, World Health Organization et al. Coronavirus disease 2019 ( covid-19): situation report, 51, vol.373

, World Health Organization et al. Coronavirus disease 2019 ( covid-19): situation report, 59, vol.375

C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao et al., , p.377

G. Fan, J. Xu, and X. Gu, Clinical features of patients infected with 2019 378 novel coronavirus in wuhan, china. The Lancet, vol.395, pp.497-506, 2020.

H. Roy-m-anderson, D. Heesterbeek, T. Klinkenberg, and . Hollingsworth, How 380 will country-based mitigation measures influence the course of the covid-19 epidemic? The 381, Lancet, vol.395, pp.931-934, 2020.

L. Fraioli and . Bucci, dalla lombardia numeri ormai insensati. i contagiati sono di più

. Repubblica, , 2020.

P. Oltermann, Germany's low coronavirus mortality rate intrigues experts. The Guardian

R. Li, S. Pei, B. Chen, Y. Song, T. Zhang et al.,

, Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus 387 (sars-cov2), Science, 2020.

N. Angel, . Desai, U. G. Moritz, S. Kraemer, and . Bhatia, , p.389

E. L. Herringer, M. Cohn, . Carrion, S. John, L. C. Brownstein et al.,

, Real-time epidemic forecasting: Challenges and opportunities. Health security, vol.17, p.2019

A. Jonathan, A. Polonsky, . Baidjoe, N. Zhian, A. Kamvar et al., , p.393

R. M. Edmunds, S. Eggo, L. Funk, P. Kaiser, and . Keating, , p.15

, break analytics: a developing data science for informing the response to emerging pathogens

, Philosophical Transactions of the Royal Society B, vol.374, 1776.

S. Funk, A. Camacho, J. Adam, R. Kucharski, R. M. Lowe et al., Assessing the performance of real-time epidemic forecasts: A case study 398 of ebola in the western area region of sierra leone, PLoS computational biology, vol.399, issue.2, p.1006785, 2019.

F. Brauer, Compartmental models in epidemiology, Mathematical epidemiology, pp.401-420, 2008.

J. Smith, J. Sebastian, E. Schreiber, W. Kopp, and . Getz, Super-403 spreading and the effect of individual variation on disease emergence, Nature, vol.438, issue.7066, pp.355-404, 2005.

K. Arin, Drive-thru clinics, drones: Korea's new weapons in virus fight. The Korea Herald, p.408

P. Politica and A. , Come vanno letti i dati sul coronavirus in italia

, As of 20th of March 2020 only two private hospitals in Mexico have been certified by InDRE 410 to carry out tests

, There is a delay between the data reported daily by the WHO and that reported by Mexico 412 health authorities

T. Joseph, K. Wu, G. Leung, and . Leung, Nowcasting and forecasting the potential 414 domestic and international spread of the 2019-ncov outbreak originating in wuhan, china: a 415 modelling study, The Lancet, vol.395, pp.689-697, 2020.

L. Peng, W. Yang, D. Zhang, C. Zhuge, and L. Hong, Epidemic 417 analysis of covid-19 in china by dynamical modeling, p.418, 2020.

A. Stephen, K. H. Lauer, Q. Grantz, . Bi, K. Forrest et al.,

A. S. Ith, . Azman, G. Nicholas, J. Reich, and . Lessler, The incubation period of coron-420 avirus disease 2019 (covid-19) from publicly reported confirmed cases: Estimation and appli-421 cation, Annals of Internal Medicine, 2020.

J. Lessler, G. Nicholas, R. Reich, T. M. Brookmeyer, . Perl et al., , p.423

A. T. Derek and . Cummings, Incubation periods of acute respiratory viral infections: a systematic 424 review. The Lancet infectious diseases, vol.9, pp.291-300, 2009.

A. Gunia and M. Zennie, China reported a huge increase in new covid-19 cases. here's 426 why it's actually a step in the right direction

G. Chowell, D. Hincapie-palacio, J. Ospina, B. Pell, and A. Tariq,

S. Dahal, A. Moghadas, L. Smirnova, C. Simonsen, and . Viboud, Using phe-429 nomenological models to characterize transmissibility and forecast patterns and final burden 430 of zika epidemics, PLoS currents, vol.8, 2016.

G. Chowell, Fitting dynamic models to epidemic outbreaks with quantified uncertainty: 432 a primer for parameter uncertainty, identifiability, and forecasts. Infectious Disease Modelling, vol.433, pp.379-398, 2017.

R. Bürger, G. Chowell, and L. Lara-dí?az, Comparative analysis of 435 phenomenological growth models applied to epidemic outbreaks, Mathematical biosciences, vol.436, issue.5, pp.4250-4273, 2019.

P. Verhulst, Notice sur la loi que la population suit dans son accroissement

, Corresp. Math. Phys, vol.10, pp.113-126, 1838.

