S. Ramaswamy, The mechanics and statistics of active matter, Annu. Rev. Condens. Matter Phys, vol.1, p.323, 2010.

M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost et al., Hydrodynamics of soft active matter, Rev. Mod. Phys, vol.85, p.1143, 2013.

D. Saintillan and M. J. Shelley, Emergence of coherent structures and large-scale flows in motile suspensions, J. R. Soc. Interface, vol.9, p.571, 2012.

A. Zöttl and H. Stark, Emergent behavior in active colloids, J. Phys.: Condens. Matter, vol.28, p.253001, 2016.

J. Elgeti, R. G. Winkler, and G. Gompper, Physics of microswimmers-Single particle motion and collective behavior: A review, Rep. Prog. Phys, vol.78, p.56601, 2015.

I. S. Aranson and L. S. Tsimring, Patterns and collective behavior in granular media: Theoretical concepts, Rev. Mod. Phys, vol.78, p.641, 2006.

J. Deseigne, O. Dauchot, and H. Chaté, Collective Motion of Vibrated Polar Disks, Phys. Rev. Lett, vol.105, p.98001, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01422397

M. E. Cates and J. Tailleur, Motility-induced phase separation, Annu. Rev. Condens. Matter Phys, vol.6, p.219, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02393511

É. Fodor and M. C. Marchetti, The statistical physics of active matter: From self-catalytic colloids to living cells, Physica A, vol.504, p.106, 2018.

S. Zhou, A. Sokolov, O. D. Lavrentovich, and I. S. Aranson, Living liquid crystals, Proc. Natl. Acad. Sci. USA, vol.111, p.1265, 2014.

A. P. Petroff, X. Wu, and A. Libchaber, Fast-Moving Bacteria Self-Organize into Active Two-Dimensional Crystals of Rotating Cells, Phys. Rev. Lett, vol.114, p.158102, 2015.

F. Jülicher, K. Kruse, J. Prost, and J. Joanny, Active behavior of the cytoskeleton, Phys. Rep, vol.449, p.3, 2007.

T. Sanchez, D. T. Chen, S. J. Decamp, M. Heymann, and Z. Dogic, Spontaneous motion in hierarchically assembled active matter, Nature, vol.491, p.431, 2012.

S. P. Thampi, R. Golestanian, and J. M. Yeomans, Velocity Correlations in an Active Nematic, Phys. Rev. Lett, vol.111, p.118101, 2013.

P. G. De-gennes and J. Prost, The Physics of Liquid Crystals, 1993.

S. Herminghaus, C. C. Maass, C. Krüger, S. Thutupalli, L. Goehring et al., Interfacial mechanisms in active emulsions, Soft Matter, vol.10, p.7008, 2014.

S. Thutupalli and S. Herminghaus, Tuning active emulsion dynamics via surfactants and topology, Eur. Phys. J. E, vol.36, p.91, 2013.

C. Bechinger, R. D. Leonardo, H. Löwen, C. Reichhardt, G. Volpe et al., Active particles in complex and crowded environments, Rev. Mod. Phys, vol.88, p.45006, 2016.

T. Vicsek, A. Czirók, E. Ben-jacob, I. Cohen, and O. Shochet, Novel Type of Phase Transition in a System of Self-Driven Particles, Phys. Rev. Lett, vol.75, p.1226, 1995.

J. Toner and Y. Tu, Long-Range Order in a Two-Dimensional Dynamical XY Model: How Birds Fly Together, Phys. Rev. Lett, vol.75, p.4326, 1995.

G. S. Redner, M. F. Hagan, and A. Baskaran, Structure and Dynamics of a Phase-Separating Active Colloidal Fluid, Phys. Rev. Lett, vol.110, p.55701, 2013.

J. Tailleur and M. E. Cates, Statistical Mechanics of Interacting Run-and-Tumble Bacteria, Phys. Rev. Lett, vol.100, p.218103, 2008.

