C. Y. Chen and A. B. Shyu, Mechanisms of deadenylation-dependent decay, Wiley Interdiscip. Rev. RNA, vol.2, pp.167-183, 2011.

V. Taverniti and B. Seraphin, Elimination of cap structures generated by mRNA decay involves the new scavenger mRNA decapping enzyme Aph1/FHIT together with DcpS, Nucleic Acids Res, vol.43, pp.482-492, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02179570

M. G. Wulf, J. Buswell, S. H. Chan, N. Dai, K. Marks et al., The yeast scavenger decapping enzyme DcpS and its application for in vitro RNA recapping, Sci. Rep, vol.9, p.8594, 2019.

J. Lykke-andersen, Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay, Mol. Cell Biol, vol.22, pp.8114-8121, 2002.

Z. Wang, X. Jiao, A. Carr-schmid, and M. Kiledjian, The hDcp2 protein is a mammalian mRNA decapping enzyme, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.12663-12668, 2002.

E. Van-dijk, N. Cougot, S. Meyer, S. Babajko, E. Wahle et al., Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures, EMBO J, vol.21, pp.6915-6924, 2002.

C. A. Beelman, A. Stevens, G. Caponigro, T. E. Lagrandeur, L. Hatfield et al., An essential component of the decapping enzyme required for normal rates of mRNA turnover, Nature, vol.382, pp.642-646, 1996.

M. Fenger-gron, C. Fillman, B. Norrild, and J. Lykke-andersen, Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping, Mol. Cell, vol.20, pp.905-915, 2005.

C. Charenton and M. Graille, mRNA decapping: finding the right structures, Philos. Trans. Roy. Soc. Lond. B, Biol. Sci, vol.373, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01969480

M. She, C. J. Decker, D. I. Svergun, A. Round, N. Chen et al., Structural basis of dcp2 recognition and activation by dcp1, Mol. Cell, vol.29, pp.337-349, 2008.

C. Charenton, V. Taverniti, C. Gaudon-plesse, R. Back, B. Seraphin et al., Structure of the active form of Dcp1-Dcp2 decapping enzyme bound to m7GDP and its Edc3 activator, Nat. Struct. Mol. Biol, vol.23, pp.982-986, 2016.

J. S. Mugridge, M. Ziemniak, J. Jemielity, and J. D. Gross, Structural basis of mRNA-cap recognition by Dcp1-Dcp2, Nat. Struct. Mol. Biol, vol.23, pp.987-994, 2016.

E. Valkov, S. Muthukumar, C. T. Chang, S. Jonas, O. Weichenrieder et al., Structure of the Dcp2-Dcp1 mRNA-decapping complex in the activated conformation, Nat. Struct. Mol. Biol, vol.23, pp.574-579, 2016.

J. P. Wurm, I. Holdermann, J. H. Overbeck, P. H. Mayer, and R. Sprangers, Changes in conformational equilibria regulate the activity of the Dcp2 decapping enzyme, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.6034-6039, 2017.

J. S. Mugridge, R. W. Tibble, M. Ziemniak, J. Jemielity, and J. D. Gross, Structure of the activated Edc1-Dcp1-Dcp2-Edc3 mRNA decapping complex with substrate analog poised for catalysis, Nat. Commun, vol.9, p.1152, 2018.

C. Bonnerot, R. Boeck, and B. Lapeyre, The two proteins Pat1p (Mrt1p) and Spb8p interact in vivo, are required for mRNA decay, and are functionally linked to Pab1p, Mol. Cell. Biol, vol.20, pp.5939-5946, 2000.

E. Bouveret, G. Rigaut, A. Shevchenko, M. Wilm, and B. Seraphin, A Sm-like protein complex that participates in mRNA degradation, EMBO J, vol.19, pp.1661-1671, 2000.

S. Tharun, W. He, A. E. Mayes, P. Lennertz, J. D. Beggs et al., Yeast Sm-like proteins function in mRNA decapping and decay, Nature, vol.404, pp.515-518, 2000.

J. M. Coller, M. Tucker, U. Sheth, M. A. Valencia-sanchez, and R. Parker, The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes, RNA, vol.7, pp.1717-1727, 2001.

T. Dunckley, M. Tucker, and R. Parker, Two related proteins, Edc1p and Edc2p, stimulate mRNA decapping in Saccharomyces cerevisiae, Genetics, vol.157, pp.27-37, 2001.

N. Fischer and K. Weis, The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1, EMBO J, vol.21, pp.2788-2797, 2002.

M. Kshirsagar and R. Parker, Identification of Edc3p as an enhancer of mRNA decapping in Saccharomyces cerevisiae, Genetics, vol.166, pp.729-739, 2004.

