H. Aboua¨?ssaaboua¨?ssa, M. Fliess, and C. Join, On short-term traffic flow forecasting and its reliability, IFAC PapersOnLine, pp.111-116, 2016.

A. Adegboyega, Time-series models for cloud workload prediction: A comparison, IFIP/IEEE Symp. Integr. Network Service Manag, 2017.

Y. Al-dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, Elasticity in cloud computing: State of the art and research challenges, IEEE Trans. Services Comput, vol.11, pp.430-447, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01529654

S. Alkharif, K. Lee, and H. Kim, Time-series analysis for price prediction of opportunistic cloud computing resources, Proc. 7th Int. Conf. Emerging Databases, vol.461, pp.221-240, 2018.

M. Amiri and L. Mohammad-khanli, Survey on prediction models of applications for resources provisioning in cloud, J. Network Comput. App, vol.82, pp.93-113, 2017.

M. Armbrust, M. , A. Fox, R. Griffith, A. D. Joseph et al., A view on cloud computing, Communicat. ACM, vol.53, pp.50-58, 2010.

B. , Model-free control of longitudinal and lateral dynamics for automated vehicles, JTEKT Engin. J, vol.1015, pp.2-8, 2018.

M. Balaji, .. A. Ch, G. S. Kumar, . S. Rk, and . Rao, Non-linear analysis of bursty workloads using dual metrics for better Cloud Resource Management, J. Amb. Intellig. Human. Comput, 2019.

, Informat. Sci, 2018.

E. F. Coutinho, R. De-carvalho, P. A. Sousa, D. Rego, J. Gomes et al., Elasticity in cloud computing: a survey, Ann. Telecom, vol.70, pp.289-309, 2015.

F. Diener, M. Diener, and M. , Nonstandard Analysis in Practice, pp.1-21, 1995.

F. Diener and G. Reeb, Analyse non standard, 1989.

M. Fliess, Analyse non standard du bruit, C.R. Acad. Sci, vol.342, pp.797-802, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00001134

M. Fliess and C. Join, A mathematical proof of the existence of trends in financial time series, Systems Theory: Modeling, Analysis and Control, pp.43-62, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00352834

M. Fliess and C. Join, Model-free control, Int. J. Contr, vol.86, pp.2228-2252, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00828135

M. Fliess, C. Join, and F. Hatt, A-t-on vraiment besoin d'un modèle probabiliste en ingénieriefinancì ere ?, Conf. Médit. Ingén. Sûre Syst. Compl, 2011.

M. Fliess, C. Join, and M. Mboup, Algebraic change-point detection, Appl. Alg. Engin. Communic. Comput, vol.21, pp.131-143, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00439226

M. Fliess, C. Join, H. Sira-ramírez, and H. , Non-linear estimation is easy, Int. J. Model. Identif. Contr, vol.4, pp.12-27, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00158855

M. Fliess, C. Join, and C. Voyant, Prediction bands for solar energy: New short-term time series forecasting techniques, Solar Energ, vol.166, pp.519-528, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01736518

S. M. -k.-gueye, N. D. Palma, E. Rutten, A. Tchana, and N. Berthier, Coordinating self-sizing and self-repair managers for multi-tier systems, Future Generat. Comput. Syst, vol.35, pp.14-26, 2014.

Y. Han, J. Chan, and C. Leckie, Analysing virtual machine usage in cloud computing, IEEE 9th World Congr. Services, 2013.

J. Harthong and J. , Le moiré, Adv. Appl. Math, vol.2, pp.21-75, 1981.

J. Huang, C. Li, and J. Yu, Resource prediction based on double exponential smoothing in cloud computing, 2nd Int. Conf. Consum. Electron. Commun. Networks, 2012.

C. Huang, G. Min, Y. Wu, Y. Ying, K. Pei et al., Time series anomaly detection for trustworthy services in cloud computing systems, IEEE Trans. Big Data, 2017.

S. Islam, J. Keung, K. Lee, and A. Liu, Empirical prediction models for adaptive resource provisioning in the cloud, Future Generat. Comput. Syst, vol.28, pp.155-162, 2012.

