A. Lingel and M. Sattler, Novel modes of protein-RNA recognition in the RNAi pathway, Curr. Opin. Struct. Biol, vol.15, pp.107-115, 2005.

G. M. Daubner, A. Clery, and F. H. Allain, RRM-RNA recognition: NMR or crystallography, Curr. Opin. Struct. Biol, vol.23, pp.100-108, 2013.
DOI : 10.1016/j.sbi.2012.11.006

G. Masliah, P. Barraud, and F. H. Allain, RNA recognition by double-stranded RNA binding domains: A matter of shape and sequence, Cell. Mol. Life Sci, vol.70, pp.1875-1895, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00725804

G. Nicastro, I. A. Taylor, and A. Ramos, KH-RNA interactions: Back in the groove, Curr. Opin. Struct. Biol, vol.30, pp.63-70, 2015.
DOI : 10.1016/j.sbi.2015.01.002

URL : http://discovery.ucl.ac.uk/1461407/1/Nicastro_1461407.pdf

A. G. Baltz, M. Munschauer, B. Schwanhausser, A. Vasile, Y. Murakawa et al., The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts, Mol. Cell, vol.46, pp.674-690, 2012.
DOI : 10.1016/j.molcel.2012.05.021

URL : https://doi.org/10.1016/j.molcel.2012.05.021

A. Castello, B. Fischer, K. Eichelbaum, R. Horos, B. M. Beckmann et al., Insights into RNA biology from an atlas of mammalian mRNA-binding proteins, Cell, vol.149, pp.1393-1406, 2012.

S. F. Mitchell, S. Jain, M. She, and R. Parker, Global analysis of yeast mRNPs, Nat. Struct. Mol. Biol, vol.20, pp.127-133, 2013.

A. Castello, B. Fischer, C. K. Frese, R. Horos, A. M. Alleaume et al., Comprehensive identification of RNA-binding domains in human cells, Mol. Cell, vol.63, pp.696-710, 2016.

R. Desrosiers, K. Friderici, and F. Rottman, Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells, Proc. Natl. Acad. Sci, vol.71, pp.3971-3975, 1974.

D. Dominissini, S. Moshitch-moshkovitz, S. Schwartz, M. Salmon-divon, L. Ungar et al., Topology of the human and mouse m 6 A RNA methylomes revealed by m 6 A-seq, Nature, vol.485, pp.201-206, 2012.

K. D. Meyer, Y. Saletore, P. Zumbo, O. Elemento, C. E. Mason et al., Comprehensive analysis of mRNA methylation reveals enrichment in 3 UTRs and near stop codons, Cell, vol.149, pp.1635-1646, 2012.

J. E. Squires, H. R. Patel, M. Nousch, T. Sibbritt, D. T. Humphreys et al., Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA, Nucleic Acids Res, vol.40, pp.5023-5033, 2012.

S. Schwartz, S. D. Agarwala, M. R. Mumbach, M. Jovanovic, P. Mertins et al., High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis, Cell, vol.155, pp.1409-1421, 2013.

T. M. Carlile, M. F. Rojas-duran, B. Zinshteyn, H. Shin, K. M. Bartoli et al., Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells, Nature, vol.515, pp.143-146, 2014.
DOI : 10.1038/nature13802

URL : http://europepmc.org/articles/pmc4224642?pdf=render

S. Schwartz, D. A. Bernstein, M. R. Mumbach, M. Jovanovic, R. H. Herbst et al., Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA, Cell, vol.159, pp.148-162, 2014.
DOI : 10.1016/j.cell.2014.08.028

URL : https://doi.org/10.1016/j.cell.2014.08.028

D. Dominissini, S. Nachtergaele, S. Moshitch-moshkovitz, E. Peer, N. Kol et al., The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA, Nature, vol.530, pp.441-446, 2016.

M. Safra, A. Sas-chen, R. Nir, R. Winkler, A. Nachshon et al., The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution, Nature, vol.551, pp.251-255, 2017.

