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Wrinkling to crinkling transitions and curvature localization in a
magnetoelastic film bonded to a non-magnetic substrate1

E. Psarraa, L. Bodelota, K. Danasa,∗

aLMS, C.N.R.S, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91128, France

Abstract

This work studies experimentally and numerically the post-bifurcation response of a magnetorheological
elastomer (MRE) film bonded to a soft non-magnetic (passive) substrate. The film-substrate system is
subjected to a combination of an axial mechanical pre-compression and a transverse magnetic field. The
non-trivial interaction of the two fields leads to a decrease of the critical magnetic field with applied pre-
compression, while the observed wrinkling patterns evolve into crinkles, a bifurcation mode that is defined
by the accompanied curvature localization and strong shearing of the side faces of the wrinkled geometry.
Using a magneto-elastic variational formulation in a two-dimensional finite element numerical setting, we
find that the crinkling is an intrinsic feature of magnetoelasticity and its presence is directly associated
with the repulsive magnetic forces of the neighboring wrinkled-crinkled faces. As a result, the presence of
the magnetic field prohibits the formation of creases and folds. In an effort to obtain a good quantitative
agreement between the numerical and the experimental results, we also introduce an approximate way to
model the friction of the lateral film-substrate faces. This analysis reveals the strong effects of friction upon
the magneto-mechanical wrinkling modes.

Key words: Magnetorheological elastomers, Magnetoelasticity, Film-substrate wrinkling, Bifurcation,
Surface patterns, Curvature localization, Crinkling

1. Introduction

Mechanically stiff films bonded on passive compliant substrates are known to undergo mechanical in-
stabilities under uniaxial compressive loads (Bowden et al., 1998; Huang, 2005). The principal solution of
such material systems is unique and stable until the load exceeds a critical value, which then causes the
film to bifurcate into a wrinkled deformation mode. The critical bifurcation load and wavelength of the
patterns is directly influenced by the contrast of the properties between the film and the substrate (Kim
et al., 2011; Sun et al., 2012; Hutchinson, 2013; Jin and Suo, 2015). In the post-bifurcation regime and
for significant mechanical contrast, one observes mainly periodic wrinkling (Cai et al., 2011, 2012; Auguste
et al., 2017). Upon further compression or decrease of the contrast ratio, wrinkles transform into more
complex morphologies, e.g., folds, creases, ridges (Pocivavsek et al., 2008; Wang and Zhao, 2013; Auguste
et al., 2017; Stoop et al., 2015). In turn, the amplitude and wavelength of the patterns are a function of the
thickness of the film as well as of the constitutive response of both the film and the substrate.

In the present work, the interest lies in the investigation of wrinkling-type instabilities present in mag-
netoelastic film-substrate systems subjected to combined magnetic and mechanical loads. Under purely
magnetic loading, Moon and Pao (1969) studied the magnetoelastic buckling of a thin plate and Kankanala
(2007) that of a rectangular beam, both subjected to a transverse magnetic field. When the magnetic field
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reaches a critical value, the plate and beam rotate, and the corresponding buckling wavelength is comparable
to the finite length of the structure. This instability may be attributed to the well-known compass effect, i.e.,
the rotation and alignment of slender magnetic objects along the applied magnetic field in order to minimize
their magnetic energy (or demagnetization energy). In this regard, when a thin magnetoelastic layer is now
bonded to a non-magnetic soft substrate, the latter penalizes the energy of the long wavelength modes of the
single magnetic layer, leading to finite wavelengths—hence wrinkling-type patterns—for the critical instabil-
ity mode, as demonstrated theoretically by Danas and Triantafyllidis (2014) and experimentally by Psarra
et al. (2017). More recently, Kalina et al. (2017) and Schümann et al. (2017) have replaced carbonyl iron by
magnetically-hard NdFeB particles (Keip and Sridhar, 2019; Mukherjee and Danas, 2019), thus obtaining
the so called h-MREs. Such materials exhibit strong magnetic hysteresis and permanent magnetization,
while remaining fairly soft. These properties makes them excellent candidates for instability-controlled ap-
plications. In this regard, Kim et al. (2018) and Zhao et al. (2019) have used 3D-printing to fabricate and
study the constitutive and bifurcated response of thin layers of h-MREs.

Such concepts are promising to obtain complex surface patterning with active control using a single and
simple device. Indeed, even though mechanically-induced instabilities in planar geometries find applications
in stretchable electronics, controllable stiffness devices, sensors and actuators (Lacour et al., 2004), the
purely mechanical actuation of wrinkling in film-substrate systems does not allow for efficient, fast and
versatile control of the surface patterns (Bowden et al., 1998; Huck et al., 2000), as opposed to the proposed
system.

In this work, we study experimentally and numerically the behavior of a thin magnetorheological elas-
tomer (MRE) layer bonded to a thick soft non-magnetic (passive) substrate as a function of pre-compression
and applied magnetic field. The MRE film is made of an elastomer comprising randomly and isotropically
dispersed iron particles (Bodelot et al., 2018), which are magnetically soft thus exhibiting no magnetic hys-
teresis. As a result, upon removal of the magnetic field, the surface patterns vanish. Specifically, we focus
on the post-bifurcation film morphologies and their evolution with increasing magnetic field in a quanti-
tative and qualitative manner. We show that under high pre-compression and increasing magnetic field,
the wrinkling pattern transitions to a more complex morphology, called crinkling. It is demonstrated that
the appearance of this mode can be related to a sharp curvature localization and a significant shearing of
the lateral facets of the film. Similar crinkling patterns, albeit at the nanoscale, have only been recently
observed in graphene (Kothari et al., 2018; Li et al., 2018) and have been directly associated with flexoelec-
tricity effects (Kothari et al., 2019). In turn, in the present study, the same crinkling patterns are shown to
be a result of strong magnetoelastic interactions in the intermediary air domain. In particular, the proposed
numerical simulations allow to obtain a better insight into the crinkling mode observed experimentally and
explain the physics behind it.

Following this introduction, we first present the experimental setup and data analysis in Section 2. Next,
in Section 3, we discuss in detail the theoretical and numerical framework that is necessary for the analysis
of the present boundary value problem. Then, we proceed in Section 4 to the qualitative and whenever
possible quantitative comparison between the numerical and experimental results. We conclude the study
in Section 5.

2. Experiments

In this section, we discuss the experimental analysis of the film profiles used to study the post-bifurcation
response of the MRE film-substrate system. For completeness, we recall next some of the important features
of the experiments described in Psarra et al. (2017).

2.1. Materials and fabrication

The film-substrate structure considered in this study is a 40 mm × 40 mm × 40 mm cube composed of
an isotropic MRE film of thickness hf = 0.8 mm and shear modulus Gf resting on a non-magnetic substrate
of thickness hs = 39.2 mm and shear modulus Gs. Note that the materials exhibit a quasi-incompressible
response. Specific values for the compressibility are discussed in later.
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Both the layer and the substrate are made of two-part soft silicone elastomers from Smooth-On Inc.,
USA. For the purely polymeric substrate, the two parts of Ecoflex 00-10 material (polymer and hardener) are
mixed in a 1:1 weight ratio and degassed. For the MRE film, 20% volume fraction of carbonyl iron particles
(CIP SM from BASF with median diameter 3.5 µm) are first dispersed into the polymer part of Ecoflex
00-50 material. Hardener is then added with a 1:1 polymer to hardener weight ratio and the compound is
further mixed before being degassed. The MRE mixture is poured in a 40 mm × 40 mm × 0.8 mm mold base
and the excess quantity is scraped away with a blade to get a flat film surface. Four 39.2 mm-height walls
are subsequently mounted onto the base and the substrate mixture is poured on top of the film, up to the
top of the walls. The film and the substrate are finally cured simultaneously to prevent film delamination.
More details about the fabrication technique can be found in Psarra et al. (2017).

