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Joint Monitorless Load-Balancing and Autoscaling
for Zero-Wait-Time in Data Centers

Yoann Desmouceaux, Marcel Enguehard, Thomas H. Clausen

Abstract—Cloud architectures achieve scaling through two
main functions: (i) load-balancers, which dispatch queries among
replicated virtualized application instances, and (ii) autoscalers,
which automatically adjust the number of replicated instances
to accommodate variations in load patterns. These functions are
often provided through centralized load monitoring, incurring
operational complexity. This paper introduces a unified and
centralized-monitoring-free architecture achieving both autoscal-
ing and load-balancing, reducing operational overhead while
increasing response time performance. Application instances are
virtually ordered in a chain, and new queries are forwarded along
this chain until an instance, based on its local load, accepts the
query. Autoscaling is triggered by the last application instance,
which inspects its average load and infers if its chain is under- or
over-provisioned. An analytical model of the system is derived,
and proves that the proposed technique can achieve asymptotic
zero-wait time with high (and controlable) probability. This result
is confirmed by extensive simulations, which highlight close-to-
ideal performance in terms of both response time and resource
costs.

Index Terms—Load balancing, auto-scaling, segment routing,
application-aware, performance analysis.

I. INTRODUCTION

Virtualization and cloud architectures, wherein different
tenants share computing resources to run their workloads,
have made fast task allocation and deallocation a commodity
primitive in data centers [1]. To optimize costs while pre-
serving Quality of Service (QoS), applications are thus (i)
replicated among multiple instances running, e.g., in containers
or in virtual machines (VMs) [2], [3], and (ii) the number of
aforementioned instances is automatically scaled up or down
to meet a given Service Level Agreement (SLA) [4]. Two
functions enable this: (i) a load-balancer, which dispatches
queries onto identical replicas of the application, and (ii) an
autoscaler, which monitors these instances and automatically
adjusts their number according to the incoming load.

A challenge for network load-balancers is to provide
performance and resiliency while satisfying per-application
SLAs. Some architectures, such as Equal Cost Multi-Path
(ECMP) [5] or Maglev [6], distribute flows among applica-
tion instances pseudo-randomly, forwarding packets without
terminating Layer-4 connections, and thus providing a high
throughput. The use of consistent hashing also provides re-
siliency for when an existing flow is handed over to another
load-balancer [6]. This requires, nonetheless, that flows be
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assigned to instances regardless of their load state, even though
it has been demonstrated [7] that considering application load
can greatly improve overall performance. Other load-balancing
architectures do take application state into account, by termi-
nating Layer-4 connections [8], and/or by using centralized
monitoring [9] – thus incurring both a performance overhead
and a degradation in resiliency.

Similarly, autoscalers use centralized monitoring, with an
external agent gathering load metrics from all servers so as to
make scaling decisions [10], [11]. The delay incurred by an
external agent collecting these metrics causes such decisions to
be made based on out-of-date information. Furthermore, such
agents typically collect external metrics (e.g., CPU load of a
VM as seen by the hypervisor), ignoring application-specific
metrics possibly more suitable for making scaling decisions.
A. Statement of Purpose

While workloads lasting hours or minutes (e.g., data pro-
cessing tasks) can be efficiently scheduled with offline op-
timization algorithms [12], and while sub-millisecond work-
loads require over-provisioning as the time to commission
a new instance is too large as compared to the application
execution time, mid-sized workloads (lasting from 100 ms to
1 s, e.g., Web workloads) are amenable to reactive autoscaling,
as container boot times are typically sub-second [13]. Thus,
in this paper, the problem of mid-sized workloads scalability
under QoS constraints is explored, for replicated applications
deployed, e.g., as containers. In particular, a centralized-
monitoring-free architecture for achieving asymptotic zero-
wait-time is introduced. More precisely, the architecture is
centralized-monitoring-free as it relies on the application
themselves monitoring their load, without piggy-backing in-
formation to a central controller. It yields asymptotic zero-
wait-time in the sense that each incoming query finds, with
probability converging to one as the number of application
instances goes to infinity, an idle application instance. The
architecture relies on two interdependent components: a load-
aware load-balancing algorithm and a decentralized autoscal-
ing policy.

First, a centralizerd-monitoring-free load-balacing algorithm
is introduced: Join-the-First-Idle-Queue (JFIQ). JFIQ relies on
ordering the available application instances in a chain along
which incoming queries are directed. Each of the instances in
the chain makes a local decision based on its load, accepting
the query if it has available capacity, and forwarding the query
to the next instance in the chain otherwise. The proposed
architecture operates entirely within the network layer (Layer-
3) using IPv6 Segment Routing (SRv6) [14], thus removing
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the need from terminating or proxying network connections.
Second, to achieve asymptotic zero-wait-time, JFIQ is

complemented with a centralizerd-monitoring-free autoscaling
policy which uses the fact that the busyness of the last
instance in the chain is an indicator of the busyness of the
whole system. This allows offloading autoscaling decisions
to that last instance, by measuring its occupancy ratio over
time. Upscaling/downscaling is triggered if that ratio crosses
pre-determined maximum/minimum thresholds. An analytical
model demonstrates the validity of using this autoscaling
policy conjointly with JFIQ to achieve asymptotic zero-wait-
time, and quantifies the behavior of the system in terms of
response time.

Finally, this analytical model is complemented with exten-
sive simulations, capturing the dynamics of the architecture,
and showing that the proposed mechanism allows to precisely
control the tail of the response time distribution. These sim-
ulations illustrate that the propose mechanisms reduce the
resource cost (i.e., the number of necessary instances) for an
identical target response time by an order of magnitude in
the evaluated scenario, when compared to the simpler policies
used in consistent-hashing-based load-balancers.

B. Related work

This section discusses the literature on network load-
balancing (section I-B1) and autoscaling (section I-B2).

1) Load-balancing: The goal of a load-balancer is to as-
sign incoming queries for a given service to one of several
distributed instances of this service. As such, this requires:
(i) selecting the instance so as to minimize response time,
and (ii) making sure that the load-balancer does not become
a bottleneck.

Several load-aware load-balancing algorithms exist [15],
including Random (RND), where queries are assigned ran-
domly to one of n application instances, and Round-Robin
(RR), where the i-th query is assigned to the (i mod n)-th
instance. The optimal policy is the Least-Work-Left (LWL)
policy, which assigns queries to the application instance with
the least amount of pending work [16]. A simpler algorithm
is Join-the-Shortest-Queue (JSQ), which assigns queries to
the least loaded of the application instances. JSQ does not
require knowledge of the remaining work time of currently-
served queries, and provides near-optimal performance [17],
even in high-load regimes [18]. JSQ needs to query the state
of all application instances for each incoming query, which
incurs a monitoring overhead of n messages per query. A
more scalable algorithm, Join-the-Idle-Queue (JIQ), has been
proposed in [19]: queries are assigned to an idle application
instance if one exists, or to a random instance otherwise. This
is implemented by maintaining a centralized idle queue of
the identities of currently idle application instances, minimiz-
ing the monitoring overhead as compared to JSQ. Another
algorithm is Join-the-Shortest-of-d-Queues (JSQd) [7], which
assigns queries to the least loaded of d randomly sampled ap-
plication instances, and which is therefore more decentralized
but less efficient than JIQ (as stated in [20]). The algorithms
algorithm listed above have been analyzed in the heavy-traffic

limit (where the query rate approaches stability), allowing to
quantify the achieved expected waiting time as a function of
the number of application instances [20], [21].

