Y. Akimoto, Analysis of a natural gradient algorithm on monotonic convex-quadraticcomposite functions, GECCO, pp.1293-1300, 2012.

Y. Akimoto, A. Auger, and T. Glasmachers, Drift theory in continuous search spaces: expected hitting time of the (1+ 1)-es with 1/5 success rule, GECCO, pp.801-808, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01778116

S. Alvernaz and J. Togelius, Autoencoder-augmented neuroevolution for visual doom playing, IEEE CIG, pp.1-8, 2017.

D. V. Arnold and N. Hansen, Active covariance matrix adaptation for the (1+1)-cma-es, GECCO, pp.385-392, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00503250

A. Auger and N. Hansen, Linear convergence on positively homogeneous functions of a comparison based step-size adaptive randomized search: the (1+1) ES with generalized one-fifth success rule, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00877161

A. Auger and N. Hansen, Linear convergence of comparison-based step-size adaptive randomized search via stability of markov chains, SIAM Journal on Optimization, vol.26, pp.1589-1624, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00877160

A. S. Bandeira, K. Scheinberg, and L. N. Vicente, Convergence of trust-region methods based on probabilistic models, SIAM Journal on Optimization, vol.24, pp.1238-1264, 2014.

B. Baritompa and M. Steel, Bounds on absorption times of directionally biased random sequences, Random Structures & Algorithms, vol.9, pp.279-293, 1996.

P. Bontrager, A. Roy, J. Togelius, N. Memon, and A. Ross, Deepmasterprints: Generating masterprints for dictionary attacks via latent variable evolution*, IEEE BTAS, pp.1-9, 2018.

S. Bubeck, Convex optimization: Algorithms and complexity, 2014.

C. Cartis and K. Scheinberg, Global convergence rate analysis of unconstrained optimization methods based on probabilistic models, Mathematical Programming, vol.169, pp.337-375, 2018.

Y. S. Chow, On a strong law of large numbers for martingales, Ann. Math. Statist, vol.38, p.610, 1967.

A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimization, 2009.

L. Devroye, The compound random search, International Symposium on Systems Engineering and Analysis, pp.195-110, 1972.

Y. Diouane, S. Gratton, and L. N. Vicente, Globally convergent evolution strategies, Mathematical Programming, vol.152, pp.467-490, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01391780

B. Doerr and L. A. Goldberg, Adaptive drift analysis, Algorithmica, pp.224-250, 2013.

B. Doerr, D. Johannsen, and C. Winzen, Multiplicative drift analysis, Algorithmica, pp.673-697, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01797908

Y. Dong, H. Su, B. Wu, Z. Li, W. Liu et al., Efficient decision-based black-box adversarial attacks on face recognition, CVPR, 2019.

G. Fujii, M. Takahashi, and Y. Akimoto, Cma-es-based structural topology optimization using a level set boundary expression-application to optical and carpet cloaks, Computer Methods in Applied Mechanics and Engineering, vol.332, pp.624-643, 2018.

T. Geijtenbeek, M. Van-de-panne, and A. F. Van-der-stappen, Flexible muscle-based locomotion for bipedal creatures, ACM Transactions on Graphics (TOG), vol.32, pp.1-11, 2013.

T. Glasmachers, Global convergence of the (1 + 1) evolution strategy to a critical point, Evolutionary Computation, vol.28, pp.27-53, 2020.

D. Golovin, J. Karro, G. Kochanski, C. Lee, X. Song et al., Gradientless descent: High-dimensional zeroth-order optimization, ICLR, 2020.

S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang, Direct search based on probabilistic descent, SIAM Journal on Optimization, vol.25, pp.1515-1541, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01523690

S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang, Complexity and global rates of trust-region methods based on probabilistic models, IMA Journal of Numerical Analysis, vol.38, pp.1579-1597, 2017.

D. Ha and J. Schmidhuber, Recurrent world models facilitate policy evolution, NeurIPS, pp.2450-2462, 2018.

B. Hajek, Hitting-time and occupation-time bounds implied by drift analysis with applications, Advances in Applied probability, vol.14, pp.502-525, 1982.

N. Hansen, A. Auger, R. Ros, S. Finck, and P. Po?ík, Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009, GECCO, pp.1689-1696, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00545727

N. Hansen and A. Ostermeier, Completely derandomized self-adaptation in evolution strategies, Evolutionary Computation, vol.9, pp.159-195, 2001.