Because the film material is stiffer than the substrate material and is reinforced with particles, a stiffness
contrast of Gs/Gf = 0.3 is obtained with Gs = 3kPa. The film relative susceptibility χf = (µf − µ0)/µf

(with µf and µ0 denoting the magnetic susceptibility of the film and air, respectively) is evaluated at 0.4.
These properties are reported in Table 1 and further details regarding their determination can be found in
Psarra et al. (2017) as well as in Section 4.1.

2.2. Magnetomechanical setup and experimental testing

To conduct the magneto-mechanical experiments, a compression device is 3D-printed using a non-
magnetic polymeric material (Verowhite from Stratasys). It consists of three orthogonal walls forming a U
shape. As can be seen in Fig. 1a, a non-magnetic screw-driven system allows to control the distance between
the two parallel walls and thus to enforce different pre-compression stretch ratios λ0. Before compression,
silicone oil is applied onto the lateral faces of the film-substrate system in contact with the setup walls to
decrease friction. However, the friction in these regions becomes significant at large pre-compressions and
such boundary effects need to be taken into account in the numerical analysis (see Section 3).

The entire mechanically pre-compressed system is installed inside the 82 mm air gap separating the two
90 mm diameter poles of a two-coil electromagnet (see Fig. 1a), so that the magnetic field is perpendicular
to the film thickness. Subsequently, as the magnetic field is increased from 0 to 0.6 T at a rate of 0.002 T/s,
an external sensor measures the amplitude of the applied magnetic field and images of the film-substrate
system are recorded using a digital camera system with a 12µm-per-pixel resolution. The specimen is then
magnetically and mechanically unloaded and may be tested again under another pre-compression value. It
is perhaps relevant to note here that due to the relatively small mechanical rate-dependence of both the
MRE film and the silicone substrate, as well as the negligible magnetic hysteresis in the MRE film (Bodelot
et al., 2018), the order of application of the loads, i.e., mechanical and magnetic does not alter the observed
critical fields and patterns. Nevertheless, applying first the magnetic field and then the mechanical one,
would necessitate a substantially more complex experimental setup, that would still allow for a quantitative
analysis of the bifurcation amplitudes.

Optical images taken during tests carried out at a different pre-compression λ0 are reported in Fig. 1b.
For all applied λ0 = 0.9, 0.85, 0.8 and 0.75, the system eventually bifurcates as a result of the applied
magnetic field b0 and one can qualitatively observe a tendency of the critical magnetic field to decrease with
increasing pre-compression (and vice versa). This magneto-mechanical morphological map also provides
experimental evidence that different surface patterns can be formed with the film-substrate system by
different combinations of pre-compressions and magnetic fields. For small pre-compressions (e.g., λ0 = 0.9,
first row of Fig. 1b), the wrinkling patterns are complex and two-dimensional (2D) as a consequence of the
high in-plane symmetries of the cubic film-substrate system that retains an almost square top surface at
small pre-compression. For higher pre-compression (e.g., λ0 = 0.85, 0.8, second and third row of Fig. 1b),
the in-plane square symmetry breaks, leading to a one-dimensional (1D) sinusoidal wrinkling-type pattern
of single period and stable wavenumber (ω = 4). Upon further pre-compression (e.g., λ0 = 0.75, last row
of Fig. 1b), the film-substrate system undergoes significant friction at its lateral faces in contact with the
mechanical compression device, as evidenced by the presence of a non-negligible curvature at both sides
of the film. Such a curvature tends to inhibit the full formation of mechanical wrinkling on the film, even
though one reaches very close to the point of mechanical wrinkling, as discussed in more detail in Section 3.4.
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Figure 1: (a) Custom-made setup for the magnetomechanical experiment. At first, the specimens are uniaxially compressed
at a given stretch λ0 with a non-magnetic screw-driven device. The pre-compression is fixed and the system is placed within
the two poles of the electromagnet. The far magnetic field b0 is then applied perpendicular to the film thickness in a linearly
increasing fashion. A camera records the profile of the specimen that is subsequently used to analyze the bifurcation of the
system. (b) Optical images of the morphological patterns versus the applied magnetic field b0 for different pre-compressions
λ0. Scale bar, 20 mm. (c) Experimental measurements of the bifurcation amplitude A as a function of the magnetic field
b0, for different pre-compressions λ0. A (in mm) denotes the average distance between peaks and valleys of the two central
wrinkles (see inset). (d) Stability phase diagram of the corresponding morphological patterns in the two-field parameter space:
mechanical pre-compression λ0 and magnetic field b0. The experimental (λ0, bc0) critical points for 2D patterns (red), 1D
patterns with descending bc0 (white) and 1D patterns (blue) with saturated bc0 are defined from the bifurcation curves in (c)
by considering two thresholds A = 0.4, 0.6mm. Standard deviation of measurements from three specimens is included in the
experimental data points. Parts of the exhibited curves and images are taken from Psarra et al. (2017).
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This promotes a period-doubling pattern at the post-bifurcation regime. Finally, note that at lower pre-
compressions, increase of the magnetic field further intensifies the formed post-bifurcation pattern leading
to the sharpening of the valleys. In a similar fashion, at high pre-compressions (i.e. λ0 < 0.8), further
increase of the magnetic field leads to other types of patterns (see last row of Fig. 1b) that evolve from
period-doubling to a more localized sharp mode. These patterns, called “crinkles”, are investigated in detail
in the next Section.

To explore quantitatively the influence of the magneto-mechanical coupling over the critical loads and
formed patterns, the film-substrate profiles obtained during the tests are analyzed by image processing.
Grayscale images are binarized so that the background appears white and the film-substrate system appears
black. The position of the film can then be identified as the interface between the white and black pixels,
and the out-of-plane deflection of the film A can be computed as the average of the amplitudes (distance
between a peak and a valley) measured on the two central wrinkles (both edge wrinkles are excluded from
the analysis to avoid edge effects, see inset in Fig. 1c). In Fig. 1c, amplitude curves are plotted for all
applied pre-compressions λ0 = 0.9, 0.85, 0.8 and 0.75. The transition from the principal solution (A = 0)
to the supercritical bifurcated branch is smooth and increases gradually with the magnetic field, indicating
the presence of intrinsic geometrical and material imperfections deriving from the fabrication process. The
bifurcation transition points (λ0, bc0) are determined by setting a threshold over the amplitude (A = 0.4 or
0.6 mm) so that wrinkles are well-formed, whereas the threshold is in the same range with the film thickness
hf . This clearly shows in Fig. 1d, independently of the chosen threshold value, the decreasing trend of the
critical magnetic field as a function of pre-compression. The evolution of the post-bifurcated morphology
as a function of pre-compression is also highlighted in the insets at the bottom of the figure. Therein, we
observe an evolution of 2D patterns at low pre-compression towards 1D cylindrical patterns at mild and high
pre-compressions (from right to left). Note here that the setup described earlier does not allow the direct
visualization and measurement of wrinkling from the top of the film. Here, a mirror making a 45o angle with
the camera was used to take images from the surface of the film. Finally, we should note that more precise
alternative methods, such as that of Diab et al. (2013) who use coefficients of the Fourier transform of the
data, could be used to identify the wrinkling bifurcation. Nevertheless, the strong boundary effects in the
present problem may lead to significant noise in such coefficients and thus the simpler threshold approach
has been used in this case.