P. D. Kaur and I. Chana, A resource elasticity framework for QoS-aware execution of cloud applications, Future Generat. Comput. Syst, vol.37, pp.14-25, 2014.

I. K. Kim, W. Wang, Y. Qi, and M. Humphrey, Evaluation of workload forecasting techniques for predictive cloud resource scaling, 2016 IEEE 9th Int. Conf. Cloud Comput, 2016.

J. Kumar and A. K. Singh, Workload prediction in cloud using artificial neural network and adaptive differential evolution, Future Generat. Comput. Syst, vol.81, pp.41-52, 2018.

M. Längkvist, L. Karlsson, and A. Loutfi, A review of unsupervised feature learning and deep learning for time-series modeling, Pattern Recogn. Lett, vol.42, pp.11-24, 2014.

C. Lobry and T. Sari, Nonstandard analysis and representation of reality, Int. J. Contr, vol.39, pp.535-576, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00857828

D. C. Marinescu, Cloud Computing: Theory and Practice, 2017.

M. Mboup, C. Join, M. Fliess, and M. , Numerical differentiation with annihilators in noisy environment, Numer. Algor, vol.50, pp.439-467, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00319240

G. Mélard, Méthodes de prévisionprévision`prévisionà court terme. Ellipses & Presses Universitaires de Bruxelles, 2009.

M. Mudelsee, Climate Time Series Analysis: Classical Statistical and Bootstrap Methods, 2014.

M. Pawar, S. Karande, S. Gajare, P. Dhumal, and R. Paranjape, Review on privacy preserving in cloud using time series pattern based noise generation, Int. J. Comput. Sci. Network, vol.6, pp.90-93, 2017.

J. G. Proakis and D. K. Manolakis, Digital Signal Processing, 2013.

M. Rampazzo, D. Tognin, M. Pagan, L. Carniello, and A. Beghia, Modelling, simulation and real-time control of a laboratory tide generation system, Contr. Eng. Pract, vol.83, pp.165-175, 2019.

A. Robinson, Non-standard Analysis, 1996.

Y. Roumani and J. K. Nwankpa, An empirical study on predicting cloud incidents, Int. J. Informat. Manag, vol.47, pp.131-139, 2019.

H. Sira-ramírez, C. García-rodríguez, J. Cortès-romero, and A. Luvianojuárez, Algebraic Identification and Estimation Methods in Feedback Control Systems, 2013.

H. Sira-ramírez, A. Luviano-juárez, M. Ramírez-neria, and E. W. Zuritabustamante, Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach, 2017.

R. S. Tsay, Analysis of Financial Time Series, 2010.

O. Vallis, J. Hochenbaum, and A. , A novel technique for longterm anomaly detection in the cloud, 6th USENIX Conf. Hot Topics Cloud Comput. (HotCloud'14), 2014.

C. Vazquez, R. Krishnan, and E. John, Time series forecasting of cloud data center workloads for dynamic resource provisioning, J. Wireless Mobile Networks Ubiqu. Computi. Depend. App, vol.6, pp.87-110, 2015.

C. Voyant, J. G. De-gooijerb, and G. Notton, Periodic autoregressive forecasting of global solar irradiation without knowledge-based model implementation, Solar Energ, vol.174, pp.121-129, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01872340

C. Voyant, P. Haurant, M. Muselli, C. Paoli, and M. Nivet, Time series modeling and large scale global solar radiation forecasting from geostationary satellites data, Solar Energ, vol.102, pp.131-142, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00932955

P. Yan, Toward automatic time-series forecasting using neural networks, IEEE Trans Neural Netw. Learn. Syst, pp.1028-1039, 2012.

Z. Ye, S. Mistry, A. Bouguettaya, and H. Dong, Long-term QoS-aware cloud service composition using multivariate time series analysis, IEEE Trans. Services Comput, vol.9, pp.382-396, 2016.

K. Yosida, Operational Calculus, 1984.

P. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, Neurocomput, vol.50, pp.159-175, 2003.

G. Zhang, X. Liu, and Y. Yang, Time-series pattern based effective noise generation for privacy protection on cloud, IEEE Trans. Comput, vol.64, pp.1456-1469, 2015.