E. M. Arruda and M. C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J Mech Phys Solids, vol.41, pp.389-412, 1993.
URL : https://hal.archives-ouvertes.fr/hal-01390807

L. Bodelot, J. Voropaieff, and T. Pössinger, Experimental investigation of the coupled magneto-mechanical response in magnetorheological elastomers, Exp Mech, vol.58, issue.2, pp.207-221, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01635196

W. F. Brown, Magnetoelastic interactions, 1966.

K. Danas, Effective response of classical, auxetic and chiral magnetoelastic materials by use of a new variational principle, J. Mech. Phys. Solids, vol.105, pp.25-53, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01627522

K. Danas, S. Kankanala, and N. Triantafyllidis, Experiments and modeling of iron-particle-filled magnetorheological elastomers, J. Mech. Phys. Solids, vol.60, issue.1, pp.120-138, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00647544

G. Diguet, Huge magnetostriction of magneto-rheological composite, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00488910

A. Dorfmann and R. Ogden, Nonlinear magnetoelastic deformations of elastomers, Acta Mechanica, vol.167, issue.1-2, pp.13-28, 2004.

A. N. Gent, A new constitutive relation for rubber, Rubber Chem. Technol, vol.69, pp.59-61, 1996.

S. V. Kankanala and N. Triantafyllidis, On finitely strained magnetorheological elastomers, J. Mech. Phys. Solids, vol.52, issue.12, pp.2869-2908, 2004.

M. Keip and M. Rambausek, A multiscale approach to the computational characterization of magnetorheological elastomers, Int J Numer Methods Eng, vol.7, pp.23-32, 2015.

C. Kittel, Introduction to Solid State Physics, 2004.

V. Lefèvre, K. Danas, and O. Lopez-pamies, A general result for the magnetoelastic response of isotropic suspensions of iron and ferrofluid particles in rubber, with applications to spherical and cylindrical specimens, J. Mech. Phys. Solids, vol.107, pp.343-364, 2017.

V. Lefèvre, A. Garnica, and O. Lopez-pamies, A weno finite-difference scheme for a new class of hamilton-jacobi equations in nonlinear solid mechanics, pp.17-44, 2019.

V. Lefèvre and O. Lopez-pamies, Nonlinear electroelastic deformations of dielectric elastomer composites: II -nongaussian elastic dielectrics, Journal of the Mechanics and Physics of Solids, vol.99, pp.438-470, 2017.

V. Lefèvre and O. Lopez-pamies, Nonlinear electroelastic deformations of dielectric elastomer composites: I-ideal elastic dielectrics, Journal of the Mechanics and Physics of Solids, vol.99, pp.409-437, 2017.

M. Leonard, N. Wang, O. Lopez-pamies, and T. Nakamura, The nonlinear elastic response of filled elastomers: Experiments vs. theory for the basic case of particulate fillers of micrometer size, Journal of the Mechanics and Physics of Solids, vol.135, 2020.

O. Lopez-pamies, An exact result for the macroscopic response of particle-reinforced neo-hookean solids, Journal of Applied Mechanics, vol.77, issue.2, p.21016, 2010.

O. Lopez-pamies, A new i 1 -based hyperelastic model for rubber elastic materials, C. R. Mecanique, vol.338, pp.3-11, 2010.

O. Lopez-pamies, Elastic dielectric composites: Theory and application to particle-filled ideal dielectrics, Journal of the Mechanics and Physics of Solids, vol.64, pp.61-82, 2014.

O. Lopez-pamies, T. Goudarzi, and K. Danas, The nonlinear elastic response of suspensions of rigid inclusions in rubber: Ii -a simple explicit approximation for finite-concentration suspensions, J Mech Phys Solids, vol.61, issue.1, pp.19-37, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00870885

A. B. Meddeb, T. Tighe, Z. Ounaies, and O. Lopez-pamies, Extreme enhancement of the nonlinear elastic response of elastomer nanoparticulate composites via interphases, Composites Part B, vol.156, pp.166-173, 2019.

D. Mukherjee, L. Bodelot, and K. Danas, Microstructurally-guided explicit continuum models for isotropic magnetorheological elastomers with iron particles, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02491593

B. Nedjar, A coupled bem-fem method for finite strain magneto-elastic boundary-value problems, Computational Mechanics, vol.59, issue.5, pp.795-807, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01423620

R. W. Ogden, Non-linear Elastic Deformations, 1997.

J. Pelteret, D. Davydov, A. Mcbride, D. K. Vu, and P. Steinmann, Computational electro-elasticity and magnetoelasticity for quasi-incompressible media immersed in free space, International Journal for Numerical Methods in Engineering, vol.108, pp.307-1342, 2016.

X. Poulain, V. Lefèvre, O. Lopez-pamies, and K. Ravi-chandar, Damage in elastomers: Nucleation and growth of cavities, micro-cracks, and macro-cracks, International Journal of Fracture, vol.205, pp.1-21, 2017.

E. Psarra, L. Bodelot, and K. Danas, Two-field surface pattern control via marginally stable magnetorheological elastomers, Soft Matter, vol.13, pp.6576-6584, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01627525

P. Saxena, J. Pelteret, and P. Steinmann, Modelling of iron-filled magneto-active polymers with a dispersed chain-like microstructure, European Journal of Mechanics -A/Solids, vol.50, pp.132-151, 2015.

D. J. Steigmann, Equilibrium theory for magnetic elastomers and magnetoelastic membranes, Int J Non Linear Mech, vol.39, issue.7, pp.1193-1216, 2004.

L. R. Treloar, The elasticity of a network of long-chain molecules -ii, Trans. Faraday Soc, vol.39, pp.241-246, 1943.

D. Vu and P. Steinmann, A 2-d coupled bem-fem simulation of electro-elastostatics at large strain, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.17, pp.1124-1133, 2010.

D. Vu and P. Steinmann, On 3-d coupled bem-fem simulation of nonlinear electro-elastostatics, Computer Methods in Applied Mechanics and Engineering, vol.201, pp.82-90, 2012.