2.3. From wrinkling to crinkling and curvature localization

In this section, we study in detail the evolution of the post-bifurcation pattern upon further increase of
the applied magnetic field. In Fig. 2, we consider the amplitude of two neighboring wrinkles. The amplitudes
plotted in green correspond to the distance between the valley shown by the green arrow and the peak at its
right, while the amplitudes plotted in red correspond to the distance between the valley shown by the red
arrow and the common peak at its left. At low pre-compression (λ0 = 0.85, see Fig. 2a), both amplitudes
evolve similarly as the magnetic field increases (insets 1 and 2). At higher pre-compressions (λ0 = 0.78, 0.75,
Fig. 2b and c, respectively), the two amplitude curves diverge at a rather low critical magnetic field threshold
(indicated by a dotted line) that decreases with increasing pre-compression, thus highlighting a secondary
bifurcation that leads to a pattern morphology evolution. In particular, for λ0 = 0.78 (Fig. 2b), the
wrinkling pattern switches from sinusoidal (inset 1) to mild period-doubling (inset 2). For the λ0 = 0.75
pre-compression (Fig. 2c), the secondary bifurcation arises very early and the pattern readily corresponds
to a low-amplitude period doubling (inset 1). It then further evolves into a more localized mode (inset 2)
as the central wrinkle becomes deeper and sharper, though without self-contact of the free surface, while
the side undulations see their amplitude decrease. In this case, following Kothari et al. (2018), we identify
this mode as a “crinkle”, a term introduced to describe a particular curvature localization mode producing
shallow-kink corrugation in multi-layer graphene. As we will see in the following, this mode is also present
at lower pre-compressions and at higher magnetic fields albeit exhibiting overall smaller amplitudes (Fig. 2a,
inset 2).

The pattern morphology evolution at high pre-compression (λ0 = 0.75) is further investigated in Fig. 3.
Fig. 3a shows the different patterns obtained as the magnetic field increases and successive bifurcations
occur. For different magnetic fields, different quantities related to the film are then plotted as a function of
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Figure 2: Measurement of the bifurcation amplitude A versus the magnetic field b0 of the central (green) and the
right (red) wrinkle, for pre-stretch values (a) λ0 = 0.85, (b) λ0 = 0.78 and (c) λ0 = 0.75. At high pre-compressions
(b,c) a secondary bifurcation develops, leading to the splitting of the amplitude of two neighboring wrinkles. This
splitting only occurs at very high magnetic field at lower pre-compressions (a).
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Figure 3: Experimental results. (a) Morphological patterns with increasing magnetic field b0 at λ0 = 0.75. (b) Profile
evolution of the displacement u2 of the top surface of the MRE film at various applied magnetic fields b0 as a function
of the current coordinate x1. (c) Evolution of the shear angle θ = tan−1(∂u2/∂x1) measuring the shearing of the
faces of the central wrinkle-crinkle as a function of the current coordinate x1. (d) Normalized curvature kh (with
h = hf the film thickness) of the central wrinkle-crinkle as a function of the current coordinate x1. Upon increase
of the magnetic field b0, the post-bifurcation mode evolves from quasi-smooth wrinkles to period-doubling and to a
localized crinkle and curvature localization at the central part of the specimen.

the current coordinate x1. The displacement profile u2 of the top surface of the MRE film is reported in
Fig. 3b and is the quantitative counterpart of Fig. 3a. Now focusing the analysis at the center of the sample
([−1.5; 1.5] mm range), the shear angle θ (= tan−1(∂u2/∂x1)) and the normalized curvature kh (with h = hf
the film thickness) are reported in Fig. 3c and d, respectively. As the magnetic field increases, one notices
a strong increase in the slope of the shear angle that leads to a sharp curvature localization at the central
part of the film. The evolution into a crinkle pattern is thus accompanied by a strong curvature localization
at the center of the sample. As we explain in Section 4, the two opposite faces of the mid crinkle of the film
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Figure 4: Experimental evolution of (a) the shear angle θ and (b) the normalized curvature kh as a function of the
applied magnetic field b0 for various pre-compressions, λ0 = 0.75, 0.8, 0.85, 0.9. Curvature localization appears in all
pre-compressions considered here, 0.75 ≤ λ0 ≤ 0.9, albeit with decreasing amplitude for lower pre-compressions. All
curves asymptote as a result of magnetic saturation.

never come into contact as long as the magnetic field is switched on, due to repelling magnetic forces. As a
consequence, this phenomenon prohibits the formation of a crease or a fold in that region.

Finally, in Fig. 4, we examine the middle wrinkles for all pre-compressions considered in our experimental
study, and analyze the shearing angle θ and normalized curvature localization kh. As one observes, crinkle
patterns accompanied by significant shearing of the side faces of the film develop for all pre-compressions
considered. The amplitudes of both θ and kh increase with the pre-compression similar to the bifurcation
amplitude (see inset in Fig. 4b). This implies that crinkling is an intrinsic deformation mechanism in soft
MREs and its physical interpretation is given in Section 4, where a full field numerical analysis allows to
obtain the local magnetic and mechanical fields. Also, we observe in Fig. 4b that the curvature localization
curves increase from a zero value at magnetic fields that are higher than those obtained for the corresponding
wrinkling bifurcation in Fig. 1c. This directly suggests that this departure point from zero in Fig. 4b may
be used as a potential criterion to identify the onset of the secondary crinkle bifurcation.

3. Variational formulation and numerical analysis

In this section, we present the variational formulation, geometry and choice of energies used to analyze
the previously-described MRE film-substrate boundary value problem (BVP). The discussion that follows
is based on the geometry and mesh of Fig. 5. Before we proceed to the specific discussion of the BVP at
hand, we present briefly some preliminary definitions in the theory of magnetoelasticity.

3.1. Variational formulation

Without loss of generality, let us consider a magnetoelastic deformable solid that occupies a region V0
with external boundary ∂V0 of outward normal N in the undeformed stress-free configuration. Material
points in the solid are identified by their initial position vector X in the undeformed configuration V0,
while the current position vector of the same point in the deformed configuration is given by x = χ(X).
Motivated by the usual physical arguments, the mapping χ is required to be continuous and one-to-one on
V0. In addition, we assume that χ is twice continuously differentiable, except possibly on existing interfaces
(e.g., due to the presence of different phases) inside the material. The deformation gradient is then denoted
by F = Gradχ and its determinant by J = detF > 0. Here, Grad denotes the gradient operator with
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respect to X in the reference configuration. In addition, the reference density of the solid ρ0 is related to
the current density ρ by ρ0 = ρJ . Time dependence or dissipation is not considered here.

In pure magnetics, the current magnetic field b is divergence-free, the h−field h is curl-free and the
magnetization m per unit current volume is defined by

b = µ0(h + m) in V, (3.1)

where µ0 is the magnetic permeability in vacuum (to be specified later) and V is the volume in the current
configuration. This equation is used to identify one out of the three vector fields when one vector field is
used as an independent variable and the other one is given by a constitutive equation, e.g., h = f(b). In
general, and in purely mathematical terms, one could choose any of the above as an independent variable.
Note, however, that b and h are a priori Eulerian quantities that need to satisfy differential constraints and
boundary conditions, whereas the magnetization m, which is also a Eulerian quantity by definition through
equation (3.1), does not need to satisfy any differential constraints or interface conditions and thus makes
it an intermediary variable that is not enough on its own to describe the entire BVP. At large strains, the
fields b and h can be pulled back from V to V0 to their Lagrangian forms, denoted by B and H, respectively,
such that (Dorfmann and Ogden, 2003; Bustamante et al., 2008)

B = JF−1b, H = FTh. (3.2)

No attempt is done to provide any Lagrangian form for m since that would be non unique and is of
no use in the subsequent analysis. Moreover, as has been extensively discussed in the literature (see for
instance Dorfmann and Ogden (2005)), equation (3.1) is not form invariant under transformations, which
is a manifestation of the non-unique definition of m. In the results sections, we report data for the current
magnetization m as defined by the equation (3.1).

Motivated by the experimental observations at hand and recent experimental works by Danas et al.
(2012) and Bodelot et al. (2018), the MRE materials are described in the present work by a free energy
density W (X,F,B). This energy can be split into a mechanical free energy density that is a function of
the deformation gradient, F(X) and an magnetoelastic free energy that depends on F(X) and the magnetic
field B(X) (Ponte Castañeda and Galipeau, 2011; Lefèvre et al., 2017; Danas, 2017). Specific definitions of
these energies are provided in Section 3.3. Henceforth, the X argument will be dropped for simplicity of
notation whenever considered unnecessary.