L. Decourty, C. Saveanu, K. Zemam, F. Hantraye, E. Frachon et al., Linking functionally related genes by sensitive and quantitative characterization of genetic interaction profiles, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.5821-5826, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01404694

T. Nissan, P. Rajyaguru, M. She, H. Song, and R. Parker, Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms, Mol. Cell, vol.39, pp.773-783, 2010.

O. Kolesnikova, R. Back, M. Graille, and B. Seraphin, Identification of the Rps28 binding motif from yeast Edc3 involved in the autoregulatory feedback loop controlling RPS28B mRNA decay, Nucleic. Acids. Res, vol.41, pp.9514-9523, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00984653

F. He, A. Celik, C. Wu, and A. Jacobson, General decapping activators target different subsets of inefficiently translated mRNAs, vol.7, p.34409, 2018.

A. Chowdhury, J. Mukhopadhyay, and S. Tharun, The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs, RNA, vol.13, pp.998-1016, 2007.

H. Sharif and E. Conti, Architecture of the lsm1-7-pat1 complex: a conserved assembly in eukaryotic mRNA turnover, Cell Rep, vol.5, pp.283-291, 2013.

D. Wu, D. Muhlrad, M. W. Bowler, Z. Liu, R. Parker et al., Lsm2 and Lsm3 bridge the interaction of the Lsm1-7 complex with Pat1 for decapping activation, Cell Res, vol.24, pp.233-246, 2013.

Z. Fourati, O. Kolesnikova, R. Back, J. Keller, C. Charenton et al., The C-terminal domain from S. cerevisiae Pat1 displays two conserved regions involved in decapping factor recruitment, PLoS One, vol.9, p.96828, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01048605

C. Charenton, C. Gaudon-plesse, Z. Fourati, V. Taverniti, R. Back et al., A unique surface on Pat1 C-terminal domain directly interacts with Dcp2 decapping enzyme and Xrn1 5 -3 mRNA exonuclease in yeast, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.9493-9501, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01953029

F. He and A. Jacobson, Control of mRNA decapping by positive and negative regulatory elements in the Dcp2 C-terminal domain, RNA, vol.21, pp.1633-1647, 2015.

D. R. Paquette, R. W. Tibble, T. S. Daifuku, and J. D. Gross, Control of mRNA decapping by autoinhibition, Nucleic Acids Res, vol.46, pp.6318-6329, 2018.

G. Badis, C. Saveanu, M. Fromont-racine, and A. Jacquier, Targeted mRNA degradation by deadenylation-independent decapping, Mol. Cell, vol.15, pp.5-15, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-01404698

Y. Harigaya, B. N. Jones, D. Muhlrad, J. D. Gross, and R. Parker, Identification and analysis of the interaction between Edc3 and Dcp2 in Saccharomyces cerevisiae, Mol. Cell. Biol, vol.30, pp.1446-1456, 2010.

S. Dong, A. Jacobson, and F. He, Degradation of YRA1 Pre-mRNA in the cytoplasm requires translational repression, multiple modular intronic elements, PLoS Biol, vol.8, p.1000360, 2010.

M. Dehecq, L. Decourty, A. Namane, C. Proux, J. Kanaan et al., Nonsense-mediated mRNA decay involves two distinct Upf1-bound complexes, EMBO J, vol.37, p.99278, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01889054

U. Sheth and R. Parker, Decapping and decay of messenger RNA occur in cytoplasmic processing bodies, Science, vol.300, pp.805-808, 2003.

N. Cougot, S. Babajko, and B. Seraphin, Cytoplasmic foci are sites of mRNA decay in human cells, J. Cell Biol, vol.165, pp.31-40, 2004.

I. Horvathova, F. Voigt, A. V. Kotrys, Y. Zhan, C. G. Artus-revel et al., The dynamics of mRNA turnover revealed by single-molecule imaging in single cells, Mol. Cell, vol.68, pp.615-625, 2017.

W. Hu, T. J. Sweet, S. Chamnongpol, K. E. Baker, and J. Coller, Co-translational mRNA decay in Saccharomyces cerevisiae, Nature, vol.461, pp.225-229, 2009.

V. Pelechano, W. Wei, and L. M. Steinmetz, Widespread Co-translational RNA decay reveals ribosome dynamics, Cell, vol.161, pp.1400-1412, 2015.

S. Jonas and E. Izaurralde, The role of disordered protein regions in the assembly of decapping complexes and RNP granules, Genes Dev, vol.27, pp.2628-2641, 2013.

B. S. Rao and R. Parker, Numerous interactions act redundantly to assemble a tunable size of P bodies in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.9569-9578, 2017.

T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori et al., A comprehensive two-hybrid analysis to explore the yeast protein interactome, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.4569-4574, 2001.

A. C. Gavin, P. Aloy, P. Grandi, R. Krause, M. Boesche et al., Proteome survey reveals modularity of the yeast cell machinery, Nature, vol.440, pp.631-636, 2006.