The above has summarized a set of algorithms for assigning
flows to applications, as well as their key performance charac-
teristics. It is equally important to be able to actually distribute
network flows across application instances, at the network
layer. This consists of directing flows (e.g., TCP packets)
corresponding to queries for a given service (described by a
virtual IP address, VIP) to the physical IP address (PIP) of
a deployed instance. This load-balancing function can itself
be replicated, in which case it is deployed behind a layer
of ECMP routers, which can arbitrarily redistribute packets
between load-balancer instances, for new flows as well as for
already-established flows. It is thus necessary to maintain Per-
Connection-Consistency (PCC), i.e., to ensure that already-
established flows are always directed to the same application
instance, regardless of the load-balancer they are handled by.
Maglev [6] and Ananta [22] use a combination of consistent
hashing and per-flow tables to ensure PCC. This has been com-
plemented by enabling hardware-support [23], [24], [25], or by
using in-packet state to maintain PCC [25], [26], [27]. While
providing per-connection consistency, these architectures do
not consider the application instance load, using a naïve RND
policy at the cost of decreased application-performance [15],
[28]. A first step towards considering the load of application
instances is 6LB [29], where consistent hashing is used with
a variant of the JSQ2 algorithm that assigns queries to the
first available from among two candidate instances. Some
architectures [9] rely on Software-Defined Networking (SDN)
to monitor the network and the servers, and thus make load-
aware decisions – but at the cost of a monitoring overhead.

2) Autoscaling: Methods to provide autoscaling have been
classified as reactive and proactive [4]. Reactive methods reg-
ularly gather measurements, and take actions when thresholds
are crossed. For instance, in [10] up/downscaling is triggered
when bounds on some observed metrics are reached; a similar
approach can be found in [11], but with dynamic threshold
adjustment. These incur an overhead from gathering statistics,
and a time gap between detection of violations and appropriate
reaction. Similar threshold-based approaches include [30],
[31], [32].

Conversely, proactive approaches consist of anticipating
state and acting correspondingly. For example, in [33], moving
averages are used to anticipate the future value of metrics
of interests. Similarly, [34] uses Machine Learning (ML) to
classify workloads by their resource allocation preferences,
and in [35], neural networks are used to predict CPU load
trends of application instances and provision resources ac-
cordingly. A Tree-Augmented Naive Bayesian network is used
in [36] to detect SLA violations, and scale resources up when
this happens. In [37], [38], control theory is used to track
CPU usage and to allocate resources accordingly, and in [39],
control theory is used to adapt the amount of CPU resources
allocated to each query so that they complete within a deadline.
While solving the issue of timeliness, proactive approaches
suffer the need to collect statistics and perform centralized
computations.
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Using queuing theory has also been proposed [40], [41].
In [42], an autoscaling scheme for JIQ is proposed, by creating
a feedback loop that decommissions application instances that
remain idle for a long period of time, and commissions a new
application instance for each new query. In [43], a similar
token-based mechanism is introduced, with a new application
instance being commissioned only when a task only finds busy
instances.

C. Paper Outline

The remainder of this paper is organized as follows. Sec-
tion II gives an overview of the architecture introduced in this
paper. An analytical model for the response time of the system
with a fixed number of instances is introduced in section III,
and the asymptotic behavior of the system if characterized.
Numerical results are given in section IV, along with computa-
tional simulations providing further insight. Finally, section V
concludes this paper.

II. JOINT LOAD-BALANCING AND AUTOSCALING

In this paper, an application is replicated on a set of n
application instances {s1, . . . , sn} with identical processing
capacities. The goal is to minimize response time, i.e., queries
should be served with zero waiting time, by way of (i) en-
suring that enough application instances are available, and (ii)
mapping the query to an idle application instance. To address
the challenges introduced in sections I-B1 and I-B2, this
goal is attained through joint load-balancing and autoscaling
strategies which provide not only close-to-ideal algorithmic
performance, but which can also be efficiently implemented,
i.e., both the load-balancing and autoscaling functions must
incur minimal state and network overhead. The proposed
architecture relies on three intertwined building blocks: (i) a
load-balancing algorithm that achieves asymptotic zero-wait-
time if the number of application instances is correctly scaled;
(ii) an enhanced IPv6 dataplane to perform query dispatching
in a decentralized and stateless fashion; (iii) a centralized-
monitoring-free autoscaling technique to adapt the number of
application instances while incurring no monitoring cost.

A. Join-the-First-Idle-Queue Load-Balancing

An ideal load-balancing algorithm should achieve asymp-
totic zero-wait time for a properly-scaled set of application
instances. In particular, this is the behaviour of the reference
JIQ policy, which keeps track of available instances by means
of a centralized idle queue, with instances communicating
their availability to a centralized controller upon completion
of a query. The drawbacks of JIQ are twofold: it requires
centralized communication (which can create implementabil-
ity and scalability issues), and it requires centralized load
monitoring if used in conjunction with an autoscaler. To
address these issues, this paper proposes a new load-balancing
technique: Join-the-First-Idle-Queue (JFIQ), which does not
rely on centralized load tracking.

JFIQ relies on ordering the n application instances in a
chain (since the application instances are assumed to have

S2S1 S3 S4

Figure 1. Join-the-First-Idle-Queue LB (Algorithm 1) with n = 4 instances
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SYN {c, S1, S2, S3, v}SYN {c, v}

S2

accepts

S1

refuses

SYN-ACK {v, S2, LB, c}
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data center

Figure 2. Example of SR load-balancing [29] with 3 instances, wherein the
second one accepts the connection.

identical capacity, the actual order of the instances in the chain
does not matter, so long as it remains consistent throughout
the lifetime of the system). Then, JFIQ enforces that each of
the first (n−1) instances never serves more than 1 query at a
given time (see figure 1). Formally, each query is forwarded
along the chain (s1, . . . , sn) of n application instances. Each
instance si 6= sn in the list either accepts the query if it
currently idle, and otherwise forwards it to the next instance
si+1. To ensure that all queries are served, the last instance sn
must always accept queries. Thus, each of the first (n−1) in-
stances can hold only 0 or 1 query, ensuring zero waiting time
for queries served by those. As shown later in section III-B,
JFIQ allows to predictably control the probability of having
a blocked task (i.e., a task waiting for the last application
instance to become idle) by varying the number n of instances.

B. Network-level JFIQ using SRv6

To achieve JFIQ at the network layer while enabling
application-awareness, this paper leverages the dataplane of
6LB [29] and SHELL [44], summarized in figure 2. This
dataplane is based on SRv6, a source-routing architecture
which allows specifying, within a specific IPv6 Extension
Header [45], a list of segments to be traversed by a given
packet, where each segment is an IPv6 address representing
an instruction to be performed on the packet.