Following the work of Dorfmann and Ogden (2003), we define the potential energy of the system as

P0(u,A) = min
u∈K(F)

min
A∈A(B)

∫
V0
W (F(u),B(A)) dV −

∫
∂VT

0

T0 · udS −
∫
∂Vϕ

0

(H0 ×A) ·NdS, (3.3)

where K and A are the admissibility sets for the displacement field u and the magnetic vector potential A
denoted by

K(F) = {F : ∃x = χ(X) with F = I + Gradu, J > 0, ∀X ∈ V0, u(X) = u0(X) in ∂Vu
0 } , (3.4)

and

A(B) =
{
B : ∃x = χ(X) with B = CurlA, ∀X ∈ V0, A(X)×N = A0(X)×N in ∂VA

0

}
, (3.5)

respectively. In these last expressions, ∂Vu
0 , ∂VT

0 , ∂VA
0 and ∂Vϕ

0 denote the portions of the boundaries where
displacements u0, tractions T0, vector potential A0 and scalar potential ϕ0 (H0 = −Gradϕ0) are applied,
respectively, while N denotes the unit normal to the corresponding boundary. Moreover, the introduction
of A ensures that B is divergence free. By extremizing the potential energy P0 in (3.3) with respect to u
and A, one obtains the Euler-Lagrange field equations and the corresponding jump conditions at internal
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interfaces, Si,

(P0),uδu = 0 ⇒ DivS = 0, S =
∂W

∂F
, ∀X ∈ V0, [[S]]Ni = 0, [[N]] = 0, ∀X ∈ Si, (3.6)

(P0),AδA = 0 ⇒ CurlH = 0, H =
∂W

∂B
, ∀X ∈ V0, Ni × [[H]] = 0, ∀X ∈ Si, (3.7)

as well as the boundary conditions

u = u0, ∀X ∈ ∂Vu
0 , [[S]] ·N = T0, ∀X ∈ ∂VT

0 ,

A×N = A0 ×N, ∀X ∈ ∂VA
0 , N×H = N×H0, ∀X ∈ ∂Vϕ

0 . (3.8)

Here, S is the total first Piola-Kirchhoff stress, which comprises both the mechanical and the Maxwell stress
contributions. These definitions are general and will be used in the following to define the response of each
part of the BVP at hand.

3.2. BVP geometry, mesh and potential energies for each domain

In this section, we specify the potential energies for each domain of the BVP shown in Fig. 5. Specifically,
we partition our BVP in three major domains: (i) the film occupying a volume Vf , (ii) the substrate
occupying a volume Vs and (iii) the air domain occupying a volume Va. This implies that the total potential
energy of the problem is simply P = Pf + Ps + Pa. Each one of these potential energies is discussed in
detail in the following two sections.

In turn, the air-film-substrate geometry is discretized and numerically simulated using the finite element
(FE) method via the development of a user element in FEAP (Taylor, 2011). Furthermore, by assuming
plane-strain conditions, which are consistent with the BVP of interest here—provided that a sufficient pre-
compression is applied—one can study the bifurcation problem in two dimensions (2D). This is advantageous
in the present context since it allows to deal more efficiently with larger local strains without need for re-
meshing. For the numerical calculations, we use standard quadrilateral bilinear isoparametric elements that
induce full continuity of the associated displacement and vector potential fields. Note that due to the 2D
character of the analyzed problem, the vector potential is continuous everywhere and has only a non-zero
out-of-plane component, i.e., A = α e3 as discussed in detail in the following.

b0

u2= 0

u
1
=

 0

λ0

R
c

X1

X2

Structured mesh

Unstructured mesh
Substrate

MRE film

f2 f2

Figure 5: Mesh of the air-film-substrate system. All regions are meshed with quadrilateral bilinear, 4-node isopara-
metric, (magneto-)mechanical elements. A structured mesh with deformable elements (light blue) is defined by the
distance Rf from the solid boundary. The rest of the air region, defined by distance ∆lair from the solid boundary,
is unstructured and stationary (dark blue).

9



3.2.1. Film and substrate geometry and potential energies

Specifically, the MRE film-substrate specimen has the same geometrical dimensions with that used in
the experiments, i.e., hf = 0.8 mm and hs = 39.2 mm, whereas both have a width ws = wf = 40 mm. The
out-of-plane dimension is inconsequential due to the imposed plane-strain conditions (and is taken to be 1
mm). Thus Vf ≡ [−hf/2, hf/2]⊗ [−wf/2, wf/2]⊗ [0, 1] and Vs ≡ [−hs/2, hs/2]⊗ [−ws/2, ws/2]⊗ [0, 1]. The
loading procedure is done in two steps similar to the experimental setup. First, we apply incrementally a
pre-compression λ0 along direction 1, i.e. u1 = λ0−1. For reasons that are discussed in detail in Section 3.4,
we also apply transverse concentrated (shear) nodal forces along direction X2, denoted by f2, at the lateral
faces of the film-substrate system. This is done to simulate approximately the friction due to the pre-
compression device (see right sketch in Fig. 5). The bottom part of the substrate is fixed in the 2-direction,
while the top part of the film is traction free. The interface between the film and the substrate is taken to
be perfect with full displacement and traction continuity. The same is considered also for all interfaces (e.g.,
film-substrate, air-film and air-substrate) in the present BVP.

In this regard, we define the potential energies for the film, Pf , and the substrate, Ps, in the most general
form. Following the definition (3.3), one can write compactly the two distinct potential energies as

P(f,s)(u, α) = min
u∈K(f,s)(F)

min
A∈A(f,s)(B)

∫
V(f,s)

W(f,s) (F,B) dV −
N∂Vfs∑
i=1

f
(i)
2 u

(i)
2 , (3.9)

where we denote compactly ∂Vfs ≡ (∂Vf ∪∂Vs)∩∂Vc, with ∂Vc ≡ {(X1, X2) = (−ws/2,−hs/2), (X1, X2) =
(ws/2, hs/2)} such that N∂Vfs

denotes all the nodes lying on the film-substrate boundary except the bot-
tom left and right corner nodes of the substrate, where we apply displacement boundary conditions (see
schematics in Fig 5). In turn, Kf , Ks and A(f,s) become

Kf (F) = {F : ∃x = χ(X) with F = I + Gradu, J > 0, ∀X ∈ Vf ,
u1(−wf/2, X2) = 0, u1(wf/2, X2) = λ0 − 1, ∀X2 ∈ [−hf/2, hf/2]}, (3.10)

Ks(F) = {F : ∃x = χ(X) with F = I + Gradu, J > 0, ∀X ∈ Vs,
u1(−ws/2, X2) = 0, u1(ws/2, X2) = λ0 − 1, ∀X2 ∈ [−hs/2, hs/2], (3.11)

u2(X1,−hs/2) = 0,∀X1 ∈ [−ws/2, ws/2]}

and

A(f,s)(B) = {B : ∃x = χ(X) with B = CurlA, A(X1, X2) = α(X1, X2)e3, ∀X ∈ V(f,s)}. (3.12)

3.2.2. Air geometry and potential energy

The air domain is decomposed in two subdomains, as shown in color in Fig. 5. The inner domain is
meshed using a structured biased mesh allowing to resolve more efficiently the deformation near the boundary
of the solid. For the outer domain, we use an unstructured mesh, which allows to reduce the total number
of degrees of freedom in the problem since the magnetic fields are fairly uniform far from the film-substrate
block.

The elements within the air domain are forced to deform via a constraint function that is discussed
in the following to avoid severe mesh distortion near the film-substrate-air interfaces. This fictitious air
deformation does not alter the solution of the BVP problem since the air mechanical energy is set equal to
zero (i.e. zero Young’s modulus). There exist different approaches to deal with a deformable air domain,
but such a discussion is beyond the scope of the present study. In this work, we introduce a very efficient
and simple way to deal with the deformability of the air by use of a constraint function that is described in
the following steps.

