, 2011.

A. Brown, S. Shao, J. Murray, R. S. Hegde, and V. Ramakrishnan, Structural basis for stop codon recognition in eukaryotes, Nature, vol.524, pp.493-496, 2015.

M. Y. Pavlov, D. V. Freistroffer, V. Dincbas, J. Macdougall, R. H. Buckingham et al., A direct estimation of the context effect on the efficiency of termination, J. Mol. Biol, vol.284, pp.579-590, 1998.

V. Dincbas-renqvist, A. Engstrom, L. Mora, V. Heurgue-hamard, R. Buckingham et al., A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation, EMBO J, vol.19, pp.6900-6907, 2000.

V. Heurgué-hamard, S. Champ, Å. Engstöm, M. Ehrenberg, and R. H. Buckingham, The hemK gene in Escherichia coli encodes the N 5-glutamine methyltransferase that modifies peptide release factors, EMBO J, vol.21, pp.769-778, 2002.

K. Nakahigashi, N. Kubo, S. Narita, T. Shimaoka, S. Goto et al., HemK, a class of protein methyl transferase with similarity to DNA methyl transferases, methylates polypeptide chain release factors, and hemK knockout induces defects in translational termination, Proc. Natl. Acad. Sci, vol.99, pp.1473-1478, 2002.

M. Graille, V. Heurgue-hamard, S. Champ, L. Mora, N. Scrima et al., Molecular basis for bacterial class I release factor methylation by PrmC, Mol. Cell, vol.20, pp.917-927, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00090289

L. Mora, V. Heurgue-hamard, M. De-zamaroczy, S. Kervestin, and R. H. Buckingham, Methylation of bacterial release factors RF1 and RF2 is required for normal translation termination in vivo, J. Biol. Chem, vol.282, pp.35638-35645, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00310559

V. Heurgue-hamard, S. Champ, L. Mora, T. Merkulova-rainon, L. L. Kisselev et al., The glutamine residue of the conserved GGQ motif in Saccharomyces cerevisiae release factor eRF1 is methylated by the product of the YDR140w gene, J. Biol. Chem, vol.280, pp.2439-2445, 2005.

B. Polevoda, L. Span, and F. Sherman, The yeast translation release factors Mrf1p and Sup45p (eRF1) are methylated, respectively, by the methyltransferases Mtq1p and Mtq2p, J. Biol. Chem, vol.281, pp.2562-2571, 2006.

S. Figaro, N. Scrima, and R. H. Buckingham, Heurgue-Hamard, V. HemK2 protein, encoded on human chromosome 21, methylates translation termination factor eRF1, FEBS Lett, vol.582, pp.2352-2356, 2008.

D. S. Nie, Y. B. Liu, and G. X. Lu, Cloning and primarily function study of two novel putative N5-glutamine methyltransferase (Hemk) splice variants from mouse stem cells, Mol. Biol. Rep, vol.36, pp.2221-2228, 2009.

P. Liu, S. Nie, B. Li, Z. Q. Yang, Z. M. Xu et al., Deficiency in a glutamine-specific methyltransferase for the release factor causes mouse embryonic lethality, Mol. Cell Biol, vol.30, pp.4245-4253, 2010.

D. Kusevic, S. Kudithipudi, and A. Jeltsch, Substrate Specificity of the HEMK2 Protein Glutamine Methyltransferase and Identification of Novel Substrates, J. Biol. Chem, vol.291, pp.6124-6133, 2016.

R. Sardana and A. W. Johnson, The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits, Mol. Biol. Cell, vol.23, pp.4313-4322, 2012.

J. White, Z. Li, R. Sardana, J. M. Bujnicki, E. M. Marcotte et al., Bud23 methylates G1575 of 18S rRNA and is required for efficient nuclear export of pre-40S subunits, Mol. Cell Biol, vol.28, pp.3151-3161, 2008.

R. Sardana, J. P. White, and A. W. Johnson, The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP, RNA, vol.19, pp.828-840, 2013.

A. A. Mccarthy and J. G. Mccarthy, The structure of two N-methyltransferases from the caffeine biosynthetic pathway, Plant Physiol, vol.144, pp.879-889, 2007.

R. Sardana, J. Zhu, M. Gill, and A. W. Johnson, Physical and functional interaction between the methyltransferase Bud23 and the essential DEAH-box RNA helicase Ecm16, Mol. Cell Biol, vol.34, pp.2208-2220, 2014.

R. Sardana, X. Liu, S. Granneman, J. Zhu, M. Gill et al., The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot, PLoS Biol, vol.13, 2015.

K. Ounap, L. Leetsi, M. Matsoo, and R. Kurg, The Stability of Ribosome Biogenesis Factor WBSCR22 Is Regulated by Interaction with TRMT112 via Ubiquitin-Proteasome Pathway, PLoS ONE, vol.10, 2015.

C. Zorbas, E. Nicolas, L. Wacheul, E. Huvelle, V. Heurgue-hamard et al., The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis, Mol. Biol. Cell, vol.26, pp.2080-2095, 2015.

K. Ounap, L. Kasper, A. Kurg, and R. Kurg, The human WBSCR22 protein is involved in the biogenesis of the 40S ribosomal subunits in mammalian cells, PLoS ONE, vol.8, 2013.

