L. V. Ahlfors, Remarks on the Neumann-Poincaré integral equation, Pacific J. Math, vol.2, pp.271-280, 1952.

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal, vol.23, pp.1482-1518, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01111805

Y. Amirat and V. Shelukhin, Homogenization of time harmonic Maxwell equations and the frequency dispersion effect, J. Math. Pures Appl, vol.95, pp.420-443, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00655381

C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in threedimensional non-smooth domains, Math. Methods Appl. Sci, vol.21, pp.823-864, 1998.

H. T. Banks, V. A. Bokil, D. Cioranescu, N. L. Gibson, G. Griso et al., Homogenization of periodically varying coefficients in electromagnetic materials, J. Sci. Comput, vol.28, pp.191-221, 2006.

A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic analysis of periodic structures, 1978.

A. Bonnet-ben-dhia, L. Chesnel, and P. Ciarlet, T -coercivity for scalar interface problems between dielectrics and metamaterials, ESAIM Math. Model. Numer. Anal, vol.46, pp.1363-1387, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00564312

, T-coercivity for the Maxwell problem with sign-changing coefficients, Commun. Part. Diff. Eq, vol.39, pp.1007-1031, 2014.

A. Bonnet-ben-dhia, C. Carvalho, L. Chesnel, and P. Ciarlet, On the use of Perfectly Matched Layers at corners for scattering problems with sign-changing coefficients, J. Comput. Phys, vol.322, pp.224-247, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01225309

A. Bonnet-ben-dhia, C. Carvalho, and P. Ciarlet, Mesh requirements for the finite element approximation of problems with sign-changing coefficients, Numer. Math, vol.138, pp.801-838, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01335153

A. Bonnet-ben-dhia, L. Chesnel, and X. Claeys, Radiation condition for a nonsmooth interface between a dielectric and a metamaterial, Math. Models Meth. App. Sci, vol.23, pp.1629-1662, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00651008

A. Bonnet-ben-dhia, P. Ciarlet, and C. M. Zwölf, Time harmonic wave diffraction problems in materials with sign-shifting coefficients, J. Comput. Appl. Math, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00975073

E. Bonnetier, C. Dapogny, and F. Triki, Erratum to the article: Homogenization of the eigenvalues of the Neumann-Poincaré operator, 2019.

E. Bonnetier, C. Dapogny, and F. Triki, Homogenization of the eigenvalues of the Neumann-Poincaré operator, Arch. Rational Mech. Anal, vol.234, pp.777-855, 2019.

E. Bonnetier and F. Triki, Pointwise bounds on the gradient and the spectrum of the Neumann-Poincaré operator: the case of 2 discs, Contemp. Math, vol.577, pp.81-92, 2012.

, On the spectrum of the Poincaré variational problem for two close-to-touching inclusions in 2D, Arch. Rational Mech. Anal, pp.1-27, 2013.

G. Bouchitté, C. Bourel, and D. Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Math. Acad. Sci, vol.347, pp.571-576, 2009.

R. Bunoiu and K. Ramdani, Homogenization of materials with sign changing coefficients, Commun. Math. Sci, vol.14, pp.1137-1154, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01162225

K. Cherednichenko and S. Guenneau, Bloch-wave homogenization for spectral asymptotic analysis of the periodic maxwell operator, Journal Waves Random Complex Media, vol.17, pp.627-651, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00186688

L. Chesnel and P. Ciarlet, T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients, Numer. Math, vol.124, pp.1-29, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00688862

, T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients, Numer. Math, vol.124, pp.1-29, 2013.

P. Ciarlet, S. Fliss, and C. Stohrer, On the approximation of electromagnetic fields by edge finite elements. Part 2: a heterogeneous multiscale method for Maxwell's equations, Comput. Math. Appl, vol.73, pp.1900-1919, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02276430

D. Cioranescu and P. Donato, An introduction to homogenization, vol.17, 1999.

T. J. Cui, D. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, 2009.

C. Engström and D. Sjöberg, On two numerical methods for homogenization of Maxwell's equations, J. Electromagnet. Wave, vol.21, pp.1845-1856, 2007.