(i) For all nodes lying in the air domain, Va, we find the closest node on the film-substrate specimen
boundary, ∂Vfs, by a simple search algorithm, thus defining a set of node pairs of size Na (with Na

being the number of nodes in the air domain).
10



(ii) For each pair of air-solid nodes, we define first a distance coefficient

dni = 1−

∣∣∣Xn
i |∂Vfs

− Xn
i |Va

∣∣∣
Rc

, (3.13)

such that the constraint function becomes

cni =

{
dni u

n
i |∂Vfs

− uni |Va = 0, if 0 < dni ≤ 1

uni |Va = 0, otherwise.
(3.14)

Here, n ∈ [1, Na] denotes the pair number, i = 1, 2 the displacement degree of freedom and Rc

the distance at which the constraint is applied along each direction i. Beyond that distance Rc per
direction the corresponding displacement degrees of freedom for the air nodes are set equal to zero.
In this example, the structured air subdomain is spatially defined by a square of side length 2Rc +wf

with Rc, concentric to the film-substrate domain. We set Rc = 0.5(wa−wf )/2, where wa = ha denote
the side lengths of the entire air domain (see Fig.5). The coefficient of the first term in the constraint
function in (3.14) ensures a linearly regressing displacement field in the air domain with increasing

distance from the specimen boundary such that uni |Va = 0 at
∣∣Xn

i |Va
∣∣ =

∣∣∣Xn
i |∂Vfs

∣∣∣+Rc.

(iii) The above constraint function can be enforced either by use of a Lagrange multiplier or a penalty
formulation. For simplicity, we choose the second option and we define the penalty energy of the
deformable air

ρ0Φpen(u) =

Na∑
n=1

2∑
i=1

Gc

2ξL2
c

(cni )2, (3.15)

where cni is defined in (3.14), Lc = 1 mm is an arbitrary reference length and Gc is an arbitrary shear
modulus that can be set equal to that of the film or the substrate. The latter is added to make ξ
dimensionless. This term has to be added to the potential energy of the air domain.

One needs then to choose a fairly small value for ξ (to be defined later) such that the constraint function
is satisfied to a sufficient accuracy. A larger value for ξ is also acceptable since the deformation of the air
subdomain is inconsequential to the total potential energy of the system. The choice of ξ is mainly decided
by numerical convergence studies and in the present study is set equal to ξ = 10−7. Specifically, the proposed
penalty approach leads in this case of wrinkling to accurate results and significantly better convergence than
that of using small but finite shear and bulk moduli for the air domain. The above penalty function can
be easily applied in any commercial code by defining “contact-type” user elements between two degrees of
freedom2.

Following the previous definitions, we define next the potential energy of the deformable air subdomain
by

Pa(u, α) = min
u∈Ka(F)

min
A∈Aa(B)

∫
Va
ρ0Φpen(u)dV +

∫
Va

1

2µ0J
FB · FBdV, (3.16)

where Ka and Aa become

Ka(F) = {F : ∃x = χ(X) with F = I + Gradu, J > 0, ∀X ∈ Va,

u = 0, ∀
∣∣∣Xn

i |∂Vfs

∣∣∣+Rc <
∣∣Xn

i |Va
∣∣ ≤ |wa|, i = 1, 2}, (3.17)

2While our calculations have been mainly carried out using the FEAP (Taylor, 2011) finite element code, additional calcula-
tions have also been done using Abaqus (2018) leading to exactly the same results. In the later case, use of the “*EQUATION”
command to impose the constraint function gave the same results. This command is used for linear constraints as is the case
in equation (3.14) and uses a direct elimination of the air nodes used in the constraint function.
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and

Aa(B) = {B : ∃x = χ(X) with B = CurlA, A(X1, X2) = α(X1, X2)e3, ∀X ∈ Va
α(X1, X2) = εij(B0)iXj = εij(b0)iXj , Xi ∈ ∂Va}. (3.18)

In the above equation, the Lagrangian, B0, and Eulerian, b0, magnetic fields are equal since F = I in the
stationary air subdomain, whereas εij denotes the alternating symbol in 2D.

3.3. Choice of energy functions

In this section, we propose simple but sufficiently rich energy density functions to describe the constitutive
response of the film and substrate magnetoelastic materials. The interest in this study is the modeling
of MRE materials which can be either magnetoelastic or purely elastic. In this regard, it is convenient
to characterize their constitutive behaviors in a Lagrangian formulation by free energies W (F,B). These
functions are suitably amended in order to include the contribution of the Maxwell stress and read (Dorfmann
and Ogden, 2005)

W (F,B) = ρ0Φ(F,B) +
1

2µ0J
FB · FB, (3.19)

where Φ(F,B) is the specific free-energy density to be defined below. The second term in the above equation
is considered so that the total first Piola-Kirchhoff stress, S, and the Lagrangian h-field, H, are simply given
by

S =
∂W

∂F
(F,B), H =

∂W

∂B
(F,B). (3.20)

A number of energy functions—isotropic and anisotropic—have been proposed in the literature. Those
can be divided to the phenomenological ones (Bustamante, 2010; Danas et al., 2012) and to those based on
rigorous analytical homogenization methods (Galipeau and Ponte Castañeda, 2013; Lefèvre et al., 2017). In
the present context of a passive substrate and thin films, the wrinkling response is mainly driven by the
geometry of the BVP and thus simpler energy density functions largely suffice to reveal and capture the
observed patterns, discussed in the experiments Section 2. In the following, we choose the same energy
functions for the film and the substrate, whereas specific values for the constitutive parameters are reported
later in Table 1 in Section 4.1.

In this regard, for a homogeneous magnetoelastic solid, we consider the following energy density

ρ0Φ(F,B) = ρ0Φmech(F) + ρ0Φmag(F,B) =

= ρ0φmech(F) + ρ0φmag(F,b) = ρ0φ(F,b). (3.21)

Use has been made of relation (3.2)1 to obtain the property Φ(F,B) = Φ(F, J−1 F−1 b) = φ(F,b), while the
term with subscript “mech” in the above equation denotes the purely mechanical contribution. Following
the earlier work of Psarra et al. (2017), we describe the mechanical response by a Neo-Hookean model, i.e.,

ρ0Φmech(F) =
G

2
(F · F− 3− 2 lnJ) +

G′

2
(J − 1)2, (3.22)

where G is the shear modulus and G′ is the Lamé constant associated with the compressible part. In turn,
for the magnetomechanical part, we use a magnetization saturation Langevin model, which reads

ρ0Φmag(F,B) =
J µ0 (ms)2

3χ

{
ln

[
3χ

µ0ms J

√
FB · FB

]
− ln

[
sinh

(
3χ

µ0ms J

√
FB · FB

)]}
, (3.23)

or equivalently in terms of the Eulerian b

ρ0 φmag(F,b) =
J µ0 (ms)2

3χ

{
ln

[
3χ

µ0ms
|b|
]
− ln

[
sinh

(
3χ

µ0ms
|b|
)]}

. (3.24)
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In these two expressions, |b| =
√
b · b, µ0 is the magnetic permeability in vacuum (to be specified later),

ms is the magnetic saturation and χ is the magnetic susceptibility. There are more than one definitions
of magnetic susceptibility in the literature. The one used here is the more recent one in the bibliography
whereas the classical one is χv = χ/(1 − χ). For instance, in the absence of mechanical fields (e.g., rigid
solids), the relative permeability µ = (1 +χv)µ0 = µ0/(1−χ) of iron could be in the order of χv ≈ 10− 200
or χ ≈ 0.9− 0.995.

