M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen et al., TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.

H. Abdi and L. J. Williams, Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01259094

S. Arora, N. Cohen, W. Hu, and Y. Luo, Implicit regularization in deep matrix factorization, 2019.

R. V. Berg, T. N. Kipf, and M. Welling, Graph convolutional matrix completion, 2017.

A. Boyarski, S. Vedula, and A. Bronstein, Deep matrix factorization with spectral geometric regularization, 2020.

D. Cai, X. He, J. Han, and T. Huang, Graph regularized nonnegative matrix factorization for data representation, IEEE transactions on pattern analysis and machine intelligence, vol.33, pp.1548-60, 2011.

E. Candès, X. Li, Y. Ma, and J. Wright, Robust principal component analysis?, J. ACM, vol.58, p.37, 2011.

E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Foundations of Computational mathematics, vol.9, issue.6, p.717, 2009.

E. Elhamifar and R. Vidal, Sparse subspace clustering: Algorithm, theory, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, pp.2765-2781, 2013.

S. Gidaris and N. Komodakis, Generating classification weights with gnn denoising autoencoders for few-shot learning, 2019.

Q. Gu and J. Zhou, Co-clustering on manifolds, KDD, 2009.

F. M. Harper and J. A. Konstan, The movielens datasets: History and context, Acm transactions on interactive intelligent systems (tiis), vol.5, p.19, 2016.

M. Jamali and M. Ester, A matrix factorization technique with trust propagation for recommendation in social networks, Proceedings of the fourth ACM conference on Recommender systems, pp.135-142, 2010.

B. Jiang, C. Ding, B. Luo, and J. Tang, Graphlaplacian pca: Closed-form solution and robustness, CVPR, pp.3492-3498, 2013.

T. Jin, J. Yu, J. You, K. Zeng, C. Li et al., Low-rank matrix factorization with multiple hypergraph regularizer, Pattern Recognition, vol.48, pp.1011-1022, 2015.

V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst, Matrix completion on graphs, 2014.

D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, vol.401, pp.788-791, 1999.

O. Litany, E. Rodolà, A. M. Bronstein, and M. M. Bronstein, Fully spectral partial shape matching, Computer Graphics Forum, vol.36, pp.247-258, 2017.

W. Liu, J. Wang, S. Kumar, and S. Chang, Hashing with graphs, ICML, 2011.

S. Melzi, J. Ren, E. Rodola, M. Ovsjanikov, P. Wonka et al., Spectral upsampling for efficient shape correspondence, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02307575

F. Monti, M. Bronstein, and X. Bresson, Geometric matrix completion with recurrent multi-graph neural networks, Advances in Neural Information Processing Systems, pp.3697-3707, 2017.

M. Ovsjanikov, M. Ben-chen, J. Solomon, A. Butscher, and L. Guibas, Functional maps: a flexible representation of maps between shapes, ACM Transactions on Graphics (TOG), vol.31, issue.4, p.30, 2012.

M. Ovsjanikov, E. Corman, M. Bronstein, E. Rodolà, M. Ben-chen et al., Computing and processing correspondences with functional maps, SIGGRAPH ASIA 2016 Courses, p.9, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01664767

N. Rao, H. Yu, P. K. Ravikumar, and I. S. Dhillon, Collaborative filtering with graph information: Consistency and scalable methods, Advances in neural information processing systems, pp.2107-2115, 2015.

S. Rosenberg, The Laplacian on a Riemannian manifold: an introduction to analysis on manifolds, vol.31, 1997.

N. Shahid, V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst, Robust principal component analysis on graphs, ICCV, pp.2812-2820, 2015.

N. Shahid, N. Perraudin, V. Kalofolias, G. Puy, and P. Vandergheynst, Fast robust pca on graphs, IEEE Journal of Selected Topics in Signal Processing, vol.10, pp.740-756, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01277624

F. Shang, L. Jiao, and F. Wang, Graph dual regularization non-negative matrix factorization for co-clustering, Pattern Recognition, vol.45, pp.2237-2250, 2012.

D. Spielman, Spectral graph theory. Lecture Notes, pp.740-0776, 2009.

L. Tao, H. Ip, Y. Wang, and X. Shu, Low rank approximation with sparse integration of multiple manifolds for data representation, Applied Intelligence, vol.42, pp.430-446, 2014.

R. Vidal and P. Favaro, Low rank subspace clustering (lrsc), Pattern Recognit. Lett, vol.43, pp.47-61, 2014.

X. Wang, Y. Ye, and A. Gupta, Zero-shot recognition via semantic embeddings and knowledge graphs, 2018.

M. Yin, J. Gao, Z. Lin, Q. Shi, and Y. Guo, Dual graph regularized latent low-rank representation for subspace clustering, IEEE Transactions on Image Processing, vol.24, pp.4918-4933, 2015.

Z. Zhang and K. Zhao, Low-rank matrix approximation with manifold regularization, vol.35, pp.1717-1729, 2013.