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Abstract

Model-Free Control (MFC), which is easy to implement both from
a software and hardware viewpoints, permits the introduction of a high
level control synthesis for the Internet of Things (IoT). The choice of
the User Diagram Protocol (UDP) as the Internet Protocol permits
to neglect the latency. In spite of a most severe packet loss, convinc-
ing computer experiments show that MFC exhibits a good Quality of
Service (QoS) and behaves better than a classic PI regulator.

Index Terms – Model-free control, intelligent controllers, internet of
things, industry 4.0, cyber-physical systems, cloud computing, latency,
packet loss, internet protocol, UDP.



1 Introduction

The following citation from [19]: “Control in the IoT imposes control-theoretic
challenges that we are unlikely to encounter in our usual application do-
mains,” explains why advanced automatic control (see, e.g., [2, 16]) has not
yet reached any significant rôle in the Internet of Things (IoT ), industry
4.0 and cyber-physical systems, which are intimately related (see, e.g., [10]
for an excellent overview). This is mainly due to the packet loss and the
latency which are unavoidable in any transmission via Internet. It is obvious
that those phenomena might significantly degrade the performances of any
control law.

This paper advocates Model-Free Control, or MFC, and the correspond-
ing “intelligent” controllers [6]. This setting, which is easy to implement
both from software [6] and hardware [12] viewpoints, will hopefully lead in
some near future to Model-Free Control as a Service, or MFCaaS. It has been
already most successfully applied in many concrete situations (see the refer-
ences in [6] and [3] for a rather full listing until the beginning of 2018). Some
have been patented. The contributions of MFC to the dynamic adaptation of
computing resource allocations under time-varying workload in cloud com-
puting [4] and to the air-conditioning of data centers [7] should be emphasized
here.

The choice of an appropriate Internet Protocol (IP) stack is of utmost
importance in this networking context (see, e.g., [15]). There are two main
protocols of transport layer, the Transmission Control Procol (TCP) and the
User Datagram Procol (UDP) (see, e.g., [14]). TCP is more reliable but may
exhibit often fatal latency and jitter. This is why we select here UDP, which
is faster: it permits to neglect the delay. Only packet loss, which might be
quite severe, is taken into account (compare, e.g.. Note the following key
point: packets that arrive late are discarded.

Our paper is organized as follows. Basic facts about MFC are summarized
in Section 2. Section 3 is devoted to several computer experiments. After
the introduction of two types of packet loss in Section 3.1, a single tank is
analyzed in Section 3.2: the computer simulations for MFC indicate in spite
of serious packet losses a fine Quality of Service (QoS ), which is much better
than with a classic PI. The example of Section 3.3 demonstrates once again
that calibrations are rather useless in the MFC setting. See Section 4 for
some concluding remarks.



2 Model-free control and intelligent controllers1

2.1 The ultra-local model and intelligent controllers

For the sake of notational simplicity, let us restrict ourselves to single-input
single-output (SISO) systems. The unknown global description of the plant
is replaced by the following first-order ultra-local model :

ẏ = F + αu (1)

where

1. the control and output variables are respectively u and y,

2. α ∈ R is chosen by the practitioner such that the three terms in Equa-
tion (1), are of the same magnitude.

The following comments are useful:

• F is data driven: it is given by the past values of u and y.

• F includes not only the unknown structure of the system but also any
disturbance.

Close the loop with the intelligent proportional controller, or iP,

u = −Fest − ẏ∗ +KP e

α
(2)

where

• y∗ is the reference trajectory,

• e = y − y? is the tracking error,

• Fest is an estimated value of F ,

• KP ∈ R is a gain.

Equations (1) and (2) yield

ė+KP e = F − Fest (3)

If the estimation Fest is “good”: F − Fest is “small”, i.e., F − Fest ' 0,
then limt→+∞ e(t) ' 0 if KP > 0. It implies that the tuning of KP is quite
straightforward. This is a major benefit when compared to the tuning of
“classic” PIDs (see, e.g., [1, 17], and the references therein).

Remark 2.1 See [6, 13] for other types of ultra-local models, where the
derivation order of y in Equation (1) should be greater than 1, and for the
corresponding intelligent controllers.

1See [6] for more details.



2.2 Estimation of F

Mathematical analysis (see, e.g., [5]) tells us that under a very weak inte-
grability assumption, any function, for instance F in Equation (1), is “well”
approximated by a piecewise constant function. The estimation techniques
below are borrowed from [8, 9, 21].

2.2.1 First approach

Rewrite then Equation (1) in the operational domain (see, e.g., [22]):

sY =
Φ

s
+ αU + y(0) (4)

where Φ is a constant. We get rid of the initial condition y(0) by multiplying
both sides on the left by d

ds
:

Y + s
dY

ds
= −Φ

s2
+ α

dU

ds
(5)

Noise attenuation is achieved by multiplying both sides on the left by s−2. It
yields in the time domain the real-time estimate, thanks to the equivalence
between d

ds
and the multiplication by −t,

Fest(t) = − 6

τ 3

∫ t

t−τ
[(τ − 2σ)y(σ) + ασ(τ − σ)u(σ)] dσ

where τ > 0 might be quite small. This integral, which is a low pass filter,
may of course be replaced in practice by a classic digital filter.

2.2.2 Second approach

Close the loop with the iP (2). It yields:

Fest(t) =
1

τ

[∫ t

t−τ
(ẏ? − αu−KP e) dσ

]

3 Computer experiments

3.1 Generalities

We use an intelligent proportional controller, i.e., Formula (2), where F and
u are obtained thanks to a computer server which is connected to the plant
via UDP. Two types of packet loss are considered (see Figure 1):



• Fault 1 – Some measurements of the sensor y do not reach the server.
The estimation of F and u is frozen.