The magnetization is then defined by simple derivation of equation (3.24) (the same result could be
obtained by proper derivation of (3.23) but is much more tedious) as

m = −ρ0
J

∂φ

∂b
= −ρ0

J

∂φmag

∂b
= −ρ0

J

∂Φmag

∂B
F−T

=

(
ms

|b|
coth

[
3χ |b|
µ0ms

]
− µ0 (ms)2

3χ |b|2

)
b, (3.25)

so that µ0h = b − µ0 m(b). The magnetization response corresponding to energy density (3.24) is shown
in Fig. 6 as a function of the magnetic field b. In the limit of small magnetic fields, B → 0, one can show

|m
|/
m

s

|b|/μ0m
s

Figure 6: A representative example of a m−b response as obtained by the energy density described in equation (3.25)
in the purely magnetic case, i.e., F = I and J = 1, and for a magnetic susceptibility χ = 0.995.

that the energy (3.24) becomes quadratic in B or b, respectively, such that

ρ0Φmag(F,B) = − χ

2µ0J
FB · FB = − J χ

2µ0
b · b = ρ0 φmag(F,b). (3.26)

This last case corresponds to ideal magnetic materials with no saturation. Using equation (3.25), one can
easily show that the magnetization in this last case is linear in b and is given by

µ0m = χb or µ0h = (1− χ)b. (3.27)

We close this subsection by noting that the present choice of energy functions is the simplest possible
that allows for a satisfactory quantitative and very good qualitative agreement with the experimental data
presented previously. Those energies lead to negligible magneto-mechanical coupling in terms of pure mate-
rial magnetostriction (Danas, 2017) and thus are expected to be less accurate deep in the post-bifurcation
regime, especially when crinkles develop substantially due to the large shear strains obtained in that case.
For a better agreement, one should resort to more elaborate magneto-mechanical models such as the one
proposed recently by Lefèvre et al. (2017). Such a work is in progress and will be presented elsewhere.
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3.4. Representative numerical results and effect of the transverse force f2

In this section, we discuss the effect of the applied transverse force f2 on the bifurcation response of the
film-substrate system. As already discussed briefly in Psarra et al. (2017), we apply a transverse force f2
(as sketched in Fig. 5) in order to mimic the frictional forces exerted by the lateral walls of the compressive
device on the film-substrate specimen in the actual experiments (see Fig. 1a). Here, we carry out a more
detailed quantitative study of this transverse force. The corresponding results are reported in Fig. 7.

In Fig. 1b, the experimental profiles clearly show a gradually developing curvature at the lateral bound-
aries of the film-substrate sample. This curvature becomes more significant with increase of the applied
pre-compression. In this study, we do not attempt to measure exactly that curvature but instead we identify
the applied transverse force f2 by using the wrinkling amplitude curves. In this regard, we choose a very
simple linear dependence of the transverse force on the applied axial pre-stretch λ0, which reads

f2 = fc (λ0 − 1), fc > 0, 0 < λ0 ≤ 1. (3.28)

In this expression, fc is a positive constant that has the units of force and is denoted henceforth as transverse
force coefficient. This constant will be calibrated by the wrinkling experiments as explained in detail in the
following. But before, it is perhaps worth to comment further on equation (3.28). One can observe that
due to the nonlinear neo-Hookean energy (3.22) used for the film and substrate mechanical response, the
Piola-Kirchhoff component S11 is a nonlinear function of λ1 = λ0 (and λ2) and thus the transverse force
f2 depends nonlinearly on the normal reaction forces f1 (which are directly related to S11). Therefore, the
approximate relation in (3.28) can be rationalized as an explicit approximation of a nonlinear friction-type
law.

Specifically, in Fig. 7a, we show at the left column the corresponding experimental profiles for an applied
pre-compression λ0 = 0.75 and varying magnetic field b0 = 0, 0.2, 0.4T. A major observation in the context
of the experiments is that the strong lateral friction induces a curvature of film near the lateral edges, which
in turn delays (and even eliminates) the mechanical wrinkling. Subsequent application of the magnetic
field triggers the magneto-mechanical wrinkling. This observation is in fact rationalized and validated by
the corresponding FE simulations. Specifically, for fc = 0, a clear mechanical wrinkling mode is obtained
for λ0 ∼ 0.76 and no applied magnetic field. This is in quantitative agreement with numerous theoretical
bifurcation studies in infinite film-substrate systems (see for instance Cao and Hutchinson (2012) and Danas

and Triantafyllidis (2014)), which suggest a critical mechanical bifurcation stretch at λc,mech
0 = 0.785 for the

choice of material parameters in the present study. Presently, we find a critical stretch λc,mech,FE
0 ∼ 0.76,

which is a result of the finite slenderness of the film, hf/wf = 0.8/40 = 0.02 and the Dirichlet boundary
conditions considered.

Next, in Fig. 7a, by considering a non-zero transverse force coefficient fc = 0.15, 0.3mN, we observe an
induced curvature of the film near the lateral faces and almost complete annihilation of the purely mechanical
wrinkling mode. Application of a magnetic field triggers subsequently the magneto-mechanical wrinkling
modes, whereas for large fc (or f2), we can even observe an asymmetric increase of the wrinkle amplitudes
at different positions in the film (e.g., see deformed shape corresponding to fc = 0.3mN and b0 = 0.4T).
Such asymmetry is consistent with the experimental observations in Fig. 1b and Fig. 2 (see insets), although
the FE calculations tend to underestimate it.

In order to quantify the above observations we show on Figs. 7c,d the evolution of the wrinkling amplitude,
A, of the two central wrinkles, as already discussed in the inset of Fig. 1c for λ0 = 0.75 and 0.8, respectively.
The major observation in the context of Fig. 7c, corresponding to λ0 = 0.75, is the transition from a
mechanically wrinkled state at b0 = 0 (see curves corresponding to fc = 0) with a finite value of A to an
unwrinkled mechanical state with A = 0 for finite b0 > 0 and fc > 0. In turn, for λ0 = 0.8, the film-substrate
system has not yet reached the mechanical wrinkled state and thus wrinkling occurs only by application of
b0. In this case, the application of the transverse force fc > 0 delays the development of magneto-mechanical
wrinkling. Finally, the combined bifurcation response for a wrinkling amplitude A = 0.6 mm is shown in
Fig. 7b in the space of pre-compression λ0 and applied critical magnetic field bc0. In this bifurcation phase
diagram, we observe the seamless transition from a mechanically wrinkled state (fc = 0) to an only magneto-
mechanically wrinkled state for fc = 0.15, 0.25, 0.3mN. Increase of the transverse force fc leads to increase
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Figure 7: (a) Qualitative comparison of experimental (left column) and numerical (right columns) profiles. The effect of
friction as measured by the transverse force f2 = fc (λ0 − 1) on the lateral faces of the film-substrate block is shown for
the numerical calculations. Increase of f2 delays and even eliminates initial mechanical wrinkling. (b) Effect of friction on
the numerical critical magnetic field, bc0, and applied pre-compression λ0 map. Numerical bifurcation amplitude response for
different transverse force coefficients fc for (c) λ0 = 0.75 and (b) λ0 = 0.8 as a function of the applied magnetic field b0. The
dashed line indicates the threshold used to reconstruct the map in part (b).

of the critical magnetic field bc0. On the other hand, increase of the applied pre-compression λ0 (at least) up
to values of 0.7 does not alter the critical magnetic field bc0 for a given fc > 0 as revealed by the asymptotic
response of bc0 in that regime. In the subsequent comparisons with the experimental results, fc serves as a
fitting parameter and the value of fc = 0.25mN is found to deliver the best results.

It is important, however, to remark that the application of nodal forces leads to results that depend each
time on the mesh, especially when the mesh is non-uniform. Specifically, by increasing the density of the
mesh (see Fig. 5) closer to the film, we effectively induce a higher friction in that region for the same applied
force f2. This allows, in turn, for a fairly faithful representation of the curvature of the specimen at the
lateral edges as shown in Figs. 7a. An alternative option, which would lead to mesh insensitive results, would
be the application of a distributed load and thus an applied traction on the lateral surfaces. By carrying
out such a study, we have observed a less faithful representation of the curvature near the film-substrate
lateral edges but not a significant effect on the obtained critical wrinkling magnetic fields. In any case, the
presented results use the given mesh shown in Fig. 5 and the nodal transverse force friction law (3.28).