N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo et al., Global landscape of protein complexes in the yeast Saccharomyces cerevisiae, Nature, vol.440, pp.637-643, 2006.

H. Yu, P. Braun, M. A. Yildirim, I. Lemmens, K. Venkatesan et al., High-quality binary protein interaction map of the yeast interactome network, Science, vol.322, pp.104-110, 2008.

T. J. Sweet, B. Boyer, W. Hu, K. E. Baker, and J. Coller, Microtubule disruption stimulates P-body formation, RNA, vol.13, pp.493-502, 2007.

J. Nieuwenhuis and T. R. Brummelkamp, The Tubulin Detyrosination Cycle: Function and Enzymes, Trends Cell Biol, vol.29, pp.80-92, 2019.

A. C. Badin-larcon, C. Boscheron, J. M. Soleilhac, M. Piel, C. Mann et al., Suppression of nuclear oscillations in Saccharomyces cerevisiae expressing Glu tubulin, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.5577-5582, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02348206

A. B. Parsons, R. L. Brost, H. Ding, Z. Li, C. Zhang et al., Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways, Nat. Biotechnol, vol.22, pp.62-69, 2004.

G. Olmezer, D. Klein, and U. Rass, DNA repair defects ascribed to pby1 are caused by disruption of Holliday junction resolvase Mus81-Mms4, DNA Repair (Amst.), vol.33, pp.17-23, 2015.

N. Denervaud, J. Becker, R. Delgado-gonzalo, P. Damay, A. S. Rajkumar et al., A chemostat array enables the spatio-temporal analysis of the yeast proteome, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.15842-15847, 2013.

W. Kabsch, Xds. Acta Crystallogr. D. Biol. Crystallogr, vol.66, pp.125-132, 2010.

I. J. Tickle, C. Flensburg, P. Keller, W. Paciorek, A. Sharff et al., Global Phasing Ltd, 2018.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr. D. Biol. Crystallogr, vol.66, pp.486-501, 2010.

G. Bricogne, E. Blanc, M. Brandl, C. Flensburg, P. Keller et al., Global Phasing Ltd, 2016.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, vol.9, pp.671-675, 2012.

W. Iwasaki and K. Miki, Crystal structure of the stationary phase survival protein SurE with metal ion and AMP, J. Mol. Biol, vol.371, pp.123-136, 2007.

M. V. Fawaz, M. E. Topper, and S. M. Firestine, The ATP-grasp enzymes, Bioorg. Chem, vol.39, pp.185-191, 2011.

S. A. Fromm, V. Truffault, J. Kamenz, J. E. Braun, N. A. Hoffmann et al., The structural basis of Edc3-and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex, EMBO J, vol.31, pp.279-290, 2012.

C. Fan, P. C. Moews, Y. Shi, C. T. Walsh, and J. R. Knox, A common fold for peptide synthetases cleaving ATP to ADP: glutathione synthetase and D-alanine:d-alanine ligase of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A, vol.92, pp.1172-1176, 1995.

H. Sakai, M. N. Vassylyeva, T. Matsuura, S. Sekine, K. Gotoh et al., Crystal structure of a lysine biosynthesis enzyme, LysX, from Thermus thermophilus HB8, J. Mol. Biol, vol.332, pp.729-740, 2003.

L. Holm and L. M. Laakso, Dali server update, Nucleic. Acids. Res, vol.44, pp.351-355, 2016.

A. E. Prota, K. Bargsten, D. Zurwerra, J. J. Field, J. F. Diaz et al., Molecular mechanism of action of microtubule-stabilizing anticancer agents, Science, vol.339, pp.587-590, 2013.

C. P. Garnham, A. Vemu, E. M. Wilson-kubalek, I. Yu, A. Szyk et al., Multivalent microtubule recognition by tubulin tyrosine ligase-like family glutamylases, Cell, vol.161, pp.1112-1123, 2015.

C. P. Garnham, I. Yu, Y. Li, and A. Roll-mecak, Crystal structure of tubulin tyrosine ligase-like 3 reveals essential architectural elements unique to tubulin monoglycylases, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.6545-6550, 2017.

A. Szyk, A. M. Deaconescu, G. Piszczek, and A. Roll-mecak, Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin, Nat. Struct. Mol. Biol, vol.18, pp.1250-1258, 2011.

S. N. Floor, B. N. Jones, G. A. Hernandez, and J. D. Gross, A split active site couples cap recognition by Dcp2 to activation, Nat. Struct. Mol. Biol, vol.17, pp.1096-1101, 2010.

V. Balagopal and R. Parker, Stm1 modulates mRNA decay and Dhh1 function in Saccharomyces cerevisiae, Genetics, vol.181, pp.93-103, 2009.

H. Ashkenazy, E. Erez, E. Martz, T. Pupko, and N. Ben-tal, ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids, Nucleic. Acids. Res, vol.38, pp.529-533, 2010.