• Fault 2 – The calculations of the server do not reach the plant. The
control variable u is thus frozen, but not the estimation of F .

Figure 1: Schematic diagram

3.2 A single tank

3.2.1 Model-free control

The following mathematical model is only useful for computer simulations2:

ẏ =

(
u− 0.2K

√
y
)

5
0 < y < 60, 0 < u < 70 (6)

The outlet valve opening K, 0 < K < 100, should be viewed as an unknown
perturbation. The output is corrupted by an additive band-limited white
noise of power 0.025 (see, e.g., [20]). The sampling time is 100ms. The
simulations duration is equal to 200s. The reference trajectory y∗, which is
piecewise constant, explores all the possibilities: y∗(t) = 0 if 0 ≤ t < 10s,
y∗(t) = 15 if 10 ≤ t < 80s, y∗(1) = 40 if 80 ≤ t < 100s, y∗(t) = 55 if
100 ≤ t < 130s, y∗(10) = 10 if 130 ≤ t < 180s, y∗(10) = 0 if 180 ≤ t < 200s.

2See the real-time Matlab example:
https://fr.mathworks.com/help/sldrt/ug/water-tank-model-with-dashboard.html?s tid=srchtitle



Set for K: K = 10 if 0 ≤ t < 30, K = 50 if 30 ≤ t < 120, K = 20 if
120 ≤ t < 200. Set in Formula (2) α = 0.1, KP = 0.5. In order to assess the
effects of the packet loss 5 scenarios are considered:

• Scenario 1 – Tracking of the reference trajectory and no packet loss.

• Scenario 2 – Fault 1 (resp. 2) occurs if 140 ≤ 1 < 150 (resp. 50 ≤
t < 60).

• Scenarios 3, 4 & 5 – There is 30% (resp. 50%, 70%) of packet loss.
Both types are evenly distributed

Figures 2-4 display strong performances in spite of a big packet loss and
significant variations of the parameter K. The poor tracking of the setpoint
when 100 < t < 120 is due to the saturation of control variable u and not to
the packet loss.

3.2.2 A comparison with a PI controller

Consider a classic PI controller (see, e.g., [1, 17]) where e is the tracking
error, Kp, Ki ∈ R are the gains:

u = Kpe+Ki

∫
e (7)

Set for the tank K = 30 and for Formula (7) Kp = 29.69, Ki = 2.29.3 The
results in Figure 2-(c) are rather good without any packet loss, although u
(see Figure 2-(d)) is quite sensitive to the corrupting noise. When the packet
loss become important Figure 6 shows a poor tracking. The malfunction
depicted in Figure 5 is due to the usual anti-windup, which is related to the
integral term in Equation (7) (see, e.g., [1, 17]).

Remark 3.1 In another situation, where a delay cannot be neglected, it has
been shown [11] that our iP behaves better than a classic PI.

3.3 A transfer function

The next example is intended to show that a new calibration is not necessary
in model-free control.4 Introduce, for a simulation purpose, the transfer

3Those numerical values are obtained via the Bröıda method which is very popular in
France (see, e.g., [18]). See [1, 17] and [16, 18] for other approaches.

4This fact has already been stressed in the control literature [6].



function of a monovariable time-invariant linear system with input u and
output y, where p > 0 is an unstable pole,

s+ 1

(s+ 0.1)(s− p)
(8)

The sampling time is 100ms. The simulations duration is equal to 100s.
Set in Formula (2) α = 1, Kp = 1. The reference trajectory y∗ is piecewise
constant: y∗(t) = 0 if 0 ≤ t < 10, y∗(t) = 15, if 10 ≤ t < 40, y∗(t) = 40, if
40 ≤ t < 60, y∗(t) = 10, if 60 ≤ t < 100. Four scenarios are investigated:

• Scenarios 6 & 7 – p = 0.05 and p = 0.5.

• Scenarios 8 & 9 – p = 0.05 and p = 0.5, the sensor measurement
is corrupted by an unknown additive disturbance (see Figures 8-(c) &
8-(f))

Excellent results are exhibited in Figures 7 – 8 in spite of a large variation of
the unstable pole p. Note also that the disturbance rejection is impeccable.

4 Conclusion

First encouraging results have just been obtained via a concrete demonstra-
tor. If they are confirmed, they

• will be reported in a near future,

• show that MFC is indeed a good candidate for becoming an efficient
service in the IoT.
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Figure 2: Scénario 1: MFC & PI
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Figure 3: Scenario 2: MFC



0 20 40 60 80 100 120 140 160 180 200

Time in (s)

0

10

20

30

40

50

60

(a) Output variable and

reference trajectory

0 20 40 60 80 100 120 140 160 180 200

Time in (s)

0

10

20

30

40

50

60

70

(b) Control variable

50 52 54 56 58 60 62 64 66 68 70

Time in (s)

0

0.5

1

1.5

2

(c) Zoom on the faults

0 20 40 60 80 100 120 140 160 180 200

Time in (s)

0

10

20

30

40

50

60

(d) Output variable and

reference trajectory

0 20 40 60 80 100 120 140 160 180 200

Time in (s)

0

10

20

30

40

50

60

70

(e) Control variable

50 52 54 56 58 60 62 64 66 68 70

Time in (s)

0

0.5

1

1.5

2
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Figure 4: Scenarios 3, 4 & 5: MFC
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Figure 5: Scenario 2: PI
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Figure 6: Scénario 5 : PI
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Figure 7: Scenarios 6 & 7: MFC
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Figure 8: Scenario 8 & 9: MFC
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