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Non-modal linear stability analysis of ablation
flows relative to inertial confinement fusion

G. Varillon, J.-M. Clarisse and A. Couairon

1 Introduction

Inertial confinement fusion (ICF) aims at achieving controlled thermonuclear burn
by means of a sufficiently symmetric implosion of a spherical pellet, under the
action of an external radiation flux [1]. Such implosions are triggered and driven by
the deflagration, or ablation, heat wave that thrusts inwardly the pellet outer shell,
the ablator, chosen to be opaque to the incoming irradiation. The associated flow
consists of a subsonic heat front, or ablation front, coinciding with the leading edge
of the heated material expansion wave, that penetrates into the ablator, preceded by
a fore-running shock wave [1, chap. 2], [2, vol. 2, chap. 10, §8]. Inherently unsteady,
these ablation flows which undergo different regimes of acceleration during the
implosion, are compressible and highly nonuniform with a steep heat front, owing
to the strong nonlinearity of the heat transport and the intense incident heating.

Right from the beginning of research on the subject back in the 1970s, the hy-
drodynamic stability of ablation fronts has been identified as one of the most critical
issues to the success of ICF. Since then, an impressive amount of efforts, in terms
of modeling, numerical simulations, reduced- and full-scale laboratory experiments,
has been devoted to the prediction, measurement and mitigation of hydrodynamic
instabilities in ICF implosions and, in particular, in ICF ablation flows. Despite these
efforts, thermonuclear ignition experiments carried out on the largest existing ICF
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facility have not been yet conclusive [3]. Theoretical investigations of ablation flow
stability have relied on simplifying assumptions that are not necessarily met in ac-
tual cases: e.g. mean-flow steadiness, low Mach-number approximation, unbounded
domains, discontinuous ablation front, flow region uniformity of some sort [4]. In
addition, these works have exclusively employed the method of normal modes, fo-
cusing on the least stable eigensolutions and thus only furnishing asymptotic stability
results. More realistic configurations are classically handled by means of multidi-
mensional numerical simulations carried out with ICF hydrodynamics codes which
incorporate the most relevant physical phenomena. These “full-physics” simulations
which are computationally very demanding, are necessarily of limited accuracy for
decreasing perturbation scales and also suffer from overly dissipative and dispersive
numerical schemes used in such hydrocodes. Such simulations consist in computing
perturbation amplifications from selected perturbed initial or boundary conditions
that are considered to be the “most dangerous” for a given mean-flow configura-
tion. Comparisons with theoretical results and specifically designed experiments
where a dominant most dangerous perturbation source is selected by a careful con-
trol of experimental conditions, have helped building confidence in the ability of
ICF hydrocodes to reproduce instability dynamics [5, 6]. However, this approach
faces a major difficulty in having to deal, in actual ICF implosions, with multiple
perturbation sources whose contributions remain, for some of them, unsufficiently
known and controlled. This fact is substantiated by recent successively targeted
series of experiments which have revealed the detrimental effects of perturbation
sources previously held to be minor, thus questioning the common acceptation of
most dangerous perturbation sources for ICF pellet implosions.

In this context, methods of non-modal stability theory [7], being capable of iden-
tifying the most dangerous perturbations in time-dependent flows of finite durations,
not only appear to be most valuable but also to be a necessity. Since the current
cost of full-physics simulations forbids the implementation of such methods with
existing ICF hydrocodes, we have recourse to a simplified modeling of unsteady
ablation waves provided by self-similar solutions to the Euler equations with nonlin-
ear heat conduction [8]. Some of these solutions are representative of the first stage
of a pellet implosion, or shock transit phase, during which the fore-running shock
wave is still traveling inside the ablator [9, 10]. In particular these self-similar flows
present the complete structure of an ablation wave: a leading shock front, a quasi-
isentropic compression (post-shock) region, an ablation layer and an expansion wave
where heat conduction dominates (the conduction region): cf. Fig. 1. This model-
ing which does not give up essential features of ICF ablation waves (unsteadiness,
compressibility, stratification and confinement) has previously been used to obtain
linear perturbation responses for configurations of ICF commonly held as most dan-
gerous [11, 12]. Here we perform a non-modal stability analysis that consists in
finding optimal initial perturbations (OIPs), i.e. initial perturbations that maximize
a semi-norm of the flow perturbations at a given time horizon. Having to deal with
time-dependent and non-uniform base flows, these OIPs are obtained by means of
a direct-adjoint method that we have developed based on our previous experience
with linear perturbation computations in such flows.



