I. B. Rogozin, Purifying and directional selection in overlapping prokaryotic genes, Trends Genet, vol.18, pp.228-232, 2002.
DOI : 10.1016/s0168-9525(02)02649-5

A. Kumar, An overview of nested genes in eukaryotic genomes, Euk. Cell, vol.8, pp.1321-1329, 2009.

S. K. Behura and D. W. Severson, Overlapping genes of Aedes aegypti: evolutionary implications from comparison with orthologs of Anopheles gambiae and other insects, BMC Evol. Biol, vol.13, p.124, 2013.

D. Saha, A. Panda, S. Podder, and T. C. Ghosh, Overlapping genes: a new strategy of thermophilic stress tolerance in prokaryotes, Extremophiles, vol.19, pp.345-353, 2015.

E. Cassan, A. M. Arigon-chiffoleau, J. M. Mesnard, A. Gross, and O. Gascuel, Concomitant emergence of the antisense protein gene of HIV-1 and of the pandemic, Proc. Natl. Acad. Sci. USA, vol.113, pp.11537-11542, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02152763

E. Faure, S. Tribolo, A. Levasseur, H. Seligmann, and R. M. Barthelemy, Probable presence of an ubiquitous cryptic mitochondrial gene on the antisense strand of the cytochrome oxidase I gene, Biol. Direct, vol.6, p.56, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01282548

C. Rancurel, M. Khosravi, A. K. Dunker, P. R. Romero, and D. G. Karlin, Overlapping genes produce proteins with unusual sequence properties and offer insights into de novo protein creation, J. Virol, vol.83, pp.10719-10736, 2009.

N. Sabbath, A. Wagner, and D. G. Karlin, Evolution of viral proteins originated de novo by overprinting, Mol. Biol. Evol, vol.29, pp.3768-3780, 2012.

A. Pavesi, G. Magiorkinis, and D. G. Karlin, Viral proteins originated de novo by overprinting can be identified by codon usage: application to the "gene nursery" of deltaretroviruses, PLoS Comp. Bio, vol.9, p.1003162, 2013.

P. P. Grass'-e, Evolution of living organisms: evidence for a new theory of transformation, 1977.

J. E. Zull and S. K. Smith, Is genetic code redundancy related to retention of structural information in both dna strands?, Trends Biochem. Sci, vol.15, pp.257-261, 1990.

A. Goldstein and D. L. Brutlag, Is there a relationship between DNA sequences encoding peptide ligands and their receptors?, Proc. Natl. Acad. Sci. USA, vol.86, pp.42-45, 1989.

Y. Pham, A minimal TrpRS catalytic domain supports sense/antisense ancestry of class I and II aminoacyl-tRNA synthetases, Molec. Cell, vol.25, pp.851-862, 2007.

L. Li, V. Weinreb, C. Francklyn, and C. W. Carter, Histidyl-tRNA urzymes class I and II aminoacylt-tRNA urzymes have comparable catalytic activities for cognate amino acid activation, J. Biol. Chem, vol.286, pp.10387-10395, 2011.

L. Li, C. Francklyn, and C. W. Carter, Aminoacylating urzymes challenge the RNA world hypothesis, J. Biol. Chem, vol.288, pp.26856-26863, 2013.

L. Martinez-rodriguez, Functional class I and II amino acid-activating enzymes can be coded by opposite strands of the same gene, J. Biol. Chem, vol.290, pp.19710-19725, 2015.

S. Lèbre and O. Gascuel, The combinatorics of overlapping genes, J. Theor. Biol, vol.415, pp.90-101, 2017.

R. D. Finn, The Pfam protein families database, Nucl. Acids Res, vol.36, pp.281-288, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01294685

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis, 2002.

M. Boursnell, M. M. Binns, and T. D. Brown, Sequencing of coronavirus IBV genomic RNA: Three open reading frames in the 5? "unique" region of mRNA D, J. Gen. Virol, vol.66, pp.2253-2258, 1985.

T. Pelet, J. Curran, and D. Kolakofsky, The P gene of bovine parainfluenza virus 3 expresses all three reading frames from a single mRNA editing site, EMBO J, vol.10, pp.443-448, 1991.

R. Root-bernstein and M. Root-bernstein, The ribosome as a missing link in prebiotic evolution II: ribosomes encode ribosomal proteins that bind to common regions of their own mRNAs and rRNAs, J. Theor. Biol, vol.397, pp.115-127, 2016.

H. Seligmann, Natural mitochondrial proteolysis confirms transcription systematically exchanging/deleting nucleotides, peptides coded by expanded codons, J. Theor. Biol, vol.414, pp.76-90, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01521363

D. Wilson, M. Madera, C. Vogel, C. Chothia, and J. Gough, The SUPERFAMILY database in 2007: families and functions, Nucl. Acids Res, vol.35, pp.308-313, 2007.

A. Andreeva, SCOP database in 2004: refinements integrate structure and sequence family data, Nucl. Acids Res, vol.32, pp.226-229, 2004.

M. Delarue, An asymmetric underlying rule in the assignment of codons: possible clue to a quick early evolution of the genetic code via successive binary choices, RNA, vol.26, pp.161-169, 2007.

J. Lehmann, M. Cibils, and A. Libchaber, Emergence of a code in the polymerization of amino acids along RNA templates, PLoS One, vol.4, p.5773, 2015.

C. W. Carter and R. Wolfenden, tRNA acceptor stem and anticodon bases form independent codes related to protein folding, Proc. Natl. Acad. Sci. USA, vol.112, pp.7489-7494, 2015.
DOI : 10.1073/pnas.1507569112

URL : http://www.pnas.org/content/112/24/7489.full.pdf

L. Delaye, A. Deluna, A. Lazcano, and A. Becerra, The origin of a novel gene through overprinting in Escherichia coli, BMC Evol. Biol, vol.8, pp.31-41, 2008.

S. N. Rodin and S. Ohno, Two types of aminoacyl-tRNA synthetase could be originally encoded by complementary strands of the same nucleic acid, Orig. Life Evol. Biosph, vol.25, pp.565-589, 1995.

C. W. Carter, The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed, Biol. Direct, vol.9, p.11, 2014.

S. N. Chandrasekaran, G. G. Yardimci, O. Erdogan, J. Roach, and C. W. Carter, Statistical evaluation of the Rodin-Ohno hypothesis: Sense/antisense coding of ancestral class I and II aminoacyl-tRNA synthetases, Molec. Biol. Evol, vol.30, pp.1588-1604, 2013.

C. W. Carter and W. Duax, Did tRNA synthetase classes arise on opposite strands of the same gene? Molec, Cell, vol.10, pp.705-708, 2002.

T. A. Williams, K. H. Wolfe, and M. A. Fares, No Rosetta stone for a sense/antisense origin of aminoacyl-tRNA synthetase classes, Molec. Biol. Evol, vol.26, pp.445-450, 2009.