B. Liebchen, D. Marenduzzo, and M. E. Cates, Phoretic Interactions Generically Induce Dynamic Clusters and Wave Patterns in Active Colloids, Phys. Rev. Lett, vol.118, p.268001, 2017.

B. Liebchen and H. Löwen, Synthetic chemotaxis and collective behavior in active matter, Acc. Chem. Res, vol.51, p.2982, 2018.

A. G. Mark, J. G. Gibbs, T. Lee, and P. Fischer, Hybrid nanocolloids with programmed threedimensional shape and material composition, Nat. Mater, vol.12, p.802, 2013.

A. Walther and A. H. Müller, Janus particles: Synthesis, self-assembly, physical properties and applications, Chem. Rev, vol.113, p.5194, 2013.

P. Illien, R. Golestanian, and A. Sen, Fuelled' motion: Phoretic motility and collective behaviour of active colloids, Chem. Soc. Rev, vol.46, p.5508, 2017.

J. L. Moran and J. D. Posner, Phoretic self-propulsion, Ann. Rev. Fluid Mech, vol.49, p.511, 2017.

A. Ghosh and P. Fischer, Controlled propulsion of artificial magnetic nanostructured propellers, Nano Lett, vol.9, p.2243, 2009.

A. Bricard, J. Caussin, D. Das, C. Savoie, V. Chikkadi et al., Emergent vortices in populations of colloidal rollers, vol.6, p.7470, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01292102

M. Driscoll, B. Delmotte, S. Sacanna, A. Donev, and P. Chaikin, Unstable fronts and motile structures formed by microrollers, Nature, vol.13, p.375, 2016.

A. Kaiser, A. Snezhko, and I. S. Aranson, Flocking ferromagnetic colloids, Sci. Adv, vol.3, p.1601469, 2017.

W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St et al., Catalytic nanomotors: Autonomous movement of striped nanorods, J. Am. Chem. Soc, vol.126, p.13424, 2004.

J. R. Howse, R. A. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh et al., Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk, Phys. Rev. Lett, vol.99, p.48102, 2007.

I. Theurkauff, C. Cottin-bizonne, J. Palacci, C. Ybert, and B. , Dynamic Clustering in Active Colloidal Suspensions with Chemical Signaling, Phys. Rev. Lett, vol.108, p.268303, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01628778

S. Thutupalli, R. Seemann, and S. Herminghaus, Swarming behavior of simple model squirmers, New J. Phys, vol.13, p.73021, 2011.

Z. Izri, M. N. Van-der-linden, S. Michelin, and O. Dauchot, Self-Propulsion of Pure Water Droplets by Spontaneous Marangoni-Stress-Driven Motion, Phys. Rev. Lett, vol.113, p.248302, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01114975

C. Krüger, G. Klös, C. Bahr, and C. C. Maass, Curling Liquid Crystal Microswimmers: A Cascade of Spontaneous Symmetry Breaking, Phys. Rev. Lett, vol.117, p.48003, 2016.

S. J. Ebbens, Active colloids: Progress and challenges towards realising autonomous applications, Curr. Opin. Colloid Interface Sci, vol.21, p.14, 2016.

J. Li, I. Rozen, and J. Wang, Rocket science at the nanoscale, ACS Nano, vol.10, p.5619, 2016.

G. Gallino, F. Gallaire, E. Lauga, and S. Michelin, Physics of bubble-propelled microrockets, Adv. Funct. Mater, vol.28, p.1800686, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02104824

S. Thutupalli, D. Geyer, R. Singh, R. Adhikari, and H. A. Stone, Flow-induced phase separation of active particles is controlled by boundary conditions, Proc. Natl. Acad. Sci. USA, vol.115, p.5403, 2018.

