Mueller matrix polarimetry of bianisotropic materials [Invited] - École polytechnique Access content directly
Journal Articles Journal of the Optical Society of America B Year : 2019

Mueller matrix polarimetry of bianisotropic materials [Invited]


Mueller matrix polarimetry is a powerful optical technique for characterization of both anisotropic and bianiso-tropic materials. This review emphasizes methods for the interpretation of measured Mueller matrices, from the meanings of matrix symmetries, to ab initio calculations of Mueller matrices that begin with Maxwell's equations operating on materials with permittivity, permeability, and magnetoelectric constitutive tensors. We present an overview of polarimetry measurements in crystals as well as metamaterials that have optically responsive features on the order of the wavelength of visible light. Examples of the full measurement of the constitutive tensors of bianisotropic media from the analysis of their Mueller matrices, collected in either transmission or reflection, are illustrated for natural crystals, polycrystals, and nanofabricated metamaterials. Experimental and theoretical research into the complex optical responses of bianisotropic materials with polarized light is best expressed in terms of the Mueller matrix, as it offers an unambiguous and mathematically robust platform for analysis of light-matter interactions.
Fichier principal
Vignette du fichier
361433.pdf (4.25 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02437038 , version 1 (16-01-2020)



Oriol Arteaga, Bart Kahr. Mueller matrix polarimetry of bianisotropic materials [Invited]. Journal of the Optical Society of America B, 2019, ⟨10.1364/JOSAB.36.000F72⟩. ⟨hal-02437038⟩
59 View
845 Download



Gmail Facebook Twitter LinkedIn More