D. Burkhoff, Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers, AJP: Heart and Circulatory Physiology, vol.289, issue.2, pp.501-512, 2005.

M. Caruel, R. Chabiniok, P. Moireau, Y. Lecarpentier, and D. Chapelle, Dimensional reductions of a cardiac model for effective validation and calibration, Biomechanics and Modeling in Mechanobiology, vol.13, issue.4, pp.897-914, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00872746

R. Chabiniok, P. Moireau, C. Kiesewetter, T. Hussain, R. Razavi et al., Assessment of atrioventricular valve regurgitation using biomechanical cardiac modeling, Proc. of FIMH 2017, pp.401-411, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01505834

D. Chapelle, P. Le-tallec, P. Moireau, and M. Sorine, Energy-preserving muscle tissue model: formulation and compatible discretizations, International Journal for Multiscale Computational Engineering, vol.10, issue.2, 2012.
DOI : 10.1615/intjmultcompeng.2011002360

URL : https://hal.archives-ouvertes.fr/hal-00678772

C. H. Chen, B. Fetics, E. Nevo, C. E. Rochitte, K. R. Chiou et al., Noninvasive single-beat determination of LV endsystolic elastance in humans, JACC, vol.38, issue.7, pp.2028-2034, 2001.

N. Gaddum, J. Alastruey, P. Chowienczyk, M. C. Rutten, P. Segers et al., Relative contributions from the ventricle and arterial tree to arterial pressure and its amplification: an experimental study, American Journal of PhysiologyHeart and Circulatory Physiology, vol.313, issue.3, pp.558-567, 2017.
DOI : 10.1152/ajpheart.00844.2016

URL : https://doi.org/10.1152/ajpheart.00844.2016

E. Gayat, V. Mor-avi, L. Weinert, C. Yodwut, and R. M. Lang, Noninvasive quantification of LV elastance and ventricular-arterial coupling using 3D echo and arterial tonometry, AJP: Heart and Circulatory Physiology, vol.301, issue.5, pp.1916-1923, 2011.

G. A. Holzapfel and R. W. Ogden, Constitutive modelling of passive myocardium: a structurally based framework for material characterization, Phil. Trans. R. Soc. A: Mathematical, Physical and Engineering Sciences, vol.367, pp.3445-3475, 1902.

A. F. Huxley, Muscular contraction, The Journal of Physiology, vol.243, issue.1, pp.1-43, 1974.
DOI : 10.1146/annurev.ph.50.030188.000245

URL : https://hal.archives-ouvertes.fr/jpa-00215466

J. Joachim, F. Vallée, A. Le-gall, J. Matø, S. Lenck et al., Velocity-pressure loops for continuous assessment of ventricular afterload: influence of pressure measurement site, Journal of Clinical Monitoring and Computing, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01666355

S. Klotz, I. Hay, M. L. Dickstein, G. H. Yi, J. Wang et al., Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application, AJP: Heart and Circulatory Physiology, vol.291, issue.1, pp.403-412, 2006.

B. Ruijsink, K. Zugaj, K. Pushparajah, and R. Chabiniok, Model-based indices of early-stage cardiovascular failure and its therapeutic management in fontan patients, Proc. of FIMH 2019, 2019.

K. Sagawa, L. Maughan, H. Suga, and K. Sunagawa, Cardiac contraction and the pressure volume relationship, 1988.

H. Senzaki, C. H. Chen, and D. A. Kass, Single-Beat Estimation of End-Systolic Pressure-Volume Relation in Humans: A New Method With the Potential for Noninvasive Application, Circulation, vol.94, issue.10, pp.2497-2506, 1996.

T. Shishido, K. Hayashi, K. Shigemi, T. Sato, M. Sugimachi et al., Single-Beat Estimation of End-Systolic Elastance Using Bilinearly Approximated Time-Varying Elastance Curve, Circulation, vol.102, issue.16, pp.1983-1989, 2000.

H. Suga, K. Sagawa, and A. A. Shoukas, Load Independence of the Instantaneous Pressure-Volume Ratio of the Canine Left Ventricle and Effects of Epinephrine and Heart Rate on the Ratio, Circulation Research, vol.32, issue.3, pp.314-322, 1973.