First, a control plane provisions the egress router with a
fixed list of application instances to be used by the JFIQ
algorithm. Then, when a connection establishment packet (e.g.,
a TCP SYN) destined for the VIP is received by the egress
router, it inserts an SRv6 header, with a list of PIPs corre-
sponding to that list of instances. Instances then implement the
JFIQ algorithm as described in algorithm 1, by either handling
the packet locally or forwarding it to the next instance. To
avoid perpetual triangular traffic, a “stickiness” mechanism
is then used to let subsequent packets within this flow be
directed to the instance having accepted the connection [44].
A specific field of the transport header is used as a covert
channel to encode the index of the application instance that
has accepted the connection – examples of such fields include
QUIC session ID, low-order bits of TCP timestamps, or high-
order bits of TCP sequence numbers. This field must be able
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Algorithm 1 Local Connection Request Handling
p← connection establishment packet . e.g., TCP SYN
v ← p.lastSegment . VIP
b← number of busy threads for v
if b = 0 then . application instance is available

p.segmentsLeft← 0
p.dst← v
forward p to local workload v

else . forward to next application instance
p.segmentsLeft← p.segmentsLeft− 1
p.dst← p.nextSegment
transfer p to p.dst

end if
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Figure 3. Autoscaling when n = 3 and µ = 1. The level of red in each
application instance shows the average number of concurrently-served queries
as computed in section III. When the query rate increases from λ = 1.4 to
λ = 1.7, the third instance observes that it has become highly occupied and
thus requests upscaling.

to be set by the application instance and transparently echoed
in packets sent by the client, thus allowing the ingress router to
statelessly determine to which application instance non-SYN
packets should be forwarded.

Therefore, the load-balancing function does not require
per-flow state, consisting of (i) applying a fixed SR list on
connection establishment packets, or (ii) applying a one-
segment list on other packets, with a destination address that
depends on the value encoded in the covert channel found in
the packet. This makes the load-balancing function simpler,
thus more amenable to low-latency, high-throughput hardware
implementations. Plus, as the functionality performed by the
ingress router does not require any synchronization, it can
be distributed among several routers, yielding scalability and
flexibility.

C. Autoscaling

A key feature of JFIQ (compared, e.g., to JIQ) is that the
last instance has a unique view on whether the system is
overloaded or not. By construction, all instances but the last
only accept queries when idle. This can be exploited to per-
form autoscaling: when the last instance detects that it serves
too many or too few queries, it requests to the control plane
that the chain be scaled up or down. The control plane then
provisions or deprovisions an instance as needed, and updates
the ingress router with the new list of instances to be used

Algorithm 2 Local Autoscaling at Last Application Instance

p↑e , p
↓
e ← parameter . up/downscaling thresholds

ravg ← parameter . average application execution time (1/µ)
W ← 1000× ravg . window size for EWMA
t0 ← time() . timestamp of last event for EWMA
p̂e ← 0 . EWMA sample of pe = P[Nn = 0]
r ← 0 . number of events
for each connection establishment packet p from client do

r ← r + 1
Nn ← number of busy threads for v
α← 1− exp(−(time()− t0)/W )
p̂e ← (1− α)p̂e + α1{Nn=0}
t0 ← time()
if r > 50 then . make sure to have a significant sample

if p̂e > p↓e then
request downscaling; reset all variables

else if p̂e < p↑e then
request upscaling; reset all variables

end if
end if
p.segmentsLeft← 0
p.dst← v
forward p to local workload v

end for
for each connection termination packet p from application do

r ← r + 1
α← 1− exp(−(time()− t0)/W )
p̂e ← (1− α)p̂e . Nn was > 0 over the last period
t0 ← time()
forward p

end for
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Figure 4. JFIQ autoscaling: example of upscaling for p∗e = 0.4 and ρ ∈
(20, 25): the number n of instances adapts to maintain pe within p∗e (thick
line) and p↑e . The top graph depicts the corresponding expected response time
E[T ], numerically computed with the method introduced in section III.

by the load-balancing function. This allows for centralized-
monitoring-free autoscaling, as illustrated in figure 3.

As formalized in Algorithm 2, the last instance in the chain
keeps statistics about its queue size over time. The fraction
of time pe during which the last instance is empty is sampled
(with an Exponentially-Weighted Moving Average, EWMA)
and the autoscaling mechanism tries to maintain it close to
a fixed, tunable, target p∗e . When pe goes below a threshold
p↑e , the instance triggers upscaling of the chain. Conversely,
when this goes above a threshold p↓e , the instance triggers
downscaling of the chain. To avoid oscillations, the proposed
autoscaling method ensure that pn−1

e , the fraction of time
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Table I
NOTATION USED WHEN APPLYING THE RRR TECHNIQUE

Notation Description
n ≥ 2 Number of instances

n̄ = n− 1 All instances but the last
λ > 0 Query rate
µ > 0 Service rate
ρ = λ/µ Normalized query rate

Ni
Number of queries

handled by the i-th instance

ΣN =
∑n̄

i=1Ni
Number of queries

handled by the first n̄ instances
πk = P[ΣN = k] Probability distribution of ΣN
pe = P[Nn = 0] Probability that last instance is idle

p∗e Target idleness value pe for autoscaling

State (i, j)
ΣN = i and Nn = j,

i.e., i out of the first n̄ instances are busy
and the last instance handles j queries

pD
(i,j)→(k,j−1)

Probability that first state
visited on row j − 1 when

starting from (i, j) is (k, j − 1)

pDi→k
Probability that first state visited on row

0 when starting from (i, 1) is (k, 0)

RD
(i,j)→(?,j−1)

Mean reward of zNn(t) when going
from (i, j) down to row j − 1

RD
i

Mean reward of zNn(t) when going
from (i, 1) down to row 0

RL
i

Mean reward of zNn(t) when going
from (i, 0) left to (0, 0)

RC Mean reward of zNn(t) over a cycle
from (0, 0) to (0, 0)

0, 0 1, 0 . . . n̄, 0

0, 1 1, 1 . . . n̄, 1

0, 2 1, 2 . . . n̄, 2

...
...

...
...

λ

µ

λ

2µ

λ

n̄µ
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n̄µ

λ
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n̄µ

µ
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Figure 5. Markov chain for the JFIQ load-balancing scheme in the case of
n instances (with n̄ = n−1 for readability). State (i, j) means i of the first
n̄ instances are serving one query, and the n-th instance is serving j queries.
Space state is {0, . . . , n̄} ×N. The border row {0, . . . , n̄} × {1} is grayed.

during which the (n− 1)-st instance is empty just after a
downscaling operation, is above p↑e , so as not to re-trigger
upscaling – and similarly when upscaling. How to tune p∗e ,
and accordingly set p↑e and p↓e , is discussed in section III.
Figure 4 illustrates the behavior of the system when subject
to an increasing load and when p∗e = 0.4, by depicting the
evolution of pe (using the numerical computation that will be
detailed in section III).