D. Grieser, The plasmonic eigenvalue problem, Rev. Math. Phys, vol.26, p.26, 2014.

D. Grieser and F. Rüting, Surface plasmon resonances of an arbitrarily shaped nanoparticle: high-frequency asymptotics via pseudo-differential operators, J. Phys. A: Math. Theo, vol.42, p.135204, 2009.

D. Grieser, H. Uecker, S. Biehs, O. Huth, F. Rüting et al., Perturbation theory for plasmonic eigenvalues, Phys. Rev. B, vol.80, p.245405, 2009.

P. Henning, M. Ohlberger, and B. Verfürth, A new heterogeneous multiscale method for time-harmonic Maxwell's equations, SIAM J. Numer. Anal, vol.54, pp.3493-3522, 2016.

D. Khavinson, M. Putinar, and H. Shapiro, Poincaré's variational problem in potential theory, Arch. Ration. Mech. Anal, vol.185, pp.143-184, 2007.

P. Monk, Finite Element Methods for Maxwell's, 2003.

J. Nédélec, Acoustic and electromagnetic equations, Applied Mathematical Sciences, vol.144, 2001.

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal, vol.20, pp.608-623, 1989.

H. Nguyen and S. Sil, Limiting absorption principle and well-posedness for the timeharmonic Maxwell equations with anisotropic sign-changing coefficients, 2019.

S. Nicaise and J. Venel, A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients, J. Comput. Appl. Math, vol.235, pp.4272-4282, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00517989

K. Perfekt and M. Putinar, Spectral bounds for the Neumann-Poincaré operator on planar domains with corners, J. Anal. Math, vol.124, pp.39-57, 2014.

H. Poincaré, La méthode de Neumann et le problème de Dirichlet, Acta Math, vol.20, pp.59-142, 1897.

M. Schiffer, The Fredholm eigenvalues of plane domains, Pacific J. Math, vol.7, pp.1187-1225, 1957.

G. Schober, Estimates for Fredholm eigenvalues based on quasiconformal mapping, in Numerische, insbesondere approximationstheoretische Behandlung von Funktionalgleichungen (Tagung, Lecture Notes in Math, vol.333, pp.211-217, 1972.

D. Sjöberg, C. Engström, G. Kristensson, D. J. Wall, and N. Wellander, A Floquet-Bloch decomposition of Maxwell's equations applied to homogenization, Multiscale Model. Simul, vol.4, pp.149-171, 2005.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, Metamaterials and negative refractive index, pp.788-792, 2004.

T. Suslina, Homogenization of a stationary periodic Maxwell system in a bounded domain in the case of constant magnetic permeability, St. Petersburg Math. J, vol.30, pp.515-544, 2019.

, Homogenization of the stationary Maxwell system with periodic coefficients in a bounded domain, Arch. Ration. Mech. Anal, vol.234, pp.453-507, 2019.

V. Chu and V. H. Hoang, Homogenization error for two scale Maxwell equations, 2015.

C. Weber, A local compactness theorem for Maxwell's equations, Math. Meth. Appl. Sci, vol.2, pp.12-25, 1980.

H. Weinberger, Variational methods for eigenvalue approximation, vol.15, 1974.

N. Wellander, Homogenization of the Maxwell equations. Case I. Linear theory, Appl. Math, vol.46, pp.29-51, 2001.

, The two-scale Fourier transform approach to homogenization; periodic homogenization in Fourier space, Asymptot. Anal, vol.62, pp.1-40, 2009.

N. Wellander and G. Kristensson, Homogenization of the Maxwell equations at fixed frequency, SIAM J. Appl. Math, vol.64, pp.170-195, 2003.