J. Abonyi and B. Feil, Cluster Analysis for Data Mining and System Identification, 2007.

H. Abouaïssa, M. Fliess, and C. Join, On short-term traffic flow forecasting and its reliability, 8th IFAC Conf. Manufac. Model. Manag. Contr., Troyes, 2016.

T. Béchu, E. Bertrand, and J. Nebenzahl, L'analyse technique, 2014.

G. Cagnac, E. Ramis, and J. Commeau, Traité de mathématiques spéciales, 1971.

P. Cartier and Y. Perrin, Integration over finite sets, Nonstandard Analysis in Practice, pp.195-204, 1995.

A. Castellini, M. Bicego, F. Masillo, M. Zuccotto, and A. Farinelli, Time series segmentation for state-model generation of autonomous aquatic drones : A systematic framework, Engin. Appli. Artific. Intell, vol.90, p.103499, 2020.

S. A. Cheong, R. P. Fornia, G. Hui-ting-lee, J. Liang-kok, W. Shyr-yim et al., The Japanese economy in crises: A time series segmentation study, The Open-Access Open-Assess, 2012.

E. ,

H. Cho and P. Fryzlewicz, Multiscale and multilevel technique for consistent segmentation of nonstationary time series, Stat. Sinica, vol.22, pp.207-229, 2012.

F. Diener and M. Diener, Nonstandard Analysis in Practice, pp.1-21, 1995.

F. Diener and G. Reeb, Analyse non standard, 1989.

A. M. Durán-rosal, P. A. Gutiérrez, F. J. Martínez-estudillo, and C. Hérvas-martínez, Simultaneous optimisation of clustering quality and approximation error for time series segmentation, Informat. Sci, pp.186-201, 2018.

A. M. Durán-rosal, P. A. Gutiérrez, S. Salcedo-sanz, and C. Hérvas-martínez, A statistically-driven Coral Reef Optimization algorithm for optimal size reduction of time series, Appl. Soft Comput, vol.63, pp.139-153, 2018.

A. M. Durán-rosal, P. A. Gutiérrez, Á. Carmona-poyato, C. Hervás-martínez, and C. , A hybrid dynamic exploitation barebones particle swarm optimisation algorithm for time series segmentation, Neurocomput, vol.353, pp.45-55, 2019.

H. Edelhoff, J. Signer, and N. Balkenhol, Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns, Mov. Ecol, vol.4, 2016.

P. Esling and C. Agon, Time-series data mining, ACM Comput. Surv, vol.45, p.12, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01577883

W. Enders, Applied Econometric Time Series, 2014.

G. Fedele, F. Chiaravallotri, and C. Join, An algebraic derivative-based approach for the zerocrossings estimation, 17th Europ. Sign. Proc. Conf., Glasgow, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00389872

E. Fink and K. B. Pratt, Indexing of compressed time series, Data Mining in Time Series Databases, pp.43-65, 2004.

E. Fink and H. S. Gandhi, Compression of time series by extracting major extrema, J. Exper. Theoret. Artif. Intell, vol.23, pp.255-270, 2011.

M. Fliess, Analyse non standard du bruit. C.R. Acad. Sci, vol.342, pp.797-802, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00001134

M. Fliess and C. Join, A mathematical proof of the existence of trends in financial time series, Systems Theory: Modeling, Analysis and Control. Presses Universitaires de Perpignan, pp.43-62, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00352834

M. Fliess, C. Join, M. Bekcheva, A. Moradi, and H. Mounier, Easily implementable time series forecasting techniques for resource provisioning in cloud computing, 6th Int. Conf. Contr. Dec. Inform. Techno, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02024835

M. Fliess, C. Join, and F. Hatt, A-t-on vraiment besoin d'un modèle probabiliste en ingénierie financière ?, In: Conf. Médit. Ingén. Sûre Syst. Compl, 2011.

M. Fliess, C. Join, and M. Mboup, Algebraic change-point detection, App. Algeb. Engin. Commun. Comput, vol.21, pp.131-143, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00439226

M. Fliess, C. Join, and H. Sira-ramírez, Nonlinear estimation is easy, Int. J. Model. Identif. Contr, vol.4, pp.12-27, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00158855

M. Fliess, C. Join, and C. Voyant, Prediction bands for solar energy: New short-term time series forecasting techniques, Solar Energy, vol.166, pp.519-528, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01736518

T. Fu, A review on time series data mining, Engin. Appli. Artif. Intell, vol.24, pp.164-181, 2011.

T. Fu, Y. Hung, and F. Chung, Improvement algorithms of perceptually important point identification for time series data mining, IEEE 4th Int. Conf. Soft Comput. Mach. Intell.. Port Louis, 2017.

O. Henniger, R. Guest, O. Miguel-hurtado, and C. Kaplan, Signature/Sign Time Series Data: Standardization, pp.1395-1400, 2014.

Y. Hsu, C. Chu, Y. Tsai, and J. Wang, An inertial pen with dynamic time warping recognizer for handwriting and gesture recognition, IEEE Sensors J, vol.15, pp.154-163, 2015.

P. Hubert, J. P. Carbonnel, and A. Chaouche, Segmentation des séries hydrométéorologiques -Applicationsà des séries de précipitations et de débit de l'Afrique de l'ouest, J. Hydrol, vol.110, pp.349-367, 1989.

C. Join, S. Tabbone, J. Blanc-talon, S. Bourennane, W. Philips et al., Robust curvature extrema detection based on new numerical derivation, Lect. Notes Comput. Sci, vol.5259, pp.485-493, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00300799

E. Keogh, S. Chu, D. Hart, and M. Pazzani, Segmenting time series: A survey and novel approach, Data Mining in Time Series Databases, pp.1-21, 2004.

H. Kim, H. K. Kim, M. Kim, J. Park, S. Cho et al., Representation learning for unsupervised heterogeneous multivariate time series segmentation and its application, Comput. Indust. Engin, vol.130, pp.272-281, 2019.

C. D. Kirkpatrick and J. Dahlquist, Technical Analysis, 2016.

C. Lanczos, Applied Analysis, 1956.

W. Lee, J. Ortiz, B. Ko, and R. Lee, Time series segmentation through automatic feature learning, 2018.

C. Lobry and T. Sari, Nonstandard analysis and representation of reality, Int. J. Contr, vol.39, pp.535-576, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00857828

X. Liu, Z. Lin, and H. Wang, Novel online methods for time series segmentation, IEEE Trans. Knowledg. Data Engin, vol.20, pp.1616-1626, 2008.

J. Liu, C. Wang, and Y. Liu, A novel method for temporal action localization and recognition in untrimmed video based on time series segmentation, IEEE Access, vol.7, pp.135204-135209, 2019.

S. Lu and S. Huang, Segmentation of multivariate industrial time series data based on dynamic latent variable predictability, IEEE Access, vol.8, pp.112092-112103, 2020.

L. Martí, N. Sanchez-pi, J. M. Molina, and A. C. Garcia, YASA: Yet another time series segmentation algorithm for anomaly detection in big data problems, Hybrid Artificial Intelligence Systems, vol.8480, pp.697-708, 2014.

M. Mboup, C. Join, and M. Fliess, Numerical differentiation with annihilators in noisy environment, Numer. Algor, vol.50, pp.439-467, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00319240

G. Mélard, Méthodes de prévisionà court terme (2 eé d.). Ellipses & Presses Universitaires de Bruxelles, 2008.

E. Nelson, Internal set theory: A new approach to nonstandard analysis, Bull. Amer. Math. Soc, vol.83, pp.1165-1198, 1977.

E. Nelson, Radically Elementary Probability Theory, 1987.

K. B. Pratt and E. Fink, Search for patterns in compressed time series, Int. J. Image Graph, vol.2, pp.89-106, 2002.

A. Robinson, Non-standard Analysis (revis, 1996.

J. Seevers, J. Johst, T. Weiß, H. Meschede, and J. Hessel, Automatic time series segmentation as the basis for unsupervised, non-intrusive load monitoring of machine tools, Procedia CIRP, vol.81, pp.695-700, 2019.

H. Sira-ramírez, C. García-rodríguez, J. Cortès-romero, and A. Luviano-juárez, Algebraic Identification and Estimation Methods in Feedback Control Systems, 2013.

P. E. Tsinaslanidis and A. D. Zapranis, Technical Analysis for Algorithmic Pattern Recognition, 2016.

Y. Wan, X. Gong, and Y. Si, Effect of segmentation on financial time series pattern matching, Appl. Soft Comput, vol.38, pp.346-359, 2016.

Y. Wan and Y. W. Si, A formal approach to chart patterns classification in financial time series, Informat. Sci, vol.411, pp.151-175, 2017.

J. Yin, Y. Si, and Z. Gong, Financial time series segmentation based on turning points, Int. Conf. Syst. Sci. Engin, 2011.