III. JOIN-THE-FIRST-IDLE-QUEUE ANALYSIS

The Join-the-first-idle-queue load-balancing scheme intro-
duced in section II-A is analytically studied in this section,
for a fixed number n of instances. For readability, n̄ = n−1
will denote the number of instances that can reject a query.

Table I summarizes the notation used in this paper. Proofs are
provided in the appendix.

A. Markov Model

For the purpose of this analysis, arrivals are assumed to
follow to a Poisson process of intensity λ > 0 (i.e., the
probability that the time between two arrivals is less than t is
1−e−λt). Each application instance has an identical processing
capacity µ > 0, with exponentially-distributed service times
(i.e., the probability of a query completing in less than t is
1− e−µt). To ease notation, ρ = λ/µ denotes the normalized
query rate. As described in section II-A, a query is directed to
the chain of application instances (s1, . . . , sn), where each
instance si serves it if idle and otherwise forwards it to
instance si+1, until reaching the last instance.

Therefore, the whole system can be modeled as a Markov
chain. With xi denoting the number of queries handled by the
i-th instance si, the state of the system is x = (x1, . . . , xn),
and the state space is S = {0, 1}n−1 × N. In each state,
the system can transition upwards with rate λ to the state
in which the first available instance serves gained one query,
and downwards with rate µ to any of those states where one
query has completed1.

To simplify the analysis, a Markov chain with a reduced
state space is used, which still captures the metrics of interest.
The number of queries handled by the first n̄ instances is
denoted by i (with 0 ≤ i ≤ n̄), and the number of queries
handled by the last instance by j. Formally, i =

∑n−1
j=1 xi,

and j = xn. Then, the behavior of (i, j) can be modeled as a
Markov chain with state space S = {0, . . . , n̄}×N. Transitions
that increase j can only happen when i = n̄ (i.e., queries can
be accepted by the last instance only if all but the last are
busy). Transitions that increase i can happen from any state
with i < n̄ (i.e., as long as there is an idle instance among
the first n̄, queries will be directed to one such instance). In
both cases, these transitions occur at rate λ, the overall query
rate. Transitions that decrease i happen at rate iµ (because the
processing capacity of the pool of the first n̄ instances is µ
times the number of busy instances), and those decreasing j
happen at rate µ (because the processing capacity of the last
instances is µ). Figure 5 shows a graphical representation of
this Markov chain.

B. Applying the Recursive Renewal Reward (RRR) Method to
the Model

To obtain the client response time, according to Little’s
law [46], the expected number of queries handled by the
system must be derived. In the following, Ni will denote the
number of queries handled by the i-th application instance.
The total number of queries handled by the first n̄ instances,
ΣN :=

∑n̄
i=1Ni, follows the law of an M/M/n̄/n̄ queue. The

probability distribution πk of ΣN is therefore:

1Formally, let ei be the vectors of the canonical basis of Rn: ei =
(δi1, . . . , δin). For each state x, let the upward direction of x be u(x) = x+
emin{i∈{1,...,n}|xi=0}, with the convention min ∅ = n. A set of downward
directions is also defined as d(x) =

⋃
i:xi>0{x − ei}. With this notation,

from each state x there is a transition to u(x) with rate λ, and a transition
to each state in d(x) with rate µ.
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P[ΣN = k] =
ρk

k!
∑n̄
i=0 ρ

i/i!
:= πk (1)

and the expected number of queries handled by the first n̄
instances is:

E[ΣN ] =

∑n̄
k=0 kρ

k/k!∑n̄
k=0 ρ

k/k!
(2)

To obtain the probability distribution of Nn, the number of
queries handled by the last instance, the RRR [47] method
is applied. RRR consists of identifying a home state S0 and
a metric of interest M(t) whose expected value shall be
computed. Then, the expected value of M can be evaluated
by computing its average earning rate over a cycle from S0 to
itself, divided by the average duration of the cycle:

E[M ] =
E[
∫
S0→S0

M(t)dt]

E[
∫
S0→S0

1dt]
(3)

RRR applies to bi-dimensional Markov chains with a one-
dimensional repeating pattern (as in figure 5), in which case
computing the average earning rate of the reward reduces to
solving a finite number of equations, by restricting to the
border row that generates the pattern.

The probability distribution of Nn is computed by deriving
its probability generating function f(z) = E[zNn ] (z ∈ C).
To that purpose, the metric of interest is chosen to be M(t) =
zNn(t), such that applying RRR will yield E[zNn ]. The home
state is chosen as (0, 0). To compute the mean reward of
M(t) over a cycle from the home state to itself, the reward is
decomposed into two parts: (i) the mean reward when going
one level down in the Markov chain (i.e., until a query served
from in the last instance terminates), and (ii) the mean reward
when going from a state (i, 0) to the home state (i.e., until all
queries have completed).

1) Reward when going one level down: For j ≥ 1, let
RD(i,j)→(?,j−1) be the mean reward earned between entering
state (i, j) and going "one level down" by reaching row
j−1 (i.e., reaching any state (k, j−1)). Due to the repeating
structure of the chain, lemma 1 holds:

Lemma 1 For i ∈ {0, . . . , n̄} and j ≥ 1, RD(i,j+1)→(?,j) =

zRD(i,j)→(?,j−1). Therefore, only RD(i,1)→(?,0) needs to be com-
puted, which will be denoted by RDi .

Let pD(i,j)→(k,j−1) be the probability that, starting from state
(i, j), the first state visited when reaching row j−1 is (k, j−1).
Similarly to lemma 1, since the chain has a recursive structure
along the vertical dimension, lemma 2 holds:

Lemma 2 For j ≥ 1 and k ∈ {0, . . . , n̄}, pD(i,j)→(k,j−1) is
independent from j, and will therefore be denoted by pDi→k.

With these two lemmas, it is possible to formulate a system
of equations2 for the pDi→k, for k ∈ {0, . . . , n̄}:

pD0→k =
µ

λ+ µ
δ0k +

λ

λ+ µ
pD1→k (4)

2δnm denotes the Kronecker symbol: δnm =1 if n=m and 0 otherwise.

pDi→k =
µ

λ+ (i+ 1)µ
δik +

iµ

λ+ (i+ 1)µ
pDi−1→k

+
λ

λ+ (i+ 1)µ
pDi+1→k,∀1 ≤ i ≤ n̄−1 (5)

pDn̄→k =
µ

λ+ nµ
δn̄,k +

n̄µ

λ+ nµ
pDn̄−1→k

+
λ

λ+ nµ

n̄∑
`=0

pDn̄→` p
D
`→k (6)

In these equations, the leftmost terms (of the right-hand side)
denote the probability of reaching (k, 0) from (i, 1) directly,
while the following terms express reaching (k, 0) from (i, 1)
by transitioning to an adjacent state first. The rightmost in
equation (6) comes from the possibility of reaching (k, 0) from
(i, 1) by going to row 2 first, and uses lemma 2 to compute
the transition from row 2 back to row 0.

