Skip to Main content Skip to Navigation
Journal articles

Probing ultrafast magnetic-field generation by current filamentation instability in femtosecond relativistic laser-matter interactions

Abstract : The current filamentation instability is a key phenomenon underpinning various processes in astrophysics, laboratory laser-plasma, and beam-plasma experiments. Here we show that the ultrafast dynamics of this instability can be explored in the context of relativistic laser-solid interactions through deflectometry by low-emittance, highly relativistic electron bunches from a laser wakefield accelerator. We present experimental measurements of the femtosecond timescale generation of strong magnetic-field fluctuations, with a measured line-integrated B field of 2.70 ± 0.39 kT μm. Three-dimensional, fully relativistic particle-in-cell simulations demonstrate that such fluctuations originate from the current filamentation instability arising at submicron scales around the irradiated target surface, and that they grow to amplitudes strong enough to broaden the angular distribution of the probe electron bunch a few tens of femtoseconds after the laser pulse maximum. Our results open a branch of physics experiments investigating the femtosecond dynamics of laser-driven plasma instabilities by means of synchronized, wakefield-accelerated electron beams.
Complete list of metadatas

Cited literature [73 references]  Display  Hide  Download

https://hal-polytechnique.archives-ouvertes.fr/hal-02567637
Contributor : Sébastien Corde <>
Submitted on : Thursday, May 7, 2020 - 10:29:40 PM
Last modification on : Tuesday, August 11, 2020 - 5:32:02 PM

File

2020_Raj_PRR.pdf
Publisher files allowed on an open archive

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Collections

Citation

G. Raj, O. Kononenko, M Gilljohann, A. Doche, X. Davoine, et al.. Probing ultrafast magnetic-field generation by current filamentation instability in femtosecond relativistic laser-matter interactions. Physical Review Research, American Physical Society, 2020, 2, ⟨10.1103/PhysRevResearch.2.023123⟩. ⟨hal-02567637⟩

Share

Metrics

Record views

64

Files downloads

63