E. Kanso and S. Michelin, Phoretic and hydrodynamic interactions of weakly confined autophoretic particles, J. Chem. Phys, vol.150, p.44902, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02104809

B. Liebchen and H. Löwen, Which interactions dominate in active colloids?, J. Chem. Phys, vol.150, p.61102, 2019.

J. L. Anderson, Colloidal transport by interfacial forces, Annu. Rev. Fluid Mech, vol.21, p.61, 1989.

R. Golestanian, T. B. Liverpool, and A. Ajdari, Designing phoretic micro-and nano-swimmers, New J. Phys, vol.9, p.126, 2007.

T. Ishikawa, M. P. Simmonds, and T. J. Pedley, Hydrodynamic interaction of two swimming model microorganisms, J. Fluid Mech, vol.568, p.119, 2006.

T. D. Montenegro-johnson, S. Michelin, and E. Lauga, A regularised singularity approach to phoretic problems, Eur. Phys. J. E, vol.38, p.139, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01276172

W. E. Uspal, M. N. Popescu, S. Dietrich, and M. Tasinkevych, Self-propulsion of a catalytically active particle near a planar wall: From reflection to sliding and hovering, Soft Matter, vol.11, p.434, 2015.

E. Lushi and C. S. Peskin, Modeling and simulation of active suspensions containing large numbers of interacting micro-swimmers, Computers Struct, vol.122, p.239, 2013.

R. A. Lambert, F. Picano, W. Breugem, and L. Brandt, Active suspensions in thin films: Nutrient uptake and swimmer motion, J. Fluid Mech, vol.733, p.528, 2013.

B. Delmotte, E. E. Keaveny, F. Plouraboué, and E. Climent, Large-scale simulation of steady and timedependent active suspensions with the force-coupling method, J. Comput. Phys, vol.302, p.524, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01308042

M. Yang, A. Wysocki, and M. Ripoll, Hydrodynamic simulations of self-phoretic microswimmers, Soft Matter, vol.10, p.6208, 2014.

P. H. Colberg and R. , Many-body dynamics of chemically propelled nanomotors, J. Chem. Phys, vol.147, p.64910, 2017.

F. Alarcòn and I. Pagonabarraga, Spontaneous aggregation and global polar ordering in squirmer suspensions, J. Mol. Liq, vol.185, p.56, 2013.

J. F. Brady and G. Bossis, Stokesian dynamics, Ann. Rev. Fluid Mech, vol.20, p.111, 1988.

K. Ichiki and J. F. Brady, Many-body effects and matrix inversion in low-Reynolds-number hydrodynamics, Phys. Fluids, vol.13, p.350, 2001.

A. Sierou and J. F. Brady, Accelerated Stokesian dynamics simulations, J. Fluid Mech, vol.448, p.115, 2001.

A. M. Fiore and J. W. Swan, Fast Stokesian dynamics, J. Fluid Mech, vol.878, p.544, 2019.

W. Yan and J. F. Brady, The behavior of active diffusiophoretic suspensions: An accelerated Laplacian dynamics study, J. Chem. Phys, vol.145, p.134902, 2016.

R. Singh and R. Adhikari, Generalized stokes laws for active colloids and their applications, J. Phys. Commun, vol.2, p.25025, 2018.

R. Singh, R. Adhikari, and M. E. Cates, Competing chemical and hydrodynamic effects in autophoretic colloidal suspensions, J. Chem. Phys, vol.151, p.44901, 2019.

G. Mo and A. S. Sangani, A method for computing stokes flow interactions among spherical objects and its application to suspensions of drops and porous particles, Phys. Fluids, vol.6, p.1637, 1994.

A. S. Sangani and G. Mo, An O(N) algorithm for stokes and laplace interactions of particles, Phys. Fluids, vol.8, p.1990, 1996.

S. Michelin and E. Lauga, Phoretic self-propulsion at finite Péclet numbers, J. Fluid Mech, vol.747, p.572, 2014.

S. Michelin and E. Lauga, Autophoretic locomotion from geometric asymmetry, Eur. Phys. J. E, vol.38, p.7, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01140759

S. E. Spagnolie and E. Lauga, Hydrodynamics of self-propulsion near a boundary: Predictions and accuracy of far-field approximations, J. Fluid Mech, vol.700, p.105, 2012.