D. Arango, D. Sturgill, N. Alhusaini, A. A. Dillman, T. J. Sweet et al., Acetylation of cytidine in mRNA promotes translation efficiency, Cell, 2018.

W. V. Gilbert, T. A. Bell, and C. Schaening, Messenger RNA modifications: Form, distribution, and function, Science, vol.352, pp.1408-1412, 2016.

E. Peer, G. Rechavi, and D. Dominissini, Epitranscriptomics: Regulation of mRNA metabolism through modifications, Curr. Opin. Chem. Biol, vol.41, pp.93-98, 2017.

, Genes, vol.10, pp.49-61, 2019.

C. Roost, S. R. Lynch, P. J. Batista, K. Qu, H. Y. Chang et al., Structure and thermodynamics of N6-methyladenosine in RNA: A spring-loaded base modification, J. Am. Chem. Soc, vol.137, pp.2107-2115, 2015.

G. Jia, Y. Fu, X. Zhao, Q. Dai, G. Zheng et al., N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO, Nat. Chem. Biol, vol.7, pp.885-887, 2011.

J. Liu, Y. Yue, D. Han, X. Wang, Y. Fu et al., A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation, Nat. Chem. Biol, vol.10, pp.93-95, 2014.
DOI : 10.1038/nchembio.1432

URL : http://europepmc.org/articles/pmc3911877?pdf=render

X. L. Ping, B. F. Sun, L. Wang, W. Xiao, X. Yang et al., Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase, Cell Res, vol.24, pp.177-189, 2014.

G. Zheng, J. A. Dahl, Y. Niu, P. Fedorcsak, C. M. Huang et al., ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility, Mol. Cell, vol.49, pp.18-29, 2013.

X. Wang, Z. Lu, A. Gomez, G. C. Hon, Y. Yue et al., N6-methyladenosine-dependent regulation of messenger RNA stability, Nature, vol.505, pp.117-120, 2014.

N. Liu, Q. Dai, G. Zheng, C. He, M. Parisien et al., N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions, Nature, vol.518, pp.560-564, 2015.
DOI : 10.1038/nature14234

URL : http://europepmc.org/articles/pmc4355918?pdf=render

R. R. Edupuganti, S. Geiger, R. G. Lindeboom, H. Shi, P. J. Hsu et al., )-methyladenosine (m(6)A) recruits and repels proteins to regulate mRNA homeostasis, Nat. Struct. Mol. Biol, vol.24, issue.6, pp.870-878, 2017.
DOI : 10.1038/nsmb.3462

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725193

Y. Imai, N. Matsuo, S. Ogawa, M. Tohyama, and T. Takagi, Cloning of a gene, YT521, for a novel RNA splicingrelated protein induced by hypoxia/reoxygenation, Brain research. Mol. Brain Res, vol.53, pp.33-40, 1998.

A. M. Hartmann, O. Nayler, F. W. Schwaiger, A. Obermeier, and S. Stamm, The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59(fyn), Mol. Biol. Cell, vol.10, pp.3909-3926, 1999.

P. Stoilov, I. Rafalska, S. Stamm, and . Yth, A new domain in nuclear proteins, Trends Biochem. Sci, vol.27, pp.495-497, 2002.

S. S. Bhat, D. Bielewicz, A. Jarmolowski, and . Szweykowska-kulinska, N(6)-methyladenosine (m(6)A): Revisiting the old with focus on new, an Arabidopsis thaliana centered review, Genes, vol.9, 2018.

Z. Zhang, D. Theler, K. H. Kaminska, M. Hiller, P. De-la-grange et al., The YTH domain is a novel RNA binding domain, J. Biol. Chem, vol.285, pp.14701-14710, 2010.