A. Doll and K. H. Grzeschik, Characterization of two novel genes, WBSCR20 and WBSCR22, deleted in Williams-Beuren syndrome, Cytogenet. Cell Genet, vol.95, pp.20-27, 2001.

G. Merla, C. Ucla, M. Guipponi, and A. Reymond, Identification of additional transcripts in the Williams-Beuren syndrome critical region, Hum. Genet, vol.110, pp.429-438, 2002.

Y. Nakazawa, H. Arai, and N. Fujita, The novel metastasis promoter Merm1/Wbscr22 enhances tumor cell survival in the vasculature by suppressing Zac1/p53-dependent apoptosis, Cancer Res, vol.71, pp.1146-1155, 2011.

R. E. Tiedemann, Y. X. Zhu, J. Schmidt, C. X. Shi, C. Sereduk et al., Identification of molecular vulnerabilities in human multiple myeloma cells by RNA interference lethality screening of the druggable genome, Cancer Res, vol.72, pp.757-768, 2012.

B. Stefanska, D. Cheishvili, M. Suderman, A. Arakelian, J. Huang et al., Genome-wide study of hypomethylated and induced genes in patients with liver cancer unravels novel anticancer targets, Clin. Cancer Res, vol.20, pp.3118-3132, 2014.

M. Jangani, T. M. Poolman, L. Matthews, N. Yang, S. N. Farrow et al., The Methyltransferase WBSCR22/Merm1 Enhances Glucocorticoid Receptor Function and is Regulated in Lung Inflammation and Cancer, J. Biol. Chem, vol.289, pp.8931-8946, 2014.

S. Sharma, J. Yang, P. Watzinger, P. Kotter, and K. D. Entian, Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively, Nucleic Acids Res, vol.41, pp.9062-9076, 2013.

G. Bourgeois, M. Ney, I. Gaspar, C. Aigueperse, M. Schaefer et al., Eukaryotic rRNA Modification by Yeast 5-Methylcytosine-Methyltransferases and Human Proliferation-Associated Antigen p120, PLoS ONE, vol.10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01451668

P. Studte, S. Zink, D. Jablonowski, C. Bar, T. Von-der-haar et al., Schaffrath, R. tRNA and protein methylase complexes mediate zymocin toxicity in yeast, Mol Microbiol, vol.69, pp.1266-1277, 2008.

M. E. Armengod, I. Moukadiri, S. Prado, R. Ruiz-partida, A. Benitez-paez et al., Enzymology of tRNA modification in the bacterial MnmEG pathway, Biochimie, vol.94, pp.1510-1520, 2012.

L. A. Isaksson and J. H. Phillips, Studies on microbial RNA. V. A comparison of the in vivo methylated components of ribosomal RNA from Escherichia coli and Saccharomyces cerevisiae, Biochim. Biophys. Acta, vol.155, pp.63-71, 1968.

K. Nishimura, T. Hosaka, S. Tokuyama, S. Okamoto, and K. Ochi, Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2), J. Bacteriol, vol.189, pp.3876-3883, 2007.

C. Brochier-armanet, P. Forterre, and S. Gribaldo, Phylogeny and evolution of the Archaea: One hundred genomes later, Curr. Opin. Microbiol, vol.14, pp.274-281, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00598326

C. J. Cox, P. G. Foster, R. P. Hirt, S. R. Harris, and T. M. Embley, The archaebacterial origin of eukaryotes, Proc. Natl. Acad. Sci, vol.105, pp.20356-20361, 2008.

H. Song, P. Mugnier, A. K. Das, H. M. Webb, D. R. Evans et al., The crystal structure of human eukaryotic release factor eRF1-Mechanism of stop codon recognition and peptidyl-tRNA hydrolysis, Cell, vol.100, pp.311-321, 2000.

K. Saito, K. Kobayashi, M. Wada, I. Kikuno, A. Takusagawa et al., Omnipotent role of archaeal elongation factor 1 alpha (EF1alpha in translational elongation and termination, and quality control of protein synthesis, Proc. Natl. Acad. Sci, vol.107, pp.19242-19247, 2010.

R. Gupta, . Halobacterium, and . Trnas, Identification of 41 tRNAs covering all amino acids, and the sequences of 33 class I tRNAs, J. Biol. Chem, vol.259, pp.9461-9471, 1984.

C. Tomikawa, T. Ohira, Y. Inoue, T. Kawamura, A. Yamagishi et al., Distinct tRNA modifications in the thermo-acidophilic archaeon, Thermoplasma acidophilum, FEBS Lett, vol.587, pp.3575-3580, 2013.

H. Grosjean, C. Gaspin, C. Marck, W. A. Decatur, and V. De-crecy-lagard, RNomics and Modomics in the halophilic archaea Haloferax volcanii: Identification of RNA modification genes, BMC Genom, vol.9, p.470, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00354522

, Biomolecules, 0719.

G. Phillips and V. De-crécy-lagard, Biosynthesis and function of tRNA modifications in Archaea, Curr. Opin. Microbiol, vol.14, pp.335-341, 2011.

K. Selvadurai, P. Wang, J. Seimetz, and R. H. Huang, Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism, Nat. Chem. Biol, vol.10, pp.810-812, 2014.