B. Gompertz and . Xxiv, on the nature of the function expressive of the law of human 440 mortality, and on a new mode of determining the value of life contingencies. in a letter to 441 francis baily, esq. frs &c, Philosophical transactions of the Royal Society of London, issue.115, p.1825

. Ij-wellock, I. Emmans, and . Kyriazakis, Describing and predicting potential growth in the 444 pig, Animal Science, vol.78, issue.3, pp.379-388, 2004.

A. Spiess and N. Neumeyer, An evaluation of r 2 as an inadequate measure 446 for nonlinear models in pharmacological and biochemical research: a monte carlo approach, BMC pharmacology, vol.447, issue.1, p.6, 2010.

H. Xiong and H. Yan, Simulating the infected population and spread trend of 2019-ncov 449 under different policy by eir model, Available at SSRN, vol.3537083, 2020.

L. F. Olsen and W. M. Schaffer, Chaos versus noisy periodicity: alternative 451 hypotheses for childhood epidemics, Science, vol.249, issue.4968, pp.499-504, 1990.

H. Andersson and T. Britton, Stochastic epidemic models and their statistical analysis, vol.453, 2012.

J. Dureau, K. Kalogeropoulos, and M. Baguelin, Capturing the time-varying 455 drivers of an epidemic using stochastic dynamical systems, Biostatistics, vol.14, issue.3, p.456, 2013.

G. Viceconte and N. Petrosillo, Covid-19 r0: Magic number or conundrum?, Infectious 457 Disease Reports, vol.12, issue.1, p.2020

I. Kashnitsky, Covid-19 in unequally ageing european regions, 2020.

D. Faranda and S. Vaienti, Extreme value laws for dynamical systems under obser-460 vational noise, Physica D: Nonlinear Phenomena, vol.280, pp.86-94, 2014.

D. Faranda and Y. Sato, , p.462

F. Dubrulle and . Daviaud, Stochastic chaos in a turbulent swirling flow. Physical review 463 letters, vol.119, p.14502, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01567893

J. Adam, T. W. Kucharski, C. Russell, Y. Diamond, J. Liu et al.,

R. M. Tian-funk, F. Eggo, M. Sun, J. D. Jit, and . Munday, Early dynamics of 466 transmission and control of covid-19: a mathematical modelling study, The Lancet Infectious, vol.467

. Diseases, , 2020.

A. Remuzzi and G. Remuzzi, Covid-19 and italy: what next? The Lancet, vol.2020, p.469

C. Zhan, Z. Tse-chi, T. Lai, J. Hao, and . Su, Prediction of covid-19 470 spreading profiles in south korea, italy and iran by data-driven coding. medRxiv, p.471, 2020.

X. Zhang and K. Wang, Stochastic seir model with jumps, Applied Mathematics and 472 Computation, vol.239, pp.133-143, 2014.

J. Hopman, B. Allegranzi, and S. Mehtar, Managing covid-19 in low-and 474 middle-income countries, JAMA, 2020.

M. Gilbert, G. Pullano, F. Pinotti, E. Valdano, and C. Poletto, , p.476

Y. Boëlle, D. Eric, Y. Ortenzio, S. P. Yazdanpanah, M. Eholie et al., , p.477

, Preparedness and vulnerability of african countries against importations of covid-19: a 478 modelling study. The Lancet, 2020.

J. Steenhuysen and . Nebehay, Countries rush to build diagnostic capacity as coronavirus 480 spreads. Reuters, 2020.

M. Jonathan, J. R. Read, . Bridgen, A. T. Derek, A. Cummings et al.,

J. , Novel coronavirus 2019-ncov: early estimation of epidemiological parameters and 483 epidemic predictions, 2020.

, Example of a Susceptible-Exposed-Infected-Recovered (SEIR) model of COVID-19

, Initial conditions are set to I(0) = 2, S(0) = 33000, E(0) = R(0) = 0. a) Time evolution for the variables of the system, b) Time evolution for the total number of infections C(t) against the Chinese data with t=1 corresponding to, 2019.

, Recovered (SEIR) model for COVID-19, obtained replacing alternatevely ? (a,b), ? (b,d) and ? with the stochastic process with Eq 12. Dynamics are integrated with a fixed initial condition and 30 noise realisations. a,c,e) Time evolution for the variables of the system

, Example of 6 trajectories of dynamics of stochastic Susceptible-Exposed-Infected

, Recovered (SEIR) model for COVID-19, obtained replacing all parameters ?, ? and ? with an independent stochastic process as in Eq 12. Dynamics are integrated with a fixed initial condition and 6 noise realisations. a) Time evolution for the variables of the system. b) Time evolution for the total number of infections C(t). c) Time evolution for the daily infections. d) Comparison with daily infections in China (red, 2019.