F. Li, D. Zhao, J. Wu, and Y. Shi, Structure of the YTH domain of human YTHDF2 in complex with an m(6)A mononucleotide reveals an aromatic cage for m(6)A recognition, Cell Res, vol.24, pp.1490-1492, 2014.

S. Luo and L. Tong, Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain, Proc. Natl. Acad. Sci, vol.111, pp.13834-13839, 2014.

D. Theler, C. Dominguez, M. Blatter, J. Boudet, and F. H. Allain, Solution structure of the YTH domain in complex with N6-methyladenosine RNA: A reader of methylated RNA, Nucleic Acids Res, vol.42, pp.13911-13919, 2014.

C. Xu, X. Wang, K. Liu, I. A. Roundtree, W. Tempel et al., Structural basis for selective binding of m 6 A RNA by the YTHDC1 YTH domain, Nat. Chem. Biol, vol.10, pp.927-929, 2014.

C. Xu, K. Liu, H. Ahmed, P. Loppnau, M. Schapira et al., Structural basis for the discriminative recognition of N6-Methyladenosine RNA by the human YT521-B homology domain family of proteins, J. Biol. Chem, vol.290, pp.24902-24913, 2015.

B. R. Brooks and C. L. Brooks,

A. D. Mackerell, . Jr, L. Nilsson, R. J. Petrella, B. Roux et al., CHARMM: The biomolecular simulation program, J. Comput. Chem, vol.30, pp.1545-1614, 2009.

, Genes, vol.10, pp.49-62, 2019.

B. M. Lunde, C. Moore, and G. Varani, RNA-binding proteins: Modular design for efficient function, Nature reviews. Mol. Cell Biol, vol.8, pp.479-490, 2007.
DOI : 10.1038/nrm2178

URL : http://europepmc.org/articles/pmc5507177?pdf=render

T. Achsel and C. Bagni, Cooperativity in RNA-protein interactions: The complex is more than the sum of its partners, Curr. Opin. Neurobiol, vol.39, pp.146-151, 2016.

X. Wang, B. S. Zhao, I. A. Roundtree, Z. Lu, D. Han et al., N(6)-methyladenosine modulates messenger RNA translation efficiency, Cell, vol.161, pp.1388-1399, 2015.
DOI : 10.1016/j.cell.2015.05.014

URL : https://doi.org/10.1016/j.cell.2015.05.014

H. Du, Y. Zhao, J. He, Y. Zhang, H. Xi et al., YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex, Nat. Commun, 2016.

J. A. Stowell, M. W. Webster, A. Kogel, J. Wolf, K. L. Shelley et al., Reconstitution of targeted deadenylation by the CCR4-NOT complex and the YTH domain protein Mmi1, Cell Rep, vol.17, 1978.

W. Xiao, S. Adhikari, U. Dahal, Y. S. Chen, Y. J. Hao et al., Nuclear m(6)A reader YTHDC1 regulates mRNA splicing, Mol. Cell, vol.61, pp.507-519, 2016.
DOI : 10.1016/j.molcel.2016.03.004

URL : https://doi.org/10.1016/j.molcel.2016.03.004

A. Li, Y. S. Chen, X. L. Ping, X. Yang, W. Xiao et al., Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation, Cell Res, vol.27, pp.444-447, 2017.
DOI : 10.1038/cr.2017.10

URL : https://www.nature.com/articles/cr201710.pdf

I. A. Roundtree, G. Z. Luo, Z. Zhang, X. Wang, T. Zhou et al., YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs, vol.6, 2017.
DOI : 10.7554/elife.31311

URL : https://doi.org/10.7554/elife.31311

O. Nayler, A. M. Hartmann, and S. Stamm, The ER repeat protein YT521-B localizes to a novel subnuclear compartment, J. Cell Biol, vol.150, pp.949-962, 2000.
DOI : 10.1083/jcb.150.5.949