Non-modal linear stability analysis of ICF ablation flows 3

2 Model

The chosen ablation wave modeling considers a semi-infinite slab of a polytropic gas
subject to an incident radiation flux and a material pressure exerted at its external
boundary. The gas is assumed to remain at local thermodynamic equilibrium and
optically thick to the incoming radiation, allowing us to use a fluid model and
the radiation heat-conduction approximation of radiative transfer to describe its
motion. Under the conditions of ICF pellet irradiation, the external radiation flux
is sufficiently high so that radiation heat conduction dominates any other diffusive
effect within the fluid (e.g. viscosity) while the fluid temperature remains sufficiently
low for radiation pressure and radiation energy to be negligible compared to material
pressure and internal energy. Consequently, the equations of motion come down to
the Euler equations with nonlinear heat conduction [2].
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Fig. 1 Structure of an ablation wave.

2.1 Base flow

Assuming that the flow is along the x direction of a Cartesian system of coordi-
nates (O, x, y, z), the equations of motion come, in dimensionless form and in the
Lagrangian coordinate m such that dm = ρdx, as [9]

∂t1/ρ − ∂mv = 0, ∂tv + ∂mp = 0, ∂t (e + v2/2) + ∂m(pv + ϕ) = 0, (1)

where ρ, v, p , e and ϕ denote, respectively, the fluid density, velocity, pressure,
specific internal energy, and radiation heat flux of expression

ϕ = −ρ−µTν ρ∂mT ≡ Ψ(ρ,T, ∂xT ), with −µ = 2, ν = 13/2, (2)
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according to a radiation conductionmodel for a fully-ionized gas [2]. These equations
are closed by the dimensionless equation of state

p = ρT, e = CvT, Cv = 1/(γ − 1), (3)

where γ is the adiabatic gas exponent. Self-similar reduction of (1)–(3) arises if the
incident heat flux and pressure at the external surface follow specific power laws
[8, 13], namely

ϕ(0, t) = Bφt3α−3, p(0, t) = Bpt2α−2, for t > 0, with α =
2ν − 1
2ν − 2

, (4)

and for an initial state given by (ρ, v, T ) = (1, 0, 0) for m ≥ 0. For certain values
of the boundary parameters (Bp,Bϕ ), these self-similar solutions reproduce the
features of ICF ablation waves [9, 10]. Highly accurate solutions to (1)–(4) are
obtained by means of an adaptive multidomain Chebyshev spectral method [14].

2.2 Linear perturbations

Three-dimensional linear perturbations of the above self-similar ablative waves are
considered using an Eulerian description in the coordinate system (m, y, z). The
resulting system of partial differential equations (PDEs) in physical space is replaced
by a system of one-dimensional PDEs in the yz-Fourier space. With the notation f̂
for the yz-Fourier component of the base flow quantity f of transverse wavenumber
k⊥ =

√
k2
y + k2

z , this system amounts to

∂tÛ = LLLÛ ≡ −AAA∂2
m2Û −BBB∂mÛ −CCCÛ, (5)

with Û =
[
ρ̂ v̂ d̂⊥ T̂

]> , where d̂⊥ denotes the Fourier component of the transverse
divergence of the transverse velocity. The matrix AAA comprises a single non-zero
coefficient, A44 = C−1

v ρΨT ′ , while the expressions of BBB and CCC are given by

BBB =
*....
,

0 ρ2 0 0
T 0 0 ρ
0 0 0 0

C−1
v Ψρ C−1

v p 0 B44

+////
-

, CCC =
*....
,

ρ∂mv ρ∂mρ ρ 0
T∂mρ/ρ ρ∂mv 0 ∂mρ
k2
⊥T/ρ 0 0 −k2

⊥

C41 ρ∂mT ′ C−1
v T C44

+////
-

,

where

B44 = C−1
v

[
∂m(ρΨT ′ ) + ΨT

]
, C41 = C−1

v

(
∂mΨρ − ρ

−1 ∂mϕ
)
,

C44 = C−1
v

[
ρ∂mv + ∂mΨT − k2

⊥ρ
−1
ΨT ′

]
.

In these expressions Ψρ, ΨT and ΨT ′ stand for, respectively, the partial derivatives
of the function Ψ of (2) with respect to the density, temperature and temperature
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gradient. System (5) is of the incompletely parabolic type [15] since it comprises a
parabolic subequation for the variable T̂ and a hyperbolic subsystem for the com-
plementary variable vector

[
ρ̂ v̂ d̂⊥

]>
. Boundary conditions are provided by the

Medium
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Fig. 2 Two-dimensional schematic view of a perturbed planar ablation wave. The length of the
conduction region is denoted by lcond while X̂a , a = es, af or sf, denote the Fourier components,
of transverse wavenumber k⊥ = 2π/λ⊥, of the linear deformations of, respectively, the external
surface, ablation front and shock front.

