K. Chatterjee, A. Steinhaeuser, S. Banerjee, A. Chatterjee, and . Ganguly, Sparse group lasso: Consistency and climate applications, Proceedings of the 12th SIAM International Conference on Data Mining, SDM 2012, vol.12, p.2012

J. Laurent, O. Guillaume, and J. Vert, Group lasso with overlap and graph lasso, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.433-440, 2009.

J. Owen, H. T. Attias, K. Sekihara, S. S. Nagarajan, and D. P. Wipf, Estimating the location and orientation of complex, correlated neural activity using MEG, NIPS, pp.1777-1784, 2009.

R. Caruana, Multitask Learning: A Knowledge-Based Source of Inductive Bias, Proceedings of the Tenth International Conference on Machine Learning, 1993.

R. Tibshirani, Regression shrinkage and selection via the Lasso, J. Roy. Statist. Soc. Ser. B, vol.58, issue.1, pp.267-288, 1996.

P. J. Bickel, Y. Ritov, and A. B. Tsybakov, Simultaneous analysis of Lasso and Dantzig selector, Ann. Statist, vol.37, issue.4, pp.1705-1732, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00401585

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, Convex optimization with sparsity-inducing norms. Optimization for Machine Learning, pp.19-53, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00937150

A. Argyriou, T. Evgeniou, and M. Pontil, Multi-task feature learning, 2007.

G. Obozinski and B. Taskar, Multi-task feature selection, ICML. Workshop of structural Knowledge Transfer for Machine Learning, 2006.

S. Negahban and M. J. Wainwright, Joint support recovery under high-dimensional scaling: Benefits and perils of l1,? regularization. NIPS, 2008.

A. Gramfort, G. Peyré, and M. Cuturi, Fast optimal transport averaging of neuroimaging data, IPMI 2015, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01135198

M. Cuturi, Sinkhorn Distances: Lightspeed Computation of Optimal Transport. NIPS, 2013.

L. Chizat, G. Peyré, B. Schmitzer, and F. Vialard, Scaling Algorithms for Unbalanced Transport Problems, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01434914

A. Jalali, P. Ravikumar, S. Sanghavi, and C. Ruan, A Dirty Model for Multi-task Learning. NIPS, 2010.

A. Lozano and G. Swirszcz, Multi-level Lasso for Sparse Multi-task Regression, ICML, 2012.

D. Hernandez-lobato, J. Hernandez-lobato, and Z. Ghahramani, A probabilistic model for dirty multi-task feature selection, Proceedings of the 32nd International Conference on Machine Learning, vol.37, pp.7-09, 2015.

L. Han and Y. Zhang, Learning tree structure in multi-task learning, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '15, pp.397-406, 2015.

P. Jawanpuria and S. Jagarlapudi, A convex feature learning formulation for latent task structure discovery, 2012.

A. Profeta and K. Sturm, Heat flow with dirichlet boundary conditions via optimal transport and gluing of metric measure spaces, 2018.

E. Mainini, A description of transport cost for signed measures, Journal of Mathematical Sciences, vol.181, issue.6, pp.837-855, 2012.

C. Frogner, C. Zhang, H. Mobahi, M. Araya, and . Poggio, Learning with a wasserstein loss, Advances in Neural Information Processing Systems, pp.2053-2061, 2015.

M. Agueh and G. Carlier, Barycenters in the Wasserstein space, SIAM, vol.43, issue.2, pp.904-924, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00637399

P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, J. Optim. Theory Appl, vol.109, issue.3, pp.475-494, 2001.

O. Fercoq and P. Richtárik, Accelerated, parallel and proximal coordinate descent, SIAM Journal on Optimization, vol.25, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02287265

B. Schmitzer, Stabilized sparse scaling algorithms for entropy regularized transport problems, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01385251

J. Solomon, F. De-goes, G. Peyré, M. Cuturi, A. Butscher et al., Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains, ACM Trans. Graph, vol.34, issue.4, pp.1-66, 2015.

M. A. Schmitz, M. Heitz, N. Bonneel, F. Ngolè, and D. Coeurjolly, Wasserstein Dictionary Learning: Op