We close this section by showing in Fig. 8 numerical contours of an MRE film on a passive substrate for
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Figure 8: Numerical contours of the Green-Lagrange strains, E11, E12, E22, the magnetization components m1, m2 and the
magnetic field b1, b2, obtained at b0 = 0.5T and friction force coefficient fc = 0.25mN for various pre-compressions λ0.

various pre-compressions λ0 = 0.75, 0.8, 0.85, 0.9, b0 = 0.5T and fc = 0.25mN. The contours depict different
fields such as the Green-Lagrange strains, E11, E22 and E12, the magnetization components m1 and m2 and
the current magnetic field components, b1 and b2. An important observation in the context of these results is
that the numerical predictions of the pattern wavenumber is in very good agreement with the corresponding
experimental ones for λ0 = 0.75, 0.8, i.e., they predict four wrinkles. In turn, for λ0 = 0.85, 0.9 the numerical
simulations predict five undulations, which are closer in number to the theoretical results of Cao et al. (2014).
This difference can be partially attributed to the fact that as pre-compression becomes smaller (i.e. λ0 → 1)
two-dimensional surface patterns start occuring in the experiments (see inset in Fig. 1d). In this case, the
two-dimensional plane-strain calculations carried out here, gradually lose their direct validity by comparison
to the experiments. A second additional explanation can be given by performing a theoretical bifurcation
analysis of an infinite film-substrate-air system such as the one described in Danas and Triantafyllidis
(2014). In such an analysis, one can show that for the parameters used in the present calculations the
critical wavenumber leads to patterns in between four and six wrinkles. In the present Dirichlet BVP the
wavenumber of five wrinkles is picked by the FE calculation for λ0 ≥ 0.85 and that of four wrinkles for
λ0 ≤ 0.8.

4. Numerical simulations versus experiments

In this section, we compare qualitatively and quantitatively the numerical and experimental results.
Specifically, we first compare the effect of pre-compression λ0 on the critical magnetic field bc0 required for
bifurcation at the early stages wrinkling. Subsequently, we analyze the shear angle and curvature localization
of the central wrinkle into a crinkle and probe the corresponding experimental response. We then use the
full-field simulations to provide a physics-based explanation on the formation of the crinkle pattern and
show in more details the underlying mechanical and magnetic fields involved in this process.

4.1. Wrinkling amplitude

In this section, for completeness in the presentation of the results and the analysis, we recall and extend
the main results obtained in Psarra et al. (2017). In that study, we have identified the material parameters
of our film-substrate by use of different experiments. Specifically, the MRE film comprises iron particles
at a 20vol%. Its magnetic permeability µf is measured with a Bartington MS2G sensor and is used to
obtain the relative film susceptibility χf = 0.4, reported in Table 1, from the relation χf = (µf − µ0) /µf ,
with µ0 = 4π10−7 NA−2 the magnetic permeability of vacuum. In turn, the saturation magnetization
of the MRE material is independent of the mechanical properties and the microstructure and is obtained
by the simple rule of mixtures (Danas, 2017). By using earlier experimental results in similar materials
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(Danas et al., 2012), we use for the carbonyl iron a saturation magnetization µ0m
s
iron = 2.5T, which gives

µ0m
s
f = 0.5T for the MRE film (see Table 1) if mixed at c = 20% with a non-magnetic polymeric matrix.

The shear modulus of the substrate Gs is obtained by an independent tensile experiment and is reported
also in Table 1.

Table 1: Material parameters used in the present calculations.

G G′ χ µ0m
s

(kPa) (kPa) (-) (T)
MRE film 10 1000 0.4 0.5

Passive substrate 3 300 0.0 0.0

In order to obtain the shear modulus of the MRE film as well as the frictional transverse force coefficient
fc, we use two of the bifurcation amplitude curves obtained experimentally at pre-compression λ0 = 0.75
and 0.85 (see Fig. 9a). The transverse force coefficient is found to be fc = 0.25mN and Gf = 10kPa as
reported in Table 1. Given that both the MRE film and the substrate are fairly incompressible, we have
considered Lamé constants associated with the compressibility that are ∼ 100 times larger than the shear
moduli of each phase (see Table 1). Given that the substrate has a modulus of Gs = 3kPa, a mechanical
substrate-to-film stiffness ratio Gs/Gf = 0.3 is obtained. In turn, the magnetic contrast between the film
and the substrate is infinite in the present case. Note, however, that due to the nonlinear dependence of
the energy density on the magnetic saturation ms (see equation (3.25)), the bifurcation response cannot be
related simply to mechanical and magneto-mechanical ratios in the present context.

The material parameters reported in Table 1 are shown in Fig. 9b to be sufficient to probe the rest of the
experimental curves accurately enough for a large range of applied magnetic fields and pre-compressions. In
Fig. 9c, we show the excellent quantitative agreement between the FE simulations and the experiments for
the critical bifurcation loads in the case of a transverse force coefficient fc = 0.25mN. For comparison, we
show also the curve corresponding to fc = 0, which as expected reaches the b0 = 0 axis at a pre-compression
of λ0 ∼ 0.76. In this last frictionless case, a pre-compression beyond λ < 0.76 leads to mechanical wrinkling
as discussed already in the context of Fig 7. This last observation reveals clearly the importance of including
the frictional effects induced by the lateral walls of the pre-compression device.

4.2. Numerical curvature localization and crinkling mechanisms

The comparisons of the previous section provide sufficient confidence to use the numerical simulations
as a means to understand the physical mechanisms that allow the smooth wrinkle patterns to evolve to
crinkles, i.e., patterns with pronounced curvature localization.

We specialize the discussion next to the case of large pre-compressions, λ0 = 0.75 and fc = 0.25mN.
Specifically, Fig. 10a shows numerical snapshots at different applied magnetic fields b0 = 0, 0.2, 0.3, 0.5. It is
evident from these plots that an initial wrinkled pattern for b0 = 0.3 evolves gradually to sharper undulations
for b0 = 0.5. We focus on the middle crinkle and perform a quantitative study of the top film profile by
analyzing the normal displacement u2 shown in Fig. 10b at different applied fields b0. From the u2 profile, one
can compute the shearing of the side facet of the crinkle via the shear angle, θ = tan−1(∂u2/∂x1), as well as
the normalized curvature kh (with h = hf denoting the thickness of the film). In very close agreement with
the corresponding experimental measurements in Figs. 3c,d, we obtain numerically an increasing shearing
of the side facets of the crinkle with increasing b0, which in turn leads to curvature localization in the mid
point of the crinkle (see Fig. 10d). The values for θ and kh are in very good quantitative agreement with the
experiments even though we make no attempt to compare them directly since it is evident that the numerical
patterns overall are not identical with the corresponding experimental ones; for instance, for λ0 = 0.75, we
do not obtain a clear period-doubling, even though a weak asymmetry of the amplitude of the numerical
wrinkles and crinkles is observed. A possible reason for those differences is the unfaithful modeling of the
BVP itself since in the experiments the magnetic poles are set in a finite distance from the specimen, which
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and friction force f2. (b) Comparison between numerical predictions and experiments. (c) Two-field map, λ0-bc0, showing the
numerical predictions with (f2 = 0.25mN) and without (f2 = 0mN) lateral friction forces.

even decreases with the development of the instability. In turn, the numerical BVP considers a large air
domain and application of b0 field far from it. Such effects will be analyzed in a future study. Even so in
the present analysis, we capture qualitatively and fairly quantitatively the main features of the curvature
lozalization.

This result allows us to use the numerical simulations to visualize the underlying local magnetic field
distributions, which are not accessible in our experiments that mainly show the mechanical film profile and
its spatial derivatives. Specifically, Fig. 11a-c shows the magnetic vector field at the top of the MRE film
in consecutive zooms. In Fig. 11c, we observe that the opposite film facets are magnetized in the same
directions creating effectively a large “magnetic” dipole response (depicted by the N-S vectors). These
neighboring dipoles interact via the surrounding air and repel each other since they have the same direction
of magnetization. This repulsion is, however, constrained by the neighboring magnetized crinkles as well as
the film and substrate elasticity. This, in turn, leads to the strong shearing and elevation of the facets in
the direction of the applied field.

