J. D. Van-der-waals, Thermodynamische Theorie der Capillariteit in de Onderstelling van Continue Dichtheidsverandering Verhand, Kon. Akad. V Wetensch. Amst, vol.20, pp.197-244, 1979.

D. J. Korteweg, Sur la Forme que Prennent les Equations du Mouvement Fluide si l'on tient Compte de Forces Capillaires Causées par les Variations de Densité Considerables mais Continues et sur la Théorie de la Capillarité dans l'Hypothèse d'une Variations Continue de la Densité, Arch. Neerl. Sci Exactes, vol.6, pp.1-20, 1901.

J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity, 1989.

P. Seppecher, Moving contact line in the Cahn-Hilliard theory, Int. J. Eng. Sci, vol.34, pp.977-992, 1996.

D. M. Anderson, G. B. Mcfadden, and A. A. Wheeler, Diffuse Interface Methods in Fluid Mechanics, Ann. Rev. Fluid Mech, vol.30, pp.139-165, 1998.

D. Jamet, Diffuse interface models in fluid mechanics, Semantic Scholar, Corpus Id: 18437499, 2005.

P. Barbante and A. Frezzotti, A comparison of models for the evaporation of a Lennard-Jones fluid, Eur. J. Mech. B. Fluids, vol.64, pp.69-80, 2017.

J. W. Cahn and J. E. Hilliard, Free energy of a non uniform system I, Interfacial Free Energy, J. Chem. Phys, vol.28, pp.258-267, 1958.

P. Gaillard, V. Giovangigli, and L. Matuszewski, A Diffuse Interface Lox/Hydrogen Transcritical Flame Model, Combust. Theory Model, vol.20, pp.486-520, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01308378

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Archive Rat. Mech. Anal, vol.133, pp.95-133, 1985.

S. Gavrilyuk and S. Shugrin, Media with equations of state that depend on derivatives, J. Appl. Mech. Techn. Phys, vol.37, pp.179-189, 1996.

S. Gavrilyuk and H. Gouin, Symmetric form of governing equations for capillary fluids, Monogr. Surv. Pure Appl. Math, vol.106, pp.306-311, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00252237

S. Benzoni-gavage, R. Danchin, S. Descombes, and D. Jamet, Structure of Korteweg models and stability of diffuse interfaces, Interfaces Free Bound, vol.7, pp.371-414, 2005.

S. Ono and S. Kondo, Molecular theory of surface tension in liquids, Encyclopedia of Physics, vol.10, pp.134-280, 1960.

R. Evans, The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids, Adv. Phys, vol.28, pp.143-200, 1979.

A. Frezzotti and P. Barbante, Kinetic theory aspects of non-equilibrium liquid-vapor flows, Mech. Eng. Rev, vol.4, pp.16-00540, 2017.

K. Aoki, Y. Sone, and T. Yamada, Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory, Phys. Fluids A, vol.2, pp.1867-1878, 1990.

C. Cercignani, Rarefied Gas Dynamics, Cambridge university press, 2000.

A. Frezzotti, Boundary conditions at the vapor-liquid interface, Phys. Fluids, vol.23, p.30609, 2011.

L. De-sobrino, On a kinetic equation of a van der Waals gas, Can. J; Phys, vol.45, pp.363-385, 1967.

M. Grmela, Kinetic equation approach to phase transitions, J. Stat. Phys, vol.3, pp.347-364, 1971.

J. Karkheck and G. Stell, Mean field kinetic theories, J. Chem. Phys, vol.75, pp.1475-1487, 1981.

A. Frezzotti, L. Gibelli, and S. Lorenzani, Mean field kinetic theory description of evaporation of a fluid into vacuum, Phys. Fluids, vol.17, p.12102, 2005.

S. Takata and T. Noguchi, A Simple Kinetic Model for the Phase Transition of the van der Waals Fluid, J. Stat. Phys, vol.172, pp.880-903, 2018.

A. Frezzotti, L. Gibelli, D. A. Lockerby, and J. E. , Sprittles, Mean field kinetic theory approach to evaporation of a binary liquid into vacuum, Phys. Rev. Fluids, vol.3, p.54001, 2018.

S. Takata, T. Matsumoto, A. Hirahara, and M. Hattori, Kinetic theory for a simple modeling of a phase transition: Dynamics out of local equilibrium, Phys. Rev. E, vol.98, p.52123, 2018.

