E. M. Phizicky and A. K. Hopper, tRNA biology charges to the front, Genes Dev, vol.24, pp.1832-1860, 2010.
DOI : 10.1101/gad.1956510

URL : http://genesdev.cshlp.org/content/24/17/1832.full.pdf

, Nucleic Acids Research, vol.45, issue.4, 1981.

W. A. Cantara, P. F. Crain, J. Rozenski, J. A. Mccloskey, K. A. Harris et al., The RNA modification database, RNAMDB: 2011 update, Nucleic Acids Res, vol.39, pp.195-201, 2011.
DOI : 10.1093/nar/gkq1028

URL : https://academic.oup.com/nar/article-pdf/39/suppl_1/D195/7625118/gkq1028.pdf

B. El-yacoubi, M. Bailly, and V. De-crecy-lagard, Biosynthesis and function of posttranscriptional modifications of transfer RNAs, Annu. Rev. Genet, vol.46, pp.69-95, 2012.

J. Putz, C. Florentz, F. Benseler, and R. Giege, A single methyl group prevents the mischarging of a tRNA, Nat. Struct. Biol, vol.1, pp.580-582, 1994.

A. K. Hopper and E. M. Phizicky, tRNA transfers to the limelight, Genes Dev, vol.17, pp.162-180, 2003.
DOI : 10.1101/gad.1049103

URL : http://genesdev.cshlp.org/content/17/2/162.full.pdf

Y. Motorin and M. Helm, tRNA stabilization by modified nucleotides, Biochemistry, vol.49, pp.4934-4944, 2010.
DOI : 10.1021/bi100408z

H. Hori, Methylated nucleosides in tRNA and tRNA methyltransferases, Front. Genet, vol.5, p.144, 2014.
DOI : 10.3389/fgene.2014.00144

URL : https://www.frontiersin.org/articles/10.3389/fgene.2014.00144/pdf

V. Anantharaman, E. V. Koonin, and L. Aravind, SPOUT: a class of methyltransferases that includes spoU and trmD RNA methylase superfamilies, and novel superfamilies of predicted prokaryotic RNA methylases, J. Mol. Microbiol. Biotechnol, vol.4, pp.71-75, 2002.

K. Shimada, M. Nakamura, S. Anai, . De, M. Velasco et al., A novel human AlkB homologue, ALKBH8, contributes to human bladder cancer progression, Cancer Res, vol.69, pp.3157-3164, 2009.

W. E. Swinehart and J. E. Jackman, Diversity in mechanism and function of tRNA methyltransferases, RNA Biol, vol.12, pp.398-411, 2015.

J. Anderson, L. Phan, and A. G. Hinnebusch, The Gcd10p/Gcd14p complex is the essential two-subunit tRNA(1-methyladenosine) methyltransferase of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.5173-5178, 2000.

A. Alexandrov, M. R. Martzen, and E. M. Phizicky, Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA, RNA, vol.8, pp.1253-1266, 2002.

S. K. Purushothaman, J. M. Bujnicki, H. Grosjean, and B. Lapeyre, Trm11p and Trm112p are both required for the formation of 2-methylguanosine at position 10 in yeast tRNA, Mol. Cell. Biol, vol.25, pp.4359-4370, 2005.

N. Leulliot, M. Chaillet, D. Durand, N. Ulryck, K. Blondeau et al., Structure of the yeast tRNA m7G methylation complex, Structure, vol.16, pp.52-61, 2008.

M. H. Mazauric, L. Dirick, S. K. Purushothaman, G. R. Bjork, and B. Lapeyre, Trm112p is a 15-kDa zinc finger protein essential for the activity of two tRNA and one protein methyltransferases in yeast, J. Biol. Chem, vol.285, pp.18505-18515, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02193584

M. P. Guy, B. M. Podyma, M. A. Preston, H. H. Shaheen, K. L. Krivos et al., Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNAPhe anticodon loop, RNA, vol.18, pp.1921-1933, 2012.

M. P. Guy and E. M. Phizicky, Two-subunit enzymes involved in eukaryotic post-transcriptional tRNA modification, RNA Biol, vol.11, pp.1608-1618, 2014.

C. Chen, B. Huang, J. T. Anderson, and A. S. Bystrom, Unexpected accumulation of ncm(5)U and ncm(5)S(2) (U) in a trm9 mutant suggests an additional step in the synthesis of mcm(5)U and mcm(5)S(2)U, PLoS One, vol.6, p.20783, 2011.

