, 13: Influence of ? ?0 for a fixed value of (log-log)

R. Alessi, J. Marigo, and S. Vidoli, Gradient damage models coupled with plasticity and nucleation of cohesive cracks, Arch. Rat. Mech. Anal, vol.214, issue.2, pp.575-615, 2014.

R. Alessi, J. Marigo, and S. Vidoli, Gradient damage models coupled with plasticity: variational formulation and main properties, Mechanics of Materials, vol.80, issue.B, pp.351-367, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01667724

G. Allaire, Analyse numérique et optimisation: Une introductionà la modélisation mathématique etàetà la simulation numérique. Editions de l'Ecole Polytechnique, 2012.

M. Ambati, T. Gerasimov, and L. De-lorenzis, Phase-field modeling of ductile fracture, Computational Mechanics, vol.55, issue.5, pp.1017-1040, 2015.

G. I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Advances in Applied Mechanics, vol.7, pp.55-129, 1962.

J. Marigo and A. Benallal, Bifurcation and stability issues in gradient theories with softening, Model. Simul. Mater. Sci. Eng, vol.15, issue.1, pp.283-295, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00551073

J. Michael, C. V. Borden, M. A. Verhoosel, . Scott, J. R. Thomas et al., A phase-field description of dynamic brittle fracture, Computer Methods in Applied Mechanics and Engineering, pp.77-95, 2012.

B. Bourdin, G. A. Francfort, and J. Marigo, The variational approach to fracture, J. Elasticity, vol.91, issue.1-3, pp.5-148, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00551079

B. Bourdin, C. J. Larsen, and C. Richardson, A time-discrete model for dynamic fracture based on crack regularization, International Journal of Fracture, vol.168, issue.2, pp.133-143, 2011.

G. A. Marigo, J. Bourdin, and B. Francfort, Figure 16: Damage profile for a ductile material and smaller characteristic length, J. Mech. Phys. Solids, vol.48, issue.4, pp.797-826, 2000.

A. Braides, ?-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications, vol.22, 2002.

C. Comi, A non-local model with tension and compression damage mechanisms, European Journal of Mechanics-A/Solids, vol.20, issue.1, pp.1-22, 2001.

G. Dal-maso and R. Toader, A model for the quasi-static growth of brittle fractures: Existence and approximation results, vol.162, 2001.

G. A. Francfort and J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, vol.46, issue.8, pp.1319-1342, 1998.

A. A. Griffith, The phenomena of rupture and flows in solids, Phil. trans. Roy. Soc. London, issue.A221, pp.163-197, 1921.

V. Hakim and A. Karma, Laws of crack motion and phase-field models of fracture, Journal of the Mechanics and Physics of Solids, vol.57, issue.2, pp.342-368, 2009.

F. V. Donzé, S. Hentz, and L. Daudeville, Discrete element modelling of concrete submitted to dynamic loading at high strain rates, Computers & Structures, vol.82, issue.29, pp.2509-2524, 2004.

C. J. Larsen, Models for dynamic fracture based on griffith's criterion, IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, pp.131-140, 2010.

T. Li, Gradient Damage Modeling of Dynamic Brittle Fracture, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01487449

T. Li, J. Marigo, D. Guilbaud, and S. Potapov, Gradient damage modeling of brittle fracture in an explicit dynamics context, Int. J. Num. Meth. Engng, vol.108, issue.11, pp.1381-1405, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01248263

K. Mardal, G. N. Wells, and A. Logg, Automated Solution of Differential Equations by the Finite Element Method-The FeniCS Book

E. Lorentz and S. Andrieux, Analysis of non-local models through energetic formulations, International Journal of Solids and Structures, vol.40, issue.12, pp.2905-2936, 2003.

E. Lorentz and A. Benallal, Gradient constitutive relations: numerical aspects and application to gradient damage, International Journal for Numerical Methods in Engineering, vol.194, pp.5191-5220, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01718363

E. Lorentz, S. Cuvilliez, and K. Kazymyrenko, Convergence of a gradient damage model toward a cohesive zone model, Comptes Rendus Mécanique, vol.339, issue.1, pp.20-26, 2011.

J. Marigo, Plasticité et Rupture. Editions de l'Ecole polytechnique, 2014.

C. Miehe, M. Hofacker, and L. Schänzel, Phase field modeling of fracture in multi-physics problems. Part II. coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids, Comp. Meth. Appl. Mech. Engng, vol.294, pp.486-522, 2015.

M. Negri, The anisotropy introduced by the mesh in the finite element approximation of the mumford-shah functional, vol.20, 1999.

P. Zdenek, G. Bazant, and . Pijaudier-cabot, Nonlocal continuum damage, localization instability and convergence, vol.55, 1988.

R. De-borst, W. A. Brekelmans, R. H. Peerlings, and J. H. De-vree, Gradient enhanced damage for quasi-brittle materials, International Journal for Numerical Methods in Engineering, vol.39, issue.19, p.3391, 1996.

M. G. Geers, R. De-borst, R. H. Peerlings, and W. A. Brekelmans, A critical comparison of nonlocal and gradient-enhanced softening continua, International Journal of Solids and Structure, vol.38, issue.44, pp.7723-7746, 2001.

H. Amor, J. Marigo, C. Maurini, and K. Pham, Gradient damage models and their use to approximate brittle fracture, International Journal of Damage Mechanics, vol.20, issue.4, pp.618-652, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00549530

K. Pham, Construction et analyse de modèles d'endommagementàendommagementà gradient, 2010.

K. Pham, H. Amor, J. Marigo, and C. Maurini, Gradient damage models and their use to approximate brittle fracture, Int. J. Damage Mech, vol.20, pp.618-652, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00549530

K. Pham, J. Marigo, and C. Maurini, The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models, J. Mech. Phys. Solids, vol.59, issue.6, pp.1163-1190, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00578995

J. Marigo and K. Pham, From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models, Continuum Mech. Thermodyn, vol.25, pp.147-171, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00647860

G. Pijaudier, -. , and Z. P. Bazant, Nonlocal damage theory, vol.113, 1987.

K. Ravi-chandar, Dynamic fracture of nominally brittle materials, International Journal of Fracture, vol.90, issue.1, pp.83-102, 1998.