Having computed the pDi→k, it is possible to state a system
of equations for RDi :

RD0 =
z

λ+ µ
+

λ

λ+ µ
RD1 (7)

RDi =
z

λ+ (i+1)µ
+

iµ

λ+ (i+1)µ
RDi−1 +

λ

λ+ (i+1)µ
RDi+1

∀1 ≤ i ≤ n̄−1 (8)

RDn̄ =
z

λ+ nµ
+

n̄µ

λ+ nµ
RDn̄−1

+
λ

λ+ nµ

(
zRDn̄ +

n̄∑
k=0

pDn̄→k R
D
k

)
(9)

The first terms of the right-hand side of these equations denote
the mean reward earned when in state (i, 1), (i.e., z times the
expected time spent in (i, 1), since in these states Nn = 1
and zNn = z). The following terms come from the reward
earned if going to an adjacent state instead of directly going
to row 0. The bracketed term in equation (9) uses lemma 1
to express the reward when going from (n̄, 2) to row 1, and
then lemma 2 for going from a non-deterministic state in row
1 to row 0. Solving the system of equations (7),(8),(9) yields
the following for the values of RDi :

Lemma 3 For i ∈ {0, . . . , n̄}, RDi = Aiz+Biz
2

C−Dz , where
Ai, Bi, C,D are real constants, and Bn̄ = 0.

2) Reward when going from row 0 to the home state:
Having computed RDi , it is possible to compute RLi , the mean
reward earned when going from a state (i, 0) (with i ≥ 1) left
to the home state (0, 0) – with RL0 = 0, since reaching (0, 0)
means the end of the cycle. The system of equations for the
RLi is:

RL0 = 0 (10)

RLi =
1

λ+ iµ
+

iµ

λ+ iµ
RLi−1 +

λ

λ+ iµ
RLi+1,∀1 ≤ i ≤ n̄−1

(11)

RLn̄ =
1

λ+ n̄µ
+

n̄µ

λ+ n̄µ
RLn̄−1

+
λ

λ+ n̄µ

RDn̄ +

n̄∑
j=0

pDn̄→j R
L
j

 (12)
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This system is obtained similarly to the system (7),(8),(9). The
bracketed term in equation (12) uses lemma 1 and expresses
the possibility to go from (n̄, 0) to (n̄, 1), back to one of
the possible states in row 0, and finally to (0, 0). Solving the
system of equations (11),(12) yields the following:

Lemma 4 For i ∈ {1, . . . , n̄}, RLi = Ei+Fiz
C−Dz , where Ei, Fi

are real constants, and C,D the same as in lemma 3.

3) Mean reward over a cycle: Finally, it is possible to
express RC , the mean reward over a cycle from the home
state to itself, as follows:

RC =
1

λ
+RL1 (13)

This allows deriving the total expected value of zNn , using
equation (3):

E[zNn ] =
E[
∫

(0,0)→(0,0)
zNn(t)dt]

E[
∫

(0,0)→(0,0)
1dt]

=
RC(z)

RC(1)
(14)

Applying lemma 4 to i = 1 then yields the following for
E[zNn ]:

Theorem 1 The probability generating function of Nn has
the form E[zNn ] = E+Fz

C−Dz , where E,F are real constants
and C,D are the same as in lemma 3. With this notation, the
expected number of queries handled by the last instance is
E[Nn] = ∂E[zNn ]

∂z |z=1
= FC+ED

(C−D)2 .

This means that, restricted to Nn ≥ 1, Nn follows a
geometric distribution. Combining the expressions for E[ΣN ]
and E[Nn] yields the expected response time, as per Little’s
law [46]:

E[T ] =
1

λ
(E[ΣN ] + E[Nn]) (15)

4) Stability: The last (n-th) instance in the chain can be
seen as a MMPP/M/1 queue [48], where the average query
rate is λπn̄ (i.e., λ modulated by the probability πn̄ that all of
the first n̄ instances are busy), and the service rate is µ. As
per [48, section 3.1.1], the system is stable if and only if:

λπn̄ < µ⇔ ρn̄+1

n̄!
∑n̄
i=0 ρ

i/i!
< 1 (16)

C. Autoscaling

When using the autoscaling mechanism described in algo-
rithm 2, the number of instances evolves so that the probability
of the last instance being empty, pe, remains close to a target
p∗e . The probability pe is one minus the traffic intensity at the
entry of the last instance:

pe = P[Nn = 0] = 1− ρπn̄ (17)

Using autoscaling with parameter p∗e , the relationship between
the query rate ρ and the number n of instances is therefore:

p∗e = 1− ρπn̄ ⇔
ρn̄+1

n̄!
∑n̄
i=0 ρ

i/i!
= 1− p∗e (18)

which can be solved numerically to find n as a function of ρ.
Furthermore, provided that p∗e is chosen to be > 0, the system
will be stable as per equation (16).

The following theorem provides insight on the behaviour of
the system under the asymptotic limit n→∞.

Theorem 2 Let p∗e > 0, and consider a system (not using
autoscaling) with n → ∞ instances and a query rate ρ such
that:

ρ(n) = n̄−
√
n̄ log

n̄

2π(1− p∗e)2
(19)

Then, as n→∞, we have:

lim
n→∞

1− ρ(n)πn̄ = p∗e

In other words, that system behaves as if using autoscaling
with parameter p∗e , since it satisfies (18).

Theorem 2 states that, using autoscaling, and when n→∞,
the relationship between n and ρ is described by equation (19).
Equation (19) describes the influence of p∗e on the performance
of the system: decreasing p∗e diminishes the number of in-
stances required to sustain a fixed load, but increases the load
on the last instance, approaching instability when p∗e → 0.

Corollary 1 Using autoscaling, asymptotic zero-wait time is
achieved: the probability wn that a task is blocked (i.e., is
assigned to a busy instance) vanishes with the number of
instances:

wn = P

[
n⋂
i=1

Ni > 0

]
= O

(
1

n

)

Proof: The blocking probability wn is smaller than the
probability that all of the first n̄ instances are busy: wn ≤ πn̄,
and πn̄ =

1−p∗e
ρ(n) = O( 1

n ) as per theorem 2.

IV. NUMERICAL RESULTS

The model detailed in section III yields insight about the
performance of the proposed architecture. In this section,
JFIQ autoscaling is compared to the centralized load-balancing
policies introduced in section I-B1 In the remainder of this
section, all response times are expressed in units of 1/µ (i.e.,
a response time of 1 corresponds to the mean service time of
the considered application).

A. JFIQ Load-Balancing

To evaluate the performance of JFIQ when using a fixed
number of instances, the expected number of queries handled
by the system is computed (as described in section III-B) as a
function of the query rate ρ, for different values of the number
n of instances. The expected number of queries handled by the
first n̄ instances, E[ΣN ] (obtained by equation (2)) exhibits
an almost linear behaviour with respect to ρ and is therefore
not plotted. As the last instance has a special role and accepts
more traffic, it is interesting to analyse the expected number of
queries assigned to the last instance, E[Nn]. Figure 6 depicts
that number, depending on the normalized query rate ρ/n (the
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Figure 6. JFIQ LB: expected number E[Nn] of queries handled by the last
instance (derived as per section III-B) as a function of ρ/n, for different
values of n ∈ {10, . . . , 100}.
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Figure 7. JFIQ LB: expected response time E[T ] (derived as per equa-
tion (15)) as a function of ρ/n, for different values of n ∈ {10, . . . , 100}.

per-instance efficiency of the system). From figure 6, it appears
that this efficiency increases as the number of instances
increases (i.e., each instance accomodates a higher query rate),
as predicted by theorem 2. The figure also represents the
value of E[Nn] when the number of instances evolves under
autoscaling with p∗e ∈ {0.4, 0.6, 0.8} (thick lines). When an
autoscaling policy with a high-enough target p∗e is applied,
the queue length of the last instance remains bounded under
a reasonably-low value. For example, with p∗e = 0.6 and
n ≤ 100, the last instance has always less than 3.6 clients
enqueued in average.