URL : http://jcb.rupress.org/content/150/5/949.full.pdf

T. Lence, J. Akhtar, M. Bayer, K. Schmid, L. Spindler et al., )A modulates neuronal functions and sex determination in Drosophila, Nature, vol.540, issue.6, pp.242-247, 2016.
DOI : 10.1038/nature20568

S. D. Kasowitz, J. Ma, S. J. Anderson, N. A. Leu, Y. Xu et al., Nuclear m 6 A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development
DOI : 10.1371/journal.pgen.1007412

URL : https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1007412&type=printable

H. Shima, M. Matsumoto, Y. Ishigami, M. Ebina, A. Muto et al., S-adenosylmethionine synthesis is regulated by selective N(6)-adenosine methylation and mRNA degradation involving METTL16 and YTHDC1, vol.21, pp.3354-3363, 2017.
DOI : 10.1016/j.celrep.2017.11.092

URL : https://doi.org/10.1016/j.celrep.2017.11.092

K. E. Pendleton, B. Chen, K. Liu, O. V. Hunter, Y. Xie et al., The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention, vol.169, pp.824-835, 2017.

M. Mendel, K. M. Chen, D. Homolka, P. Gos, R. R. Pandey et al., Methylation of structured RNA by the m(6)A writer METTL16 is essential for mouse embryonic development, Mol. Cell, vol.71, pp.986-1000, 2018.

H. K. Salz, E. M. Maine, L. N. Keyes, M. E. Samuels, T. W. Cline et al., The Drosophila female-specific sex-determination gene, Sex-lethal, has stage-, tissue-, and sex-specific RNAs suggesting multiple modes of regulation, Genes Dev, vol.3, pp.708-719, 1989.

R. Moschall, M. Gaik, and J. Medenbach, Promiscuity in post-transcriptional control of gene expression: Drosophila sex-lethal and its regulatory partnerships, FEBS Lett, vol.591, pp.1471-1488, 2017.

D. P. Patil, C. K. Chen, B. F. Pickering, A. Chow, C. Jackson et al., )A RNA methylation promotes XIST-mediated transcriptional repression, Nature, vol.537, issue.6, pp.369-373, 2016.

J. Kretschmer, H. Rao, P. Hackert, K. E. Sloan, C. Hobartner et al., The m(6)A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5-3 exoribonuclease XRN1, RNA, vol.24, pp.1339-1350, 2018.

M. C. Chen, R. Tippana, N. A. Demeshkina, P. Murat, S. Balasubramanian et al., Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36, Nature, vol.558, pp.465-469, 2018.

K. Morohashi, H. Sahara, K. Watashi, K. Iwabata, T. Sunoki et al., Cyclosporin A associated helicase-like protein facilitates the association of hepatitis C virus RNA polymerase with its cellular cyclophilin B, PLoS ONE, vol.6, 2011.

M. N. Wojtas, R. R. Pandey, M. Mendel, D. Homolka, R. Sachidanandam et al., Regulation of m(6)A transcripts by the 3->5 RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline, Mol. Cell, vol.68, pp.374-387, 2017.

D. Jain, M. R. Puno, C. Meydan, N. Lailler, C. E. Mason et al., ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2, vol.7, 2018.

P. J. Hsu, Y. Zhu, H. Ma, Y. Guo, X. Shi et al., (6)-methyladenosine binding protein that regulates mammalian spermatogenesis, Cell Res, vol.27, pp.1115-1127, 2017.

A. Tanabe, J. Konno, K. Tanikawa, and H. Sahara, Transcriptional machinery of TNF-?-inducible YTH domain containing 2 (YTHDC2) gene, Gene, vol.535, pp.24-32, 2014.

A. Tanabe, K. Tanikawa, M. Tsunetomi, K. Takai, H. Ikeda et al., RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1? mRNA is translated, Cancer Lett, vol.376, pp.34-42, 2016.

Y. Q. Soh, M. M. Mikedis, M. Kojima, A. K. Godfrey, D. G. De-rooij et al., Meioc maintains an extended meiotic prophase I in mice, PLoS Genet, vol.13, 2017.