A. C. Fowler, Phase transition in the Boltzmann-Vlasov equation, J. Stat. Phys, vol.174, pp.1011-1026, 2019.

H. Hayakawa, S. Takada, and V. Garzó, Kinetic theory of shear thickening for a moderately dense gas-solid suspension: From discontinuous thickening to continuous thickening, Phys. Rev. E, vol.96, p.42903, 2017.

Y. Rocard, . Thermodynamique, &. Masson, and . Compagnie, , 1952.

S. T. Choh and G. E. Uhlenbeck, The kinetic Theory of Phenomena in Dense Gases, 1958.

F. Andrews, On the solution of the BBGKY equations for a dense classical gas, J. Math. Phys, vol.6, pp.1496-1505, 1965.

L. S. García-colín, M. S. Green, and F. Chaos, The Chapman-Enskog solution of the generalized Boltzmann equation, Physica, vol.32, pp.450-478, 1966.

M. H. Ernst, L. K. Haines, and J. R. Dorfmann, Theory of transport coefficients for maderately dense gases, Rev. Mod. Phys, vol.41, pp.296-316, 1969.

S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, 1970.

J. H. Ferziger and H. G. Kaper, Mathematical theory of transport processes in gases, 1972.

J. R. Dorfman and H. Van-beijeren, The kinetic theory of gases, Statistical Mechanics, pp.65-179, 1977.

P. G. De-gennes, Wetting: statics and dynamics, Rev. Mod. Phys, vol.57, pp.827-863, 1985.

W. Bu, D. Kim, and D. Vaknin, Density Profiles of Liquid/Vapor Interfaces Away from Their Critical Points, J. Phys. Chem. C, vol.118, pp.12405-12409, 2014.

V. Giovangigli, Multicomponent Flow Modeling, 1999.

E. Nagnibeda and E. Kustova, Non-Equilibrium Reacting Gas Flows, 2009.

M. Capitelli, D. Bruno, and A. Laricchiuta, Fundamental Aspects of Plasma Chemical Physics, 2013.

S. R. De-groot and P. Mazur, , 1984.

H. Freistühler and M. Kotschote, Phase-field and Korteweg-type Models for the time-dependent flow of compressible two-phase fluids, Archive Rat. Mech. Anal, vol.224, pp.1-20, 2017.

M. Heida and J. Málek, On compressible Korteweg fluidlike materials, Int. J. Eng. Sci, vol.48, pp.1313-1324, 2010.

E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Landau and Lifshitz course on theoretical physics, vol.10, 1981.

N. N. Bogolioubov, English traduction in, Problems of a Dynamic Theory in Statistical Physics, vol.1, 1946.

M. Born and H. S. Green, A General Kinetic Theory of Liquids, 1946.

J. G. Kirkwood, The Statistical Mechanical Theory of Transport Processes, J. Chem. Phys, vol.14, pp.180-201, 1946.

J. Yvon, La Théorie Statistique des Fluides et de l'Équation d'État, Actualités Scientifiques et Industrielles, Hermann, 1935.

R. A. Piccirelli, Some Properties of the Long-Time Values of the Probability Densities for Moderately Dense Gases, J. Math. Phys, vol.7, pp.922-934, 1966.

R. Fowler and E. A. Guggenheim, Statistical Thermodynamics, 1956.

L. D. Landau and E. M. Lifshitz, Statistical Physics, Landau and Lifshitz course on theoretical physics, vol.5, 1980.

B. Diu, C. Guthmann, D. Lederer, and B. Roulet, Éléments de Physique Statistique, 1989.

J. Fisher and M. Methfessel, Born-Green-Yvon approach to the local densities of a dilute fluid at interfaces, Phys. Rev. A, vol.22, pp.2836-2843, 1980.

T. R. Osborn and C. A. Croxton, Monotonic and oscillatory profiles at the free liquid surface for simple atomic fluids, Mol. Phys, vol.40, pp.1489-1502, 1980.

O. Redlich and J. N. Kwong, On the thermodynamics of solutions. V An equation of state. Fugacities of gaseous solutions, Chem. Reviews, vol.44, pp.233-244, 1949.

A. N. Gorban and I. V. Karlin, Beyond Navier-Stokes equations: Capillary of ideal fluids, Contemp. Phys, vol.58, pp.70-90, 2017.

F. Huang, Y. Huang, Y. Wang, and T. Yang, Justification of limit for the Boltzmann equation related to Korteweg theory, Quart. Appl. Math, pp.719-764, 2016.

K. Piechór, Non-local Korteweg stresses from kinetic theory point of view, Arch. Mech, vol.60, pp.23-58, 2008.