J. White, Z. Li, R. Sardana, J. M. Bujnicki, E. M. Marcotte et al., Bud23 methylates G1575 of 18S rRNA and is required for efficient nuclear export of pre-40S subunits, Mol. Cell. Biol, vol.28, pp.3151-3161, 2008.

S. Figaro, L. Wacheul, S. Schillewaert, M. Graille, E. Huvelle et al., Trm112 is required for Bud23-mediated methylation of the 18S rRNA at position G1575, Mol. Cell. Biol, vol.32, pp.2254-2267, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00709211

J. Letoquart, E. Huvelle, L. Wacheul, G. Bourgeois, C. Zorbas et al., Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.5518-5526, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01107275

V. Heurgue-hamard, S. Champ, L. Mora, T. Merkulova-rainon, L. L. Kisselev et al., The glutamine residue of the conserved GGQ motif in Saccharomyces cerevisiae release factor eRF1 is methylated by the product of the YDR140w gene, J. Biol. Chem, vol.280, pp.2439-2445, 2005.

V. Heurgue-hamard, M. Graille, N. Scrima, N. Ulryck, S. Champ et al., The zinc finger protein Ynr046w is plurifunctional and a component of the eRF1 methyltransferase in yeast, J. Biol. Chem, vol.281, pp.36140-36148, 2006.

D. Liger, L. Mora, N. Lazar, S. Figaro, J. Henri et al., Mechanism of activation of methyltransferases involved in translation by the Trm112 'hub' protein, Nucleic Acids Res, vol.39, pp.6249-6259, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00624935

S. Figaro, N. Scrima, R. H. Buckingham, and V. Heurgue-hamard, HemK2 protein, encoded on human chromosome 21, methylates translation termination factor eRF1, FEBS Lett, vol.582, pp.2352-2356, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00348794

D. Fu, J. A. Brophy, C. T. Chan, K. A. Atmore, U. Begley et al., Human AlkB homolog ABH8 Is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival, Mol. Cell. Biol, vol.30, pp.2449-2459, 2010.

L. Songe-moller, E. Van-den-born, V. Leihne, C. B. Vagbo, T. Kristoffersen et al., Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding, Mol. Cell. Biol, vol.30, pp.1814-1827, 2010.

J. Letoquart, N. V. Tran, V. Caroline, A. Aleksandrov, N. Lazar et al., Insights into molecular plasticity in protein complexes from Trm9-Trm112 tRNA modifying enzyme crystal structure, Nucleic Acids Res, vol.43, pp.10989-11002, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01303131

R. Sardana and A. W. Johnson, The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits, Mol. Biol. Cell, vol.23, pp.4313-4322, 2012.

J. Armengaud, J. Urbonavicius, B. Fernandez, G. Chaussinand, J. M. Bujnicki et al., N2-methylation of guanosine at position 10 in tRNA is catalyzed by a THUMP domain-containing, S-adenosylmethionine-dependent methyltransferase, conserved in Archaea and Eukaryota, J. Biol. Chem, vol.279, pp.37142-37152, 2004.

G. Gabant, S. Auxilien, I. Tuszynska, M. Locard, M. J. Gajda et al., THUMP from archaeal tRNA:m22G10 methyltransferase, a genuine autonomously folding domain, Nucleic Acids Res, vol.34, pp.2483-2494, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02132929

A. Hirata, S. Nishiyama, T. Tamura, A. Yamauchi, and H. Hori, Structural and functional analyses of the archaeal tRNA m2G/m22G10 methyltransferase aTrm11 provide mechanistic insights into site specificity of a tRNA methyltransferase that contains common RNA-binding modules, Nucleic Acids Res, vol.44, pp.6377-6390, 2016.

L. Aravind and E. V. Koonin, THUMP-a predicted RNA-binding domain shared by 4-thiouridine, pseudouridine synthases and RNA methylases, Trends Biochem. Sci, vol.26, pp.215-217, 2001.

M. J. Johansson and A. S. Bystrom, The Saccharomyces cerevisiae TAN1 gene is required for N4-acetylcytidine formation in tRNA, RNA, vol.10, pp.712-719, 2004.

C. J. Mccleverty, M. Hornsby, G. Spraggon, and A. Kreusch, Crystal structure of human Pus10, a novel pseudouridine synthase, J. Mol. Biol, vol.373, pp.1243-1254, 2007.