linearization (i), at the external surface of linear deformation X̂es (Fig. 2), of the
continuity equations for the pressure and heat flux, and of the kinematic relation
at a material surface, and (ii), at the shock front of linear deformation X̂sf , of the
Rankine–Hugoniot jump relations [11]. From these boundary conditions, we infer,
at any of the two boundaries a = es or sf, the proper set of boundary conditions
that defines a well-posed boundary value problem (BVP) for (5), namely: a scalar
boundary condition for the parabolic subequation in T̂ , say

B̂BB
p

a

(
∂mÛ|a, Û|a, X̂a, dt X̂a

)
= 0, (6)

as many boundary conditions as there are incoming waves of the hyperbolic subsys-
tem at the boundary, or the system

B̂BB
h

a

(
Û|a, X̂a, dt X̂a

)
= 0, (7)

and an evolution equation for the boundary surface deformation X̂a written as

fa
(
dt X̂a, X̂a, Û|a

)
= 0. (8)

3 Optimal perturbation

The present non-modal stability analysis consists in finding the initial perturbation
states (Û, X̂es, X̂sf ) |t0 that maximize an objective functional J depending only on
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the final states (Û, X̂es, X̂sf ) |T where (Û, X̂es, X̂sf ) are solutions to (5)–(8) for zero
external forcing and zero perturbations upstream to the shock front.

3.1 Direct-adjoint method

The optimization problem to be solved is presently formulated using the Lagrange
multiplier technique [16]. In effect aLagrange functional is defined fromJ augmented

1

2.5

5

10

20

40

80

1.05 1.5 2 3

G
(T

)

T

k⊥ = 0
0.33

1
2
4
8

16
32

(a)

1

10

100

1.05 1.5 2 3
T

rc = 0.01
0.1
0.5

1

(b)

Fig. 3 Curves of the gain G(T ) for (a) rc = 1 and several values of k⊥, (b) k⊥ = 1 and several
values of rc .

by constraints enforcing the evolution equation (5), the sets of boundary conditions
defining a well-posed BVP for (5), i.e. (6)–(8), and a normalization of the initial
conditions, I(t0) = K0, namely

L = J −

∫ msf

0

∫ T

t0

Û†>
(
∂tÛ − LLLÛ

)
dt dm

−
∑

a=es,sf

∫ T

t0

(
ν̂†a
>

B̂BB
h

a + η̂
†
aB̂BB

p

a + µ̂
†
a fa

)
dt,−β† (I(t0) − K0) . (9)

The optimum lies in the stationary points of L. Differentiating with respect to the
state variables yields the adjoint equation

∂tÛ† = LLL†Û† ≡ AAA>∂2
mÛ† + (2 ∂mAAA −BBB)>∂mÛ† + (∂2

mAAA − ∂mBBB +CCC)>Û†, (10a)

B̂BB
h

a

†

= 0, B̂BB
p

a

†
= 0, dt X̂†a =

˙̂X
†

a, (10b)
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Fig. 4 Optimal gain for (k⊥, T ) = (32, 1.1), rc = 1. (a) Chu’s energy density j in the variables
(m, t). (b) Deformations X̂a of the shock front (sf), ablation layer (af) and external surface (es),
Chu’s energy amplification (J(t)/J(t0)) and optical depth perturbation (OD) as functions of time.

where B̂BB
h

a

†

and B̂BB
p

a

†
represent the boundary condition operators for, respectively,

the hyperbolic subsystem and parabolic subequation of (10a), ˙̂
X
†

a and X̂†a are scalar
linear combinations of ν̂†a, η̂†a and µ̂†a . The adjoint equation (10a) is well-posed for
backward time integration from t = T to t = t0 with terminal conditions

Û† |T = ∇Û |T J, X̂†a |T = ∇X̂a |T
J. (11)

Differentiationwith respect to the control parameters, Û |t0, X̂a |t0, yields the optimality
conditions

∇Û |t0
L = Û† |t0, ∇X̂a |t0

L = X̂†a |t0 . (12)

where the right-hand-sides vanish at an optimum.