This observation is quantified further in Figs. 11d-f and Figs. 11g-i, where we show the magnetic com-
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Figure 10: Numerical results. (a) Morphological patterns for increasing magnetic field b0 at λ0 = 0.75. (b) Evolution
of the displacement u2 at the top surface of the MRE film at various applied magnetic fields b0 as a function of the
current coordinate x1. (c) Evolution of the shear angle θ = tan−1(∂u2/∂x1) measuring the shearing of the faces of
the central wrinkle-crinkle as a function of the current coordinate x1. (d) Normalized curvature kh (h = hf the film
thickness) of the central wrinkle-crinkle as a function of the current coordinate x1.

ponents m1 and m2 (and their in-plane derivatives with respect to x1), respectively. In Fig. 11d, we
observe that the perpendicular to the applied magnetic field b0 component m1 changes sign as one goes
from x1 = −1.5 to x1 = 1.5 (where x1 = 0 is set at the origin of the mid crinkle). The change of sign
happens in a very localized region leading to magnetization localization as shown in Fig. 11f, similar to the
curvature localization. In fact, we observe the creation of a rather sharp interface (−0.4 ≤ x1 ≤ 0.4) in the
perpendicular magnetic component m1, which is otherwise fairly constant outside this regime. On the other
hand, the normal component of the magnetization m2 exhibits a reduction in that same interface region.
Note that m2 is substantially larger than m1. As a result of this, the obtained interface allows to reduce the
magnetic energy of the material (also known as demagnetization energy). The formation of this magnetic
interface is, on the other hand, penalized by the elasticity of the film and the substrate, which does not
allow for large curvature to be formed in that region. As a result, we can clearly identify the competing
mechanisms that lead to the creation of crinkles, i.e., the observation that the reduction of the magnetic
energy leads to the simultaneous increase of the mechanical energy via the curvature localization. As a
consequence, the relative importance of those two energies might or might not allow for such patterns to
form depending on the geometry, constitutive response and boundary conditions. We should emphasize at
this point that the same type of crinkles also appear in the numerical calculations without friction (see for
instance the deformed shape for fc = 0 in Fig. 7a). Nevertheless, the critical magnetic field at which they
start developing depends naturally on the friction of the lateral faces.

In Fig. 12, we show that this crinkling formation is a universal feature in the sense that it is present for all
applied pre-compressions. We demonstrate in this figure that both the shear angle and curvature localization
are in good qualitative and even fair quantitative agreement with the corresponding experimental measures.
Again, similar to the corresponding experimental data in Fig. 4b, we observe in Fig. 12b that the curvature
localization curves increase from a zero value at magnetic fields that are higher than those obtained for the
corresponding wrinkling bifurcation in Figs. 9a,b. This directly suggests that this departure point from zero
in Fig. 12b may be used as a potential criterion to identify the onset of the secondary crinkle bifurcation.
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Figure 11: (a-c) Numerical profiles and magnetization vector field of top surface of the MRE film. (c) The two opposite
faces of the crinkled film repel each other due to their equal and coaxial overall magnetized response. (d-i) Analysis
of the central crinkle. (d-f) Magnetization component m1 and its first and second derivatives with respect to the
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Special note is needed for the case of small pre-compressions (λ0 ≥ 0.9), where the two-dimensional
surface patterns found in the experiments (see inset of Fig. 1d) are not captured exactly by the present
plane-strain FE simulations as discussed in the context of Fig. 8. Such work is underway and will be
presented elsewhere.

5. Concluding Remarks

The present study investigates experimentally and numerically the stability and post-bifurcation of a
magnetorheological elastomer (MRE) film bonded on a passive elastomer substrate. The film-substrate
system is subjected to a combination of uniaxial mechanical pre-compression loads and transverse to the
film magnetic fields. The purpose of this work is to analyze qualitatively and quantitatively the pattern
formation and its evolution at large magnetic fields and pre-compressions.

The main observation of this study is the evolution of smooth wrinkle patterns (i.e., sinusoidal type
surface formations) to crinkles which exhibit significant curvature and magnetization localization. The
experimentally and numerically observed curvature localization is a direct consequence of the magnetic
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repulsion occurring at opposite facets of the crinkles coupled together with the necessity to minimize the
demagnetization energy of the film. These magnetic effects are found to be in competition with the purely
mechanical response of the film and the substrate, which in turn try to minimize the elastic energy and
more particularly the curvature at the minimum and maximum points of the crinkled geometry.

Furthermore, the crinkled geometry may also be directly attributed to the very strong shearing in the
opposite facets which in the present case is induced by the applied magnetic field. Nonetheless, such strong
shearing has also been observed in the recent studies of graphene by Kothari et al. (2018) as well as in
anisotropic hierarchical beams by Tarantino and Danas (2019). This, in turn, implies that such curvature
localization can even occur in purely mechanical systems provided that they allow for significant shearing
(such as anisotropic ones).

A second observation of the present study is the effect of the lateral friction to the observed pattern
formation. As already discussed partially in Psarra et al. (2017), we find that increase of friction on
the lateral surfaces is able to switch off the purely mechanical wrinkling instability but not the magneto-
mechanical one. In that regime, we observe that the mechanical and magnetic modes do not interact strongly
as a result of the switching off of the mechanical wrinkling. This leads to an asymptotic response of the
critical magnetic field at large pre-compressions. In other words, the critical magnetic field required for
magneto-mechanical wrinkling reduces with increasing pre-compression up to λ0 = 0.8. But upon further
pre-compression, the mechanical and magnetic load effects “decouple” as a result of the increasing effect of
friction leading to no further decrease of the critical magnetic field.

In this view, the present analysis reveals the strong boundary effects that one can have in such a system.
In practical terms, this can be partially resolved by reducing the thickness of the film, which leads to the
increase of the number of wrinkles along the length of the specimen and hence reduces the effect of lateral
friction upon the pattern formation. This, in turn, could lead to even lower critical magnetic fields upon
increase of applied pre-compression in agreement with the frictionless numerical results shown in the present
study and the theoretical analysis of Danas and Triantafyllidis (2014). Such an effort is underway and will
be presented in a future study. In addition, one can think of disposing of the pre-compression device by
pre-stretching the underlying substrate and then depositing the film. Such an approach, however, would
at one hand necessitate to introduce an anisotropic response of the substrate (Cai and Fu, 2019), while at
the same time would negate the advantage of using a single active device to create different patterns by
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adjusting in real time both the magnetic field and the pre-compression.
In addition, it is important to mention that in the present study, we have used two main simplifications.

The first is related to the simple magneto-mechanical energy function proposed to describe the response of
the MRE film. While this energy function is sufficiently rich to recover the wrinkling and crinkling modes,
quantitatively, it becomes less accurate when strong magnetostrictive strains are developed in the crinkled
faces. For a better accuracy, one needs to resort to more elaborate magneto-mechanical models such as the
one proposed recently by Lefèvre et al. (2017). This model would also allow for a seamless wide parametric
study of the effect of particle volume fraction and material stiffness upon the critical magnetic fields and
patterns. The second simplification of the present study is the use of a large air domain and an applied
magnetic field far from the specimen. Such a geometry assumes a homogeneously applied background
Eulerian magnetic field that remains unperturbed far from the specimen. The actual experiment instead
involves the presence of two magnetic poles at finite distance from the MRE film, which deep in the post-
bifurcation regime tend also to attract the film surface. Both of these simplifications can be substantially
improved and such work is underway.

The idea of combining mechanical and magnetic or electric loads to obtain a variety of patterns can be
applied in a number of other materials such as electro-active polymers (Wang et al., 2014b), liquid crystal
elastomers (Wang et al., 2014a; Danas et al., 2019) and the recently proposed h-MREs (Kim et al., 2018).
On the other hand, one can also use different geometries such as the ones discussed in Bertoldi et al. (2010),
Tipton et al. (2012) and Danas (2017), where the rotation of ellipsoidal meso-structures can lead to negative
and positive swelling as well as structures with an apparent in-plane negative Poisson ratio response. In
addition, as already shown in the present study, the proposed MRE film-substrate systems can exhibit more
complex two-dimensional patterns when biaxial or no pre-compression is applied. Such a study along the
lines of its purely mechanical counterpart (Audoly and Boudaoud, 2008) are underway.
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