L. Randau, B. J. Stanley, A. Kohlway, S. Mechta, Y. Xiong et al., A cytidine deaminase edits C to U in transfer RNAs in Archaea, Science, vol.324, pp.657-659, 2009.

M. Fislage, M. Roovers, I. Tuszynska, J. M. Bujnicki, L. Droogmans et al., Crystal structures of the tRNA:m2G6 methyltransferase Trm14/TrmN from two domains of life, Nucleic Acids Res, vol.40, pp.5149-5161, 2012.

P. Neumann, K. Lakomek, P. T. Naumann, W. M. Erwin, C. T. Lauhon et al., Crystal structure of a 4-thiouridine synthetase-RNA complex reveals specificity of tRNA U8 modification, Nucleic Acids Res, vol.42, pp.6673-6685, 2014.

S. Sharma, J. L. Langhendries, P. Watzinger, P. Kotter, K. D. Entian et al., Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1, Nucleic Acids Res, vol.43, pp.2242-2258, 2015.

J. M. Bujnicki, Phylogenomic analysis of 16S rRNA:(guanine-N2) methyltransferases suggests new family members and reveals highly conserved motifs and a domain structure Downloaded from, 2000.

, similar to other nucleic acid amino-methyltransferases, Nucleic Acids Research, vol.45, issue.4, pp.2365-2368, 2017.

M. Graille, V. Heurgue-hamard, S. Champ, L. Mora, N. Scrima et al., Molecular basis for bacterial class I release factor methylation by PrmC, Mol. Cell, vol.20, pp.917-927, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00090289

K. Eckert, J. M. Saliou, L. Monlezun, A. Vigouroux, N. Atmane et al., The Pih1-Tah1 cochaperone complex inhibits Hsp90 molecular chaperone ATPase activity, J. Biol. Chem, vol.285, pp.31304-31312, 2010.

L. Zheng, U. Baumann, and J. L. Reymond, An efficient one-step site-directed and site-saturation mutagenesis protocol, Nucleic Acids Res, vol.32, p.115, 2004.

W. Cao, . De-la, and E. M. Cruz, Quantitative full time course analysis of nonlinear enzyme cycling kinetics, Sci. Rep, vol.3, p.2658, 2013.

M. Pawlowski, M. J. Gajda, R. Matlak, and J. M. Bujnicki, MetaMQAP: a meta-server for the quality assessment of protein models, BMC Bioinformatics, vol.9, p.403, 2008.

K. Okada, Y. Muneyoshi, Y. Endo, and H. Hori, Production of yeast (m2G10) methyltransferase (Trm11 and Trm112 complex) in a wheat germ cell-free translation system, Nucleic Acids Symp. Ser. (Oxf), vol.53, pp.303-304, 2009.

P. Studte, S. Zink, D. Jablonowski, C. Bar, T. Von-der-haar et al., ) tRNA and protein methylase complexes mediate zymocin toxicity in yeast, Mol. Microbiol, vol.69, pp.1266-1277, 2008.

R. Sardana, J. Zhu, M. Gill, and A. W. Johnson, Physical and functional interaction between the methyltransferase Bud23 and the essential DEAH-box RNA helicase Ecm16, Mol. Cell Biol, vol.34, pp.2208-2220, 2014.

K. Das, T. Acton, Y. Chiang, L. Shih, E. Arnold et al., Crystal structure of RlmAI: implications for understanding the 23S rRNA G745/G748-methylation at the macrolide antibiotic-binding site, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.4041-4046, 2004.

T. M. Hall, Multiple modes of RNA recognition by zinc finger proteins, Curr. Opin. Struct. Biol, vol.15, pp.367-373, 2005.

S. Hamill, S. L. Wolin, and K. M. Reinisch, Structure and function of the polymerase core of TRAMP, a RNA surveillance complex, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.15045-15050, 2010.

F. E. Loughlin, L. F. Gebert, H. Towbin, A. Brunschweiger, J. Hall et al., Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28, Nat. Struct. Mol. Biol, vol.19, pp.84-89, 2012.

S. Menezes, K. W. Gaston, K. L. Krivos, E. E. Apolinario, N. O. Reich et al., Formation of m2G6 in Methanocaldococcus jannaschii tRNA catalyzed by the novel methyltransferase Trm14, Nucleic Acids Res, vol.39, pp.7641-7655, 2011.

H. Shi and P. B. Moore, The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited, RNA, vol.6, pp.1091-1105, 2000.