Perturbation measure

The functional J to be optimized is chosen to be defined after the energy of Chu [17],
namely

J =

∫ msf

0

j
ρ

dm, with j =
1
2
*
,

T ρ̂2

ρ
+ ρ̂v2

x +
ρd̂2
⊥

k2
⊥

+
Cv ρT̂2

T
+
-
, (13)

for k⊥ > 0. This functional, being a semi-norm of the state variables, has to be
supplemented by a complementary semi-norm which must be a norm for the kernel
of J [18] and which we take to be

J∗ = (X2
es + X̂2

sf )/2, (14)
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so that J + J∗ is a full norm. Since our problem is linear, it is sufficient to restrict
ourselves to the case K0 = J(t0)+J∗(t0) = 1 in (9) and to vary the initial distribution
of energy rc = J(t0)/ (J(t0) + J∗(t0)) between 0 and 1.
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Fig. 5 Optimal gain for (k⊥, T ) = (0.33, 3.5), rc = 1. (a) Chu’s energy density j in the variables
(m, t). (b) Deformations X̂a of the shock front (sf), ablation layer (af) and external surface (es),
Chu’s energy amplification (J(t)/J(t0)) and optical depth perturbation (OD) as functions of time.

Optimization and numerical methods

The direct and adjoint problems, (5) and (10), are solved iteratively using forward and
backward temporal integrations, from a given starting initial condition. The terminal
condition (11) is used to initialize the adjoint integration. Successive initial condi-
tions of the direct problem are obtained from (12) by power iterations (e.g. see [19]).
Numerical solutions to the direct system (5)–(8) and to the adjoint system (10), are
obtained, in the space variable, using the same multidomain pseudospectral method
as for the base flow and, in time, with a three-step implicit-explicit Runge–Kutta
scheme. Boundary conditions are handled using a penalty method while matching
conditions at subdomain interfaces are enforced exactly. The numerical codes for the
direct and adjoint problems perform computations over each subdomain in parallel
using the MPI paradigm with a single process per subdomain.

3.2 Optimal initial perturbations

The present analysis is performed for the self-similar ablative wave defined by the
boundary parameters (Bp,Bφ) = (1.06, 3.42) in (4). Optimization results have been
computed with a spatial grid made of 189 subdomains with 50 collocation points
each.

Optimal gains G(T ) = J(T )/J(t0) larger than one have been obtained for all the
transverse wavenumbers k⊥, initial energy distributions rc , and terminal timesT that
have been explored (Fig. 3). This fact denotes an inclination of the present ablation
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flow to significantly amplify perturbations. This amplification increases with k⊥ for
small terminal times, evidencing fast transient growth at small wavelengths (Fig. 3a).
The initial distribution of perturbations in the deformations of the external surface
and shock front, i.e. low values of rc , leads to the strongest amplifications within the
flow (Fig. 3b).

Two optimal growth mechanisms have been identified. For short final times
(1.01 6 T 6 1.5), the OIP is concentrated within the tail of the conduction region
and develops from local constructive interactions between acoustic and vorticity
waves (Fig. 4a). The ablation layer and shock front are not involved in this mecha-
nism as the terminal time T is shorter than the acoustic crossing time between these
two locations (Fig. 4b). For larger terminal times, the OIP takes the form of forward
acoustic and entropy signals in the post-shock region and perturbation energy grows
from the interactions between the shock front and ablation layer resulting from the
propagation of acoustic, entropy and vorticity waves across this region (Fig. 5). This
mechanism is made possible since T exceeds several times the travel times of these
waves across the post-shock region. At such terminal times, Chu’s energy density is
mostly located in the ablation layer (Fig. 5a). Temporal responses of optical depth
perturbations, a quantity usually measured in experiments, appear to be uncorrelated
to Chu’s energy evolution (Figs. 4b, 5b) implying that experimental observation of
perturbation amplification would require some other means of detection.

4 Discussion and conclusion

The first non-modal stability analysis of an ablation flow reported in this paper
shows that ablation waves are susceptible to present transient perturbation growth
for a wide range of perturbation characteristic lengths and time horizons. For the
present self-similar ablation wave representative of the shock transit phase of an ICF
pellet implosion, perturbation transient growths are found at all tested wavelengths
and time horizons. Physical mechanisms responsible for such transient growths have
been identified to be local constructive interactions between acoustic and vorticity
waves within the flow conduction region at short time horizon, and interactions
between the ablation layer and shock front for long terminal times. These findings
contrast with previously known results established from normal mode analysis, sim-
ulations and dedicated experiments of selected “most dangerous” configurations, for
which only large wavelengths are subject to a possible amplification whereas small
wavelengths undergo damped oscillations [5, 20]. This confirms the interest and the
necessity of non-modal stability analysis for ICF related flows. The present stability
analyses has focused on the optimal perturbation problem. Optimal perturbations are
found upon solving an optimization problem by means of a direct-adjoint method
derived from the Lagrange multiplier technique. In the process, we identified the
principle leading to a proper formulation of a Lagrange functional with boundary
condition constrains for an incompletely parabolic system of equations with per-
turbed dynamical boundaries. This framework could easily be applied to receptivity
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problems and should stimulate the undertaking of non-modal analyses using ICF
hydrocodes with "full physics".
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