J. He and X. Yao, Drift analysis and average time complexity of evolutionary algorithms, Artificial intelligence, vol.127, pp.57-85, 2001.

J. He and X. Yao, A study of drift analysis for estimating computation time of evolutionary algorithms, Natural Computing, vol.3, pp.21-35, 2004.

J. Jägersküpper, Analysis of a simple evolutionary algorithm for minimization in Euclidean spaces, Automata, Languages and Programming, pp.188-188, 2003.

J. Jägersküpper, Rigorous runtime analysis of the (1+ 1) es: 1/5-rule and ellipsoidal fitness landscapes, FOGA, pp.260-281, 2005.

J. Jägersküpper, How the (1+1)-ES using isotropic mutations minimizes positive definite quadratic forms, Theoretical Computer Science, vol.361, pp.38-56, 2006.

J. Jägersküpper, Algorithmic analysis of a basic evolutionary algorithm for continuous optimization, Theoretical Computer Science, vol.379, pp.329-347, 2007.

S. Kern, S. D. Müller, N. Hansen, D. Büche, J. Ocenasek et al., Learning probability distributions in continuous evolutionary algorithms-a comparative review, Natural Computing, vol.3, pp.77-112, 2004.

J. Kone?n? and P. Richtárik, Simple complexity analysis of simplified direct search, 2014.

I. Kriest, V. Sauerland, S. Khatiwala, A. Srivastav, and A. Oschlies, Calibrating a global three-dimensional biogeochemical ocean model (mops-1.0), Geoscientific Model Development, vol.10, p.127, 2017.

J. Larson, M. Menickelly, and S. M. Wild, Derivative-free optimization methods, Acta Numerica, vol.28, pp.287-404, 2019.

P. K. Lehre and C. Witt, General drift analysis with tail bounds, 2013.

J. Lengler, Drift analysis, Theory of Evolutionary Computation, pp.89-131, 2020.

J. Lengler and A. Steger, Drift analysis and evolutionary algorithms revisited, 2016.

P. Macalpine, S. Barrett, D. Urieli, V. Vu, and P. Stone, Design and optimization of an omnidirectional humanoid walk: A winning approach at the RoboCup 2011 3D simulation competition, AAAI, 2012.

B. Mitavskiy, J. Rowe, and C. Cannings, Theoretical analysis of local search strategies to optimize network communication subject to preserving the total number of links, International Journal of Intelligent Computing and Cybernetics, vol.2, pp.243-284, 2009.

D. Morinaga and Y. Akimoto, Generalized drift analysis in continuous domain: linear convergence of (1+ 1)-es on strongly convex functions with lipschitz continuous gradients, FOGA, pp.13-24, 2019.

A. Nemirovski, Information-based complexity of convex programming, Lecture Notes, 1995.

Y. Nesterov, Lectures on convex optimization, vol.137, 2018.

C. Paquette and K. Scheinberg, A stochastic line search method with convergence rate analysis, 2018.

I. Rechenberg, Evolutionsstrategie: Optimierung technisher Systeme nach Prinzipien der biologischen Evolution, Frommann-Holzboog, 1973.

I. Rechenberg, Evolutionsstrategie'94, frommann-holzboog, 1994.

L. M. Rios and N. V. Sahinidis, Derivative-free optimization: a review of algorithms and comparison of software implementations, Journal of Global Optimization, vol.56, pp.1247-1293, 2013.

M. Schumer and K. Steiglitz, Adaptive step size random search, Automatic Control, IEEE Transactions on, vol.13, pp.270-276, 1968.

S. U. Stich, C. L. Muller, and B. Gartner, Optimization of convex functions with random pursuit, SIAM Journal on Optimization, vol.23, pp.1284-1309, 2013.

S. U. Stich, C. L. Müller, and B. Gärtner, Variable metric random pursuit, Mathematical Programming, vol.156, pp.549-579, 2016.

J. Uhlendorf, A. Miermont, T. Delaveau, G. Charvin, F. Fages et al., Long-term model predictive control of gene expression at the population and single-cell levels, Proceedings of the National Academy of Sciences, vol.109, pp.14271-14276, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01528440

V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith et al., Evolving Mario levels in the latent space of a deep convolutional generative adversarial network, GECCO, pp.221-228, 2018.