Spontaneous onset of convection in a uniform phoretic channel - École polytechnique Access content directly
Journal Articles Soft Matter Year : 2020

Spontaneous onset of convection in a uniform phoretic channel

Abstract

Phoretic mechanisms, whereby gradients of chemical solutes induce surface-driven flows, have recently been used to generate directed propulsion of patterned colloidal particles. When the chemical solutes diffuse slowly, an instability further provides active but isotropic particles with a route to self-propulsion by spontaneously breaking the symmetry of the solute distribution. Here we show theoretically that, in a mechanism analogous to Bénard-Marangoni convection, phoretic phenomena can create spontaneous and self-sustained wall-driven mixing flows within a straight, chemically-uniform active channel. Such spontaneous flows do not result in any net pumping for a uniform channel but greatly modify the distribution of transport of the chemical solute. The instability is predicted to occur for a solute Péclet number above a critical value and for a band of finite perturbation wavenumbers. We solve the perturbation problem analytically to characterize the instability, and use both steady and unsteady numerical computations of the full nonlinear transport problem to capture the long-time coupled dynamics of the solute and flow within the channel.
Fichier principal
Vignette du fichier
1912.07667.pdf (4.36 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02536802 , version 1 (08-04-2020)

Identifiers

Cite

Sébastien Michelin, Simon Game, Eric Lauga, Eric Keaveny, Demetrios Papageorgiou. Spontaneous onset of convection in a uniform phoretic channel. Soft Matter, 2020, 16 (5), pp.1259-1269. ⟨10.1039/C9SM02173F⟩. ⟨hal-02536802⟩
28 View
65 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More