M. Levin, Mechanisms of Development, vol.122, 2005.

J. M. Martín-durán, B. C. Vellutini, and A. Hejnol, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.371, p.20150411, 2016.

K. Taniguchi, R. Maeda, T. Ando, T. Okumura, N. Nakazawa et al., Science, vol.333, p.339, 2011.

T. Chen, J. J. Hsu, X. Zhao, C. Guo, M. N. Wong et al., Circulation Research, vol.110, p.551, 2012.

M. Inaki, T. Sasamura, and K. Matsuno, Frontiers in Cell and Developmental Biology, vol.6, p.34, 2018.

A. S. Chin, K. E. Worley, P. Ray, G. Kaur, J. Fan et al., Proceedings of the National Academy of Sciences, vol.115, p.12188, 2018.

S. Thutupalli, R. Seemann, and S. Herminghaus,

Z. Izri, M. N. Van-der-linden, S. Michelin, and O. Dauchot, Phys. Rev. Let, vol.113, p.248302, 2014.

Y. Nagasaka, S. Tanaka, T. Nehiraa, and T. Amimoto, Soft Matter, vol.13, p.6450, 2017.

D. Zwicker, R. Seyboldt, C. A. Weber, A. A. Hyman, and F. Jülicher, Nature Physics, vol.13, p.408413, 2017.

O. D. Lavrentovich, Liquid Crystals, vol.24, p.117, 1998.

A. D. Rey, J. Chem. Phys, vol.110, p.9769, 1999.

L. Tran, M. O. Lavrentovich, G. Durey, A. Darmon, M. F. Haase et al., Phys. Rev. X, vol.7, p.41029, 2017.

X. Wang, D. S. Miller, J. J. De-pablo, and N. L. Abbott, Adv. Funct. Mater, vol.24, p.6219, 2014.

S. Herminghaus, C. C. Maass, C. Krüger, S. Thutupalli, L. Goehring et al., Soft Matter, vol.10, p.7008, 2014.

C. C. Maass, C. Krüger, S. Herminghaus, and C. Bahr, Annu. Rev. Condens. Matter Phys, vol.7, p.1, 2016.

K. Peddireddy, P. Kumar, S. Thutupalli, S. Herminghaus, and C. Bahr, Langmuir, vol.28, p.12426, 2012.

T. Yamamoto and M. Sano, Soft Matter, vol.13, p.3328, 2017.

C. Krüger, G. Klös, C. Bahr, and C. C. Maass, Phys. Rev. Lett, vol.117, p.48003, 2016.

M. Suga, S. Suda, M. Ichikawa, and Y. Kimura, Phys. Rev. E, vol.97, p.62703, 2018.

P. G. Moerman, H. W. Moyses, E. B. Van-der-wee, D. G. Grie, A. Van-blaaderen et al., Phys. Rev. E, vol.96, p.32607, 2017.

M. Morozov and S. Michelin, J. Chem. Phys, vol.150, p.44110, 2019.

J. L. Anderson, Ann. Rev. Fluid Mech, vol.21, p.61, 1989.

F. Lin and C. Wang, Phil. Trans. R. Soc. A, vol.372, p.20130361, 2014.

G. Kitavtsev, A. Münch, and B. Wagner, Proc. R. Soc. A, vol.474, p.20170828, 2018.

, Note that the model could be straightforwardly generalized to include both Marangoni and phoretic effects as well as arbitrary viscosity ratios, vol.22

S. Michelin, E. Lauga, and D. Bartolo, Phys. Fluids, vol.25, p.61701, 2013.

S. Michelin and E. Lauga, Phys. Fluids, vol.23, p.10191, 2011.

H. A. Stone and A. D. Samuel, Phys. Rev. Lett, vol.77, p.4102, 1996.

O. S. Pak and E. Lauga, J. Eng. Math, vol.88, p.1, 2014.

M. Morozov and S. Michelin, J. Fluid Mech, vol.860, p.711, 2019.

H. Lamb, Hydrodynamics, 1945.

J. Happel and H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media (Mechanics of Fluids and Transport Processes, 1983.

L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, Cambridge Series in Chemical Engineering, 2007.

S. Michelin and E. Lauga, J. Fluid Mech, vol.715, p.1, 2013.

S. Michelin and E. Lauga, J. Fluid Mech, vol.747, p.572, 2014.