Having computed the expected number of queries in the
system, it is possible to derive the average response time using
equation (15), depicted in figure 7: the average response time
stays low as long as ρ is not too close to n: for instance,
with n = 100, the average response time stays below 1.10 for
ρ ≤ 81.7. Under an autoscaling policy with a reasonable target
p∗e , the response time remains under relatively low values – for
instance, the response time stays below 1.45 when p∗e = 0.6.

B. Autoscaling scalability

Figure 8 depicts the number n of instances used when the
system is using autoscaling as a function of the normalized
query rate ρ/n, for different values of the threshold parameter
p∗e . As the the load increases, the number of instances in use
increases, with lower values of p∗e yielding a higher number of
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Figure 8. JFIQ autoscaling: number n of instances versus normalized query
rate ρ/n, when following autoscaling with target p∗e , for different values of
p∗e . When p∗e → 0, the system approaches the instability limit (grey area).
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Figure 9. JFIQ autoscaling: forwarding delay (in number of hops) versus
normalized query rate ρ/n, when following autoscaling with target p∗e , for
different values of p∗e .

instances – as a lower value of p∗e means that the last instance
will be less utilized. For instance when ρ/n = 0.7, going from
p∗e = 0.4 to p∗e = 0.6 leads to 10 more instances being used (a
48% increase). Thus, diminishing p∗e has a benefit in terms of
number of instances, but also incurs a higher response time, as
shown in figure 7. At the extreme, when p∗e → 0, the system
becomes unstable (grey valley in figure 8). Thus, an “optimal”
operating point must consist of a trade-off between reducing
the number of instances (by letting p∗e → 0) and ensuring a
reasonable response time by staying far from the instability
limit (by letting p∗e → 1).

C. Network Forwarding Delay

Since JFIQ relies upon forwarding the first paquet of a
query along several application instances, it incurs additional
network forwarding delay. If δ > 0 (in arbitrary time units)
is the one-way forwarding delay (half-RTT) between two
application instances, then the expected forwarding delay D is
E[D] = E[F − 1]δ =

∑n̄
k=1

ρk/k!∑k
i=0 ρ

i/i!
× δ (see appendix V-E

for the derivation). Figure 9 depicts this expected delay when
the system is using autoscaling, as a function of the normalized
query rate ρ/n, for different values of the parameter p∗e .
For instance, when p∗e = 0.8 and for n < 100 instances,
the expected incurred overhead is smaller than 40δ. In this
situation, the overhead is insignificant as long as 40δ is
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sufficiently smaller than the query service time µ−1. For a mid-
size application µ−1 = 100 ms [49] and a typical data-center
half-RTT δ = 0.25 ms [50], there is one order of magnitude
between the two values (40δ = 10 ms = 10%µ−1), thus the
overhead can be considered to be insignificant.

D. Comparison to Centralized Policies

Three of the centralized schemes introduced in section I-B1
are compared to JFIQ in this section, namely: (i) “random”
(RND); (ii) “shortest-of-two-queues” (JSQ2); (iii) “join-the-
idle-queue” (JIQ). RND and JSQ2 are interesting because they
model completely distributed load-balancing systems such as
Maglev [6], Beamer [26] or 6LB [29]. JIQ is also interesting
because it models a converse system, in which the load-
balancer has a near-perfect view of the state of the application
instances, but at the cost of centralized bookkeeping and
maintenance of per-flow-state.

The behavior of these three policies is well-known. The
RND policy is essentially a virtual M/M/1 queue with query
rate λ/n and service time µ, for which the expected response
time is [51, p. 98]:

E[TRND] =
1

1− ρ/n
1

µ
(20)

while the JSQ2 policy yields the following response time [7]:

E[TJSQ2
] =

( ∞∑
i=1

( ρ
n

)2i−2
)

1

µ
(21)

and while finally the JIQ policy has the following response
time [19]:

E[TJIQ] =

(
1 +

ρ/n

(1− ρ/n)(1 + n)

)
1

µ
(22)

Figure 10 depicts the expected response time E[T ] as
a function of the query rate ρ, for a system using JFIQ
autoscaling with p∗e = 0.8. As a matter of comparison, the
response time for the centralized policies is depicted, when
using the same number n of instances as that of the system
using autoscaling for each ρ. When ρ = 30, the system with
autoscaling uses 44 instances and yields a response time of
1.02, whereas RND, JSQ2, and JIQ with n = 44 instances
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Figure 11. JFIQ autoscaling: down- and up-scaling thresholds p↑e and p↓e as
a function of the query rate ρ, for different values of target p∗e . The two lines
depict the probability pe in a system with the same query rate, but with n−1
or n+ 1 instances.

and ρ = 30 yield response times of 3.26, 1.60, and 1.05,
respectively. Overall, response times are bounded by 1.16 for
ρ ≤ 100. Due to taking the load of all instances into account,
JFIQ autoscaling performs better than policies RND and JSQ2

(when ρ > 1.2), respectively, and yields results close to those
of the reference policy JIQ. To conclude, using a conservative
value for p∗e (e.g., p∗e = 0.8) allows for JFIQ to provide a
lower response time than the lightweight distributed policies
(RND or JSQ2) when using the same number of application
instances. Further, the performance of JFIQ is close to that of
the near-ideal centralized policy JIQ.

E. Scaling Thresholds

To avoid oscillations, the thresholds p↓e and p↑e , above
(and below) which autoscaling will be triggered, must be
chosen appropriately. Notably, it must be ensured that, after an
upscaling decision, a downscaling decision will not be taken
by the newly-introduced instance (and vice versa). This is
achieved by choosing p↓e and p↑e so that pe will be equal to
p∗e after autoscaling. Formally, if ρn,↑ is the target query rate
which triggers upscaling with n instances, i.e., if ρn,↑ is the
rate at which:

pne (ρn,↑) = pn,↑e , (23)

then ρn,↑ is defined as the solution of:

pn+1
e (ρn,↑) = p∗e (24)

Solving equation (24) to find ρn,↑ allows finding pn,↑e as per
equation (23), i.e.:

pn,↑e = pne [(pn+1
e )−1(p∗e)]

For downscaling, the inverse operation is applied to find pn,↓e :

pn,↓e = pne [(pn−1
e )−1(p∗e)]

Figure 11 depicts pn,le as a function of ρ. With p∗e = 0.4,
the thresholds pn,le are far away from the actual target p∗e (with
|pn,le − p∗e| ≥ 0.13 for n ≤ 100) – meaning that the system
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will deviate from its target operating point before up- or down-
scaling is triggered. With p∗e = 0.8, the thresholds are close to
the target (with |pn,le − p∗e| ≤ 0.13 for n ≥ 17), meaning that
the system will deviate less from its expected behavior – but
also implying that it is harder to tracker whether the threshold
has been crossed.