A. S. Bailey, P. J. Batista, R. S. Gold, Y. G. Chen, D. G. De-rooij et al., The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline, vol.6, 2017.

E. Abby, S. Tourpin, J. Ribeiro, K. Daniel, S. Messiaen et al., Implementation of meiosis prophase I programme requires a conserved retinoid-independent stabilizer of meiotic transcripts, Nat. Commun, 2016.

H. J. Kang, S. J. Jeong, K. N. Kim, I. J. Baek, M. Chang et al., A novel protein, Pho92, has a conserved YTH domain and regulates phosphate metabolism by decreasing the mRNA stability of PHO4 in Saccharomyces cerevisiae, Biochem. J, vol.457, pp.391-400, 2014.

J. Zhou, J. Wan, X. Gao, X. Zhang, S. R. Jaffrey et al., Dynamic m(6)A mRNA methylation directs translational control of heat shock response, Nature, vol.526, pp.591-594, 2015.

K. D. Meyer, D. P. Patil, J. Zhou, A. Zinoviev, M. A. Skabkin et al., 5 UTR m(6)A promotes Cap-independent translation, Cell, vol.163, pp.999-1010, 2015.

H. Shi, X. Zhang, Y. L. Weng, Z. Lu, Y. Liu et al., )A facilitates hippocampus-dependent learning and memory through YTHDF1, Nature, vol.563, issue.6, pp.249-253, 2018.

H. Shi, X. Wang, Z. Lu, B. S. Zhao, H. Ma et al., YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA, Cell Res, vol.27, pp.315-328, 2017.

M. Anders, I. Chelysheva, I. Goebel, T. Trenkner, J. Zhou et al., Dynamic m(6)A methylation facilitates mRNA triaging to stress granules, Life Sci. Alliance, vol.1, 2018.

R. M. Krug, M. A. Morgan, and A. J. Shatkin, Influenza viral mRNA contains internal N6-methyladenosine and 5-terminal 7-methylguanosine in cap structures, J. Virol, vol.20, pp.45-53, 1976.

N. S. Gokhale, A. B. Mcintyre, M. J. Mcfadden, A. E. Roder, E. M. Kennedy et al., N6-methyladenosine in Flaviviridae viral RNA genomes regulates infection, Cell Host Microbe, vol.20, pp.654-665, 2016.

E. M. Kennedy, H. P. Bogerd, A. V. Kornepati, D. Kang, D. Ghoshal et al., Posttranscriptional m(6)A editing of HIV-1 mRNAs enhances viral gene expression, Cell Host Microbe, vol.19, pp.675-685, 2016.

G. Lichinchi, B. S. Zhao, Y. Wu, Z. Lu, Y. Qin et al., Dynamics of human and viral RNA methylation during Zika virus infection, Cell Host Microbe, vol.20, pp.666-673, 2016.

N. Tirumuru, B. S. Zhao, W. Lu, Z. Lu, C. He et al., N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression

J. M. Bujnicki, M. Feder, M. Radlinska, and R. M. Blumenthal, Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase, J. Mol. Evol, vol.55, pp.431-444, 2002.

Y. Fu, D. Dominissini, G. Rechavi, and C. He, Gene expression regulation mediated through reversible m(6)A RNA methylation, Nature reviews. Genetics, vol.15, pp.293-306, 2014.

Y. Harigaya, H. Tanaka, S. Yamanaka, K. Tanaka, Y. Watanabe et al., Selective elimination of messenger RNA prevents an incidence of untimely meiosis, Nature, vol.442, pp.45-50, 2006.

J. A. Stowell, J. L. Wagstaff, C. H. Hill, M. Yu, S. H. Mclaughlin et al., A low-complexity region in the YTH domain protein Mmi1 enhances RNA binding, J. Biol. Chem, vol.293, pp.9210-9222, 2018.

C. Wang, Y. Zhu, H. Bao, Y. Jiang, C. Xu et al., A novel RNA-binding mode of the YTH domain reveals the mechanism for recognition of determinant of selective removal by Mmi1, Nucleic Acids Res, vol.44, pp.969-982, 2016.

B. Wu, J. Xu, S. Su, H. Liu, J. Gan et al., Structural insights into the specific recognition of DSR by the YTH domain containing protein Mmi1, Biochem. Biophys. Res. Commun, vol.491, pp.310-316, 2017.

D. S. Mcpheeters, N. Cremona, S. Sunder, H. M. Chen, N. Averbeck et al., A complex gene regulatory mechanism that operates at the nexus of multiple RNA processing decisions, Nat. Struct. Mol.Biol, vol.16, pp.255-264, 2009.

T. Sugiyama, G. Thillainadesan, V. R. Chalamcharla, Z. Meng, V. Balachandran et al., Enhancer of rudimentary cooperates with conserved RNA-processing factors to promote meiotic mRNA decay and facultative heterochromatin assembly, Mol. Cell, vol.61, pp.747-759, 2016.

E. D. Egan, C. R. Braun, S. P. Gygi, and D. Moazed, Post-transcriptional regulation of meiotic genes by a nuclear RNA silencing complex, RNA, vol.20, pp.867-881, 2014.

Y. Zhou, J. Zhu, G. Schermann, C. Ohle, K. Bendrin et al., The fission yeast MTREC complex targets CUTs and unspliced pre-mRNAs to the nuclear exosome, Nat. Commun, vol.6, 2015.

F. Simonetti, T. Candelli, S. Leon, D. Libri, and M. Rougemaille, Ubiquitination-dependent control of sexual differentiation in fission yeast, vol.6, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02110287

Y. Shichino, Y. Otsubo, Y. Kimori, M. Yamamoto, and A. Yamashita, YTH-RNA-binding protein prevents deleterious expression of meiotic proteins by tethering their mRNAs to nuclear foci

J. Houseley, J. Lacava, and D. Tollervey, RNA-quality control by the exosome, Nature reviews. Mol. Cell Biol, vol.7, pp.529-539, 2006.
DOI : 10.1038/nrm1964

S. Yamanaka, A. Yamashita, Y. Harigaya, R. Iwata, and M. Yamamoto, Importance of polyadenylation in the selective elimination of meiotic mRNAs in growing S. pombe cells, EMBO J, vol.29, pp.2173-2181, 2010.

C. Cotobal, M. Rodriguez-lopez, C. Duncan, A. Hasan, A. Yamashita et al., Role of CCR4-NOT complex in heterochromatin formation at meiotic genes and subtelomeres in fission yeast, Epigenetics Chromatin, vol.8, p.28, 2015.

M. Ukleja, J. Cuellar, A. Siwaszek, J. M. Kasprzak, M. Czarnocki-cieciura et al., The architecture of the Schizosaccharomyces pombe CCR4-NOT complex, Nat. Commun, vol.7, 2016.

K. Mukherjee, B. Futcher, and J. Leatherwood, Mmi1 and rep2 mRNAs are novel RNA targets of the Mei2 RNAbinding protein during early meiosis in Schizosaccharomyces pombe, Open Biol, vol.8, 2018.

O. Penagarikano, J. G. Mulle, and S. T. Warren, The pathophysiology of fragile X syndrome, Annu. Rev. Genom. Hum. Genet, vol.8, pp.109-129, 2007.

H. Huang, H. Weng, W. Sun, X. Qin, H. Shi et al., Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation, Nat. Cell Biol, vol.20, pp.285-295, 2018.

X. Yang, Y. Yang, B. F. Sun, Y. S. Chen, J. W. Xu et al., 5-methylcytosine promotes mRNA export-NSUN2 as the methyltransferase and ALYREF as an m(5)C reader, Cell Res, vol.27, pp.606-625, 2017.