S. Saha, R. Golestanian, and S. Ramaswamy, Clusters, asters, and collective oscillations in chemotactic colloids, Phys. Rev. E, vol.89, p.62316, 2014.

R. Soto and R. Golestanian, Self-Assembly of Catalytically-Active Colloidal Molecules: Tailoring Activity Through Surface Chemistry, Phys. Rev. Lett, vol.112, p.68301, 2014.

M. Smoluchowski, On the mutual action of spheres which move in a viscous liquid, Bull. Acad. Sci. Cracovie A, vol.1, p.28, 1911.

G. J. Kynch, The slow motion of two or more spheres through a viscous liquid, J. Fluid Mech, vol.5, p.193, 1959.

H. J. Wilson, Stokes flow past three spheres, J. Comput. Phys, vol.245, p.302, 2013.

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, 1965.

J. H. Luke, Convergence of a multiple reflection method for calculating Stokes flow in a suspension, SIAM J. Appl. Math, vol.49, p.1635, 1989.

S. D. Traytak, Convergence of a reflection method for diffusion-controlled reactions on static sinks, Physica A, vol.362, p.240, 2006.

S. Michelin, E. Guérin, and E. Lauga, Collective dissolution of microbubbles, Phys. Rev. Fluids, vol.3, p.43601, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02104825

A. Varma, T. D. Montenegro-johnson, and S. Michelin, Clustering-induced self-propulsion of isotropic autophoretic particles, Soft Matter, vol.14, p.7155, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02104820

B. Rallabandi, F. Yang, and H. A. Stone, Motion of hydrodynamically interacting active particles

W. Duan, W. Wang, S. Das, V. Yadav, T. E. Mallouk et al., Synthetic nano-and micromachines in analytical chemistry: Sensing, migration, capture, delivery and separation, Annu. Rev. Anal. Chem, vol.8, p.311, 2015.

H. A. Stone and A. D. Samuel, Propulsion of microorganisms by surface distortions, Phys. Rev. Lett, vol.77, p.4102, 1996.

J. R. Blake, A spherical envelope approach to ciliary propulsion, J. Fluid Mech, vol.46, p.199, 1971.

O. S. Pak and E. Lauga, Generalized squirming motion of a sphere, J. Eng. Math, vol.88, p.1, 2014.

M. T?tulea-codrean and E. Lauga, Artificial chemotaxis of phoretic swimmers: Instantaneous and longtime behavior, J. Fluid Mech, vol.856, p.921, 2018.

S. Kim and S. Karrila, Microhydrodynamics: Principles and Selected Applications, 1991.

B. Nasouri and G. J. Elfring, Higher-order force moments of active particles, Phys. Rev. Fluids, vol.3, p.44101, 2018.

M. Lisicki, S. Y. Reigh, and E. Lauga, Autophoretic motion in three dimensions, Soft Matter, vol.14, p.3304, 2018.

H. Lamb, Hydrodynamics, 1932.

E. Yariv, Wall-induced self-diffusiophoresis of active isotropic colloids, Phys. Rev. Fluids, vol.1, p.32101, 2016.

N. Sharifi-mood, A. Mozaffari, and U. M. Cordova-figueroa, Pair interaction of catalytically active colloids: From assembly to escape, J. Fluid Mech, vol.798, p.910, 2016.

G. M. Golusin, Auflösung eines ebenen Wärmeleitungsproblems in einem von isolierender schichte umgebenen mehrfachzusammenhängenden Kreisbereiche, Mat. Sb, vol.42, p.191, 1935.

M. Stimson and G. B. Jeffery, The motion of two spheres in a viscous fluid, Proc. R. Soc. London A, vol.111, pp.124204-124241, 1926.