F. Simulations

This section presents results of numerical simulations of a
system implementing JFIQ, with the following objectives: (i)
capturing the dynamics of algorithm 2 when the query rate
ρ(t) actually varies (since the model only considers a steady
load rate ρ); (ii) analysing the whole distribution of response
times (since the model only yields the expected response time);
(iii) analysing the behavior of the system under various service
time distributions and scheduling disciplines (thus alleviating
the limitation of using a FIFO policy and exponential response
times, introduced in the model for tractability); (iv) analysing
the influence of the main parameter of the system, p∗e , when
actually running the autoscaling algorithm; (v) comparing the
behavior of the system against other load-balancing algorithms
when they actually undergo autoscaling; (vi) analysing the
distribution of the network forwarding delay (since the model
only yields the expectation); and (vii) understanding the be-
havior of the system under non-smooth query rates.

1) Simulation Setup: JFIQ has been implemented as part
of a general-purpose queuing simulator [52]. Queries are
drawn according to a Poisson process or a modulated Poisson
process, and are assigned to a queue according to algorithm 1.
Upon arrival or departure of queries at/from the last queue sn,
the tracking mechanism introduced in algorithm 2 is applied,
and if autoscaling is deemed necessary, the queuing network
is updated accordingly. For a more realistic evaluation, queues
implement a Processor-Sharing (PS) policy with arbitrary
response time distributions. Unless specified otherwise, service
time distributions are taken with 100 ms as average response
time (i.e., µ = 10 s−1), as observed for example in large-scale
Web deployments [49, figure 7(a)]. As a baseline, the central-
ized behaviors introduced in section IV-D (RND, JSQ2, JIQ)
have also been implemented.

To understand the behavior of the system when exposed to
a simple varying load, the simulations were conducted with a
simple diurnal pattern ρ(t), given by (with t in seconds):

ρ(t) = 50− 20 cos

(
2πt

86400

)
(25)

This choice of parameters provides confidence that the system
behaves properly in reasonably large-scale scenarios3. Queries
are injected with a Poisson process whose rate λ = ρ · µ
is modulated according to (25), for t ∈ [0, 86400] s. In
particular, query rates vary between 300 and 700 req/s, and
the expected number of queries injected into the system is:∫ 86400

0
λ(t)dt = 43.2 ·106. This constitutes a sufficiently large

sample to obtain statistically-significant results: the obtained

3This yields n(t) between approximately 40 and 90. More instances
would not be realistic, since an SRv6 header can accommodate n = 89
instance addresses in a MTU-sized TCP SYN packet of 1500 bytes.
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Figure 12. JFIQ autoscaling, when the number n of instances evolves under
autoscaling for p∗e ∈ {0.6, 0.8}, and ρ(t) evolves with a diurnal pattern.
Simulations with exponential and constant service times (1/µ = 100 ms),
under the processor-sharing discipline.

response time distributions for a second run of the experiments
were acceptably identical (the p-value from a Kolmogorov-
Smirnov test [53] was p = 0.048).

2) Influence of the target p∗e: To explore the influence
of the target p∗e , experiments were run for p∗e ∈ {0.6, 0.8}
(with exponential service times) – these values were chosen
as they appear to yield stable enough results from figures 7
and 8. Results for these experiments are depicted in figure 124.
Figure 12a depicts the number of instances used by the
autoscaling system over a 24-hour experiment goes, with the
instantaneous response time observed by clients5. Analytical

4In all CDF figures, the left-hand side graph depicts the head of the
distribution, and the right-hand side graph depicts the tail of the distribution

5Response times are smoothed with an EWMA filter with parameter α =
1 − exp(−δt/τ), with δt the time interval between two successive points,
and τ = 10 min.
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Figure 13. JFIQ autoscaling, when the number n of instances evolves under
autoscaling for p∗e = 0.8, and ρ(t) evolves with a diurnal pattern. Simulations
with exponential and constant service times (average service time 100 ms),
under the processor-sharing discipline. Baseline: RND, JSQ2, and JIQ with
the same query rate ρ(t) and number of instances n(t).

values as obtained by using equation (15) from section III
are superposed to the simulation results – showing a good fit
between experimental and theoretical results. As predicted in
section III, diminishing p∗e reduces the number of necessary
instances, but while increasing response time. The daily cost6

with p∗e = 0.6 is 1560 VM·h, as compared to 1620 VM·h with
p∗e = 0.8. This cost reduction comes at the cost of increasing
the average response time from 102 ms to 106 ms.

Figure 12b depicts the distribution of client response times
over the 24 hours. Overall, the distribution approximates the
optimal7, with almost identical 99th percentiles. The 99.9th

percentile with p∗e = 0.8 also approximates the optimal,
whereas with p∗e = 0.6 it deviates with a factor 2.5. Figure 12c
depicts the response time distributions, when running the same
experiment with constant service times. Again, the distribution
approximates the optimal, with more than 99% of queries
served in 100 ms. Those queries served in more than 100 ms
amount to 0.8% with p∗e = 0.6, and to 0.4% with p∗e = 0.8.
This aligns with corollary 1, which states that the probability
for a task to wait is smaller than (1 − p∗e)/ρ (and using the
average value ρ = 50 gives these values). The 99.9th percentile
with p∗e = 0.8 is half as much as with p∗e = 0.6, but the
former policy led to a resource cost of 1620 VM · h instead
of 1560 VM · h with the latter.

3) Response time gain with equal number of instances:
To fairly compare JFIQ to the centralized policies defined
in section IV-D, the server schedule (i.e., the function n(t)
giving the number of instances as a function of the time
of day) for p∗e = 0.8 and exponential response times is

6defined as the total number of VM-hours used by the system:∫ 86400
0 n(t)dt.

7defined as the response time distribution if there was an infinity of
instances, i.e., simply the service time distribution.
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Figure 14. JFIQ autoscaling, when the number n of instances evolves under
autoscaling for p∗e = 0.6, and ρ(t) evolves with a diurnal pattern. Simulations
with exponential service times (average service time 100 ms) under the
processor-sharing discipline. Baseline: RND and JSQ2 with the same query
rate ρ(t), and with a number of instances nRND,JSQ2

(t) such that the overall
average response time with RND, JSQ2 is identical to that of JFIQ (106 ms).

recorded. The 24-hour experiment is then run with policies
RND, JSQ2, JIQ using the same query rate pattern ρ(t) and
server schedule n(t). Figure 13 depicts the results, with
figures 13a and 13b depicting the response time distributions
for the four tested policies and the two tested service times.
Tail response time latency is greatly improved: with constant
service times, a reduction of 16× (RND) and 3.4× (JSQ2) in
the 99th percentile latency can be observed. Figure 13 shows
that JFIQ autoscaling is able to closely match the reference
policy JIQ, with noticeable differences only above the 99.6th

percentile. This experiment shows that JFIQ outperforms stan-
dard consistent-hashing based load-balancing frameworks im-
plementing RND [6] or JSQ2 [29], and offers close-to optimal
performance while necessitating no centralized monitoring.

4) Cost gain with equal average response time: This sec-
tion attempts to quantify the potential resource cost gains that
can be achieved by using JFIQ. Using equations (20) and (21),
two schedules nRND(t) and nJSQ2

(t) are computed offline so
that the expected response time is constant at 106 ms8 for the
modulated query rate ρ(t) for RND and JSQ2. This imple-
ments a “perfect” omniscient autoscaling algorithm for RND
and JSQ2 – as the most conservative possible comparison to
JFIQ. The results are depicted in figure 14, where figure 14a
shows that, as expected by the design of the experiment, the
response time distributions achieved with JFIQ, RND and
JSQ2 are almost identical. Figure 14b depicts the resource
cost gains of using JFIQ as compared to the two other policies:
while with JFIQ the number of instances oscillates between
40 and 89, with JSQ2 it was found to oscillate between 123
and 287, and with RND between 531 and 1237. Overall, the
resource cost gain from using JFIQ autoscaling (1560 VM ·h)
is of 3.2× over JSQ2 (4920 VM · h), and of 14× over RND
(21200 VM · h).

8106 ms is the average response time for the 24-hour simulation with
p∗e = 0.6 and exponential response times
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Figure 15. JFIQ autoscaling, when the number n of instances evolves under
autoscaling for p∗e = 0.6, and ρ(t) evolves with a diurnal pattern. Simulations
with exponential service times (average service time 100 ms) under the
processor-sharing discipline. Baseline: JIQ with the same query rate ρ(t), and
with a number of instances n(t) varying according to a feedback mechanism,
such that the overall average response time with JIQ is identical to that of
JFIQ (106 ms).

5) Comparison to centralized monitoring: Section IV-F4
has compared JFIQ to two simple, distributed policies
(RND, JSQ2). To also provide a comparison with the near-
optimal centralized policy JIQ, a mechanism to compute n(t)
such that E[TJIQ] is equal to a target value is necessary. To
that aim, a feedback mechanism is implemented, whereby
the load-balancer keeps track of the response time of all
queries: response times are passed through an EWMA filter,
and if the up/down threshold is crosses, up/down scaling is
requested. This emulates an efficient reactive centralized au-
toscaling system. As it assumes that all queries can be tracked
by a single load-balancer, it overestimates performance with
respect to realistic scalable implementations, hence acting as a
conservative point of comparison. To match JFIQ autoscaling
with p∗e = 0.6, a response time of 106 ms is targeted (with
up/down threshold of 108 ms and 104 ms) – with an EWMA
window of 100 s to avoid oscillations.

Results are depicted in figure 15. Figure 15a shows that, for
an identical average response time, JFIQ autoscaling yields
a slightly lower response time than JIQ for the first 99
percentiles, and a slightly larger response time for the last
percentile. Besides, figure 15b shows that JFIQ autoscaling
had a cost of 1560 VM ·h, approaching (within 11%) the cost
achieved by the JIQ policy (1410 VM · h).

6) Influence of the forwarding delay: The JFIQ algorithm
introduced in section II-B introduces forwarding latency on
TCP SYN packets. Typical worst-case machine-to-machine
RTTs observed in data-centers are around 400 µs (90-th per-
centile in [50, figure 4(a)]), i.e., a machine-to-machine latency
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Figure 16. JFIQ autoscaling, when the number n of instances evolves
under autoscaling for p∗e = 0.6, and ρ(t) evolves with a diurnal pattern.
Simulations with exponential service times (average service time 100 ms),
under the processor-sharing discipline. Different network forwarding delays
δ ∈ {0, 250, 500} µs.
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Figure 17. JFIQ autoscaling, when the number n of instances evolves under
autoscaling for p∗e = 0.8, and queries arrive according to a bursty patterns
ρ(t). Simulations with constant service times (service time 100 ms) under
the processor-sharing discipline.

of 200 µs. The software latency incurred by processing an
SRv6 header in algorithm 1 is typically 50 µs (for the kernel-
bypass implementation described in [29]). Therefore, the total
forwarding delay (software+network) incurred by algorithm 1
on TCP SYN packets is approximately 250 µs. Thus, to study
the influence of the forwarding delay, the simulation described
in figure 12b (with p∗e = 0.6) was repeated, with an extraneous
constant forwarding delay δ ∈ {250, 500} µs. Figure 16
depicts the results: the median response time is inflated by
7.50 ms with δ = 250 µs, and by 15.2 ms with δ = 500 µs.
For compute-intensive workloads with response time of the
order of 100 ms [49], this extra latency is negligible.

7) Reaction to Bursty Traffic: With the JFIQ algorithm,
when exposed to a query rate increase, the last instance
might have to accept an important number of queries before
deciding that upscaling is necessary. To analyze this behavior,
a simulation was conducted where a “flash crowd” query
pattern ρ(t) was applied [54], with a query rate first constant
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(with λ = 300s−1 i.e., ρ = 30), then linearly increasing within
a short ramp-up period (of 5 min or 10 min), then constant
again for the remainder of the simulation (with λ = 500s−1

i.e., ρ = 30). Figure 17b depicts the evolution of the number
of application instances. The number of application instances
quickly increases in reaction to the flash crowd, and with a
ramp-up period is 10 min long, the response time remains
reasonably low. In the simulation with the shorter ramp-up
period, the last instance is more overloaded, yielding a higher
instantaneous mean response time (up to 154 ms). This is
confirmed in figure 17a, which shows a longer tail for the
response times in the latter simulation.

V. CONCLUSION

This paper has introduced a novel load-balancing policy,
JFIQ, and a decentralized autoscaling policy, forming a uni-
fied load-balancing and autoscaling framework. Operating at
the network-layer with SRv6, the proposed architecture is
distributed (allowing for packets to be treated by any load-
balancer instance), requires no centralized monitoring (as
decisions are taken by the application instances themselves),
and necessitates no per-flow state (as the identity of the
accepting application is embedded in a covert channel).

In this paper, JFIQ has been specified, analyzed theoreti-
cally, and studied experimentally. JFIQ autoscaling is proven
to provide asymptotic zero-wait-time when the number of
application instances tends to infinity. JFIQ has been found
to (i) have the same complexity, but better performance,
than simple distributed approaches (RND, JSQ2), and to (ii)
have comparable performance, but lower complexity (by not
requiring central monitoring) than JIQ. This paper has shown
that, for the evaluated query patterns, using JFIQ instead of
RND decreases the 99th-percentile of response time by 16× if
using the same resources, or decreases resource costs by 14×
if targeting the same average response time.
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APPENDIX

A. Proof of Lemma 1

Proof: Since the restriction of the chain to {0, . . . , n̄} ×
{j, j + 1, . . . } (including transitions to the (j−1)th row) is
isