E. H. Hall, On a new action of the magnet on electric currents, Am. J. Math, vol.2, p.287, 1879.

P. Ehrenfest, Das prinzip von le chatelier-braun und die reziprozitätssätze der thermodynamik, Z. Phys. Chem, vol.77, p.227, 1911.

E. P. Mosca, The apparent paradox about dissipative forces produced by a static magnetic field is an old discussion: see, Am. J. Phys, vol.42, p.295, 1974.

D. C. Gabuzda, Magnetic force due to a currentcarrying wire: A paradox and its resolution, Am. J. Phys, vol.55, p.420, 1987.

M. J. Moelter, J. Evans, G. Elliott, and M. Jackson, Electric potential in the classical Hall effect: An unusual boundary-value problem, Am. J. Phys, vol.66, p.668, 1998.

L. N. Trefenthen and R. J. Williams, Conformal mapping solution of Laplace's equation on a polygon with oblique derivative boundary conditions, J. Comput. Appl. Math, vol.14, pp.227-249, 1986.

D. R. Baker and J. P. Heremans, Linear geometrical magnetoresistance effect: Influence of geometry and material composition, Phys. Rev. B, vol.59, p.13927, 1999.

G. Zhang, J. Zhang, Z. Liu, P. Wu, H. Wu et al., Geometry optimization of planar Hall devices under voltage biasing, IEEE Trans. Electron Devices, vol.61, p.4216, 2014.

O. Paul and M. Cornil, Explicit connection between sample geometry and Hall response, Appl. Phys. Lett, vol.95, p.232112, 2009.

T. Kramers, V. Krueckl, E. J. Heller, and R. E. Parrott, Self-consistent calculation of electric potentials in Hall devices, Phys. Rev. B, vol.81, p.205306, 2010.

C. Fernandes, H. E. Ruda, and A. Shik, Hall effect in nanowires, J. Appl. Phys, vol.115, p.234304, 2014.

D. Homentcovschi and R. Bercia, Analytical solution for the electric field in Hall plates, Z. Angew. Math. Phys, vol.69, p.97, 2018.

R. Benda, E. Olive, M. J. Rubì, and J. Wegrowe, Towards Joule heating optimization in Hall devices, Phys. Rev. B, vol.98, p.85417, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02042846

S. A. Solin, T. Thio, D. R. Hines, and J. J. Heremans, Enhanced roomtemperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors, Science, vol.289, p.1530, 2000.

L. M. Pugsley, L. R. Ram-mohan, and S. A. Solin, Extraordinary magnetoresistance in two and three dimensions: Geometrical optimization, J. Appl. Phys, vol.113, p.64505, 2013.

M. Holz, O. Kronenwerth, and D. Grundler, Enhanced sensitivity due to current redistribution in the Hall effect of semiconductor-metal hybrid structures, Appl. Phys. Lett, vol.86, p.72513, 2005.

N. Nagasoa, J. Sinova, S. Onoda, A. H. Macdonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys, vol.82, p.1539, 2010.

B. Madon, M. Hehn, F. Montaigne, D. Lacour, and J. Wegrowe, Corbino magnetoresistance in ferromagnetic layers: Two representative examples Ni 81 Fe 19 and Co 83 Gd 17, Phys. Rev. B, vol.98, p.220405, 2018.

J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Spin Hall effects, Rev. Mod. Phys, vol.87, p.1213, 2015.

J. Sinova and T. Jungwirth, Surprises from the spin-Hall effect, Phys. Today, vol.70, issue.7, p.38, 2017.

, In the classical limit considered here, non-dissipative macroscopic currents (i.e., macroscopic quantum coherent states) do not survive in contrast to that observed in superconducting materials or 2D electron gas and quantum Hall effects at low temperature

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt-Saunders, Philadelphia, 1976), p. 12 above Fig. 1.3: "In equilibrium this transverse field (or Hall field) E y will balance the Lorentz force, and the current will flow only in the x-direction

. Ch and . Kittel, Introduction to Solid State Physics, p.499, 2008.

R. S. Popovic-;-s, K. K. Sze, and . Ng, from this moment on, the charge carriers again move parallel to the strip axes, as if only the external electric field were acting on them, Physics of Semiconductor Devices, p.33, 2004.

L. Onsager, Reciprocal relations in irreversible processes II, Phys. Rev, vol.38, p.2265, 1931.

L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev, vol.91, p.1505, 1953.

S. Bruers, C. Maes, and K. Netocný, On the validity of entropy production principles for linear electrical circuits, J. Stat. Phys, vol.129, p.725, 2007.

L. Bertini, A. De-sole, D. Gabrielli, G. Jona-lasinio, and C. Landim, Minimum dissipation principle in stationary non-equilibrium sates, J. Stat. Phys, vol.116, p.831, 2004.

, The "charge leakage" can be huge in comparison with the charge accumulation ?n at the edges, while the power dissipated by this leakage remains negligible with respect to the total dissipation. The case of sizable power dissipated by the leakage current is discussed in a forthcoming article

S. Secs, Relaxation Phenomena and Internal Degrees of Freedom in Chap, Non-equilibrium Thermodynamics, vol.10, 1962.

D. Reguera, J. M. Vilar, and J. M. Rubì, The mesoscopic dynamics of thermodynamic systems, J. Phys. Chem. B, vol.109, p.21502, 2005.

J. Wegrowe, R. V. Benda, and J. M. Rubì, Conditions for the generation of spin current in spin-Hall devices, Europhys. Lett, vol.18, p.67005, 2017.

J. Wegrowe and P. Dejardin, Variational approach to the stationary spin-Hall effect, Europhys. Lett, vol.124, p.17003, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01945193

, The expression is valid for a non-degenerated semiconductor (Maxwellian distribution). However, in the case of a degenerated metal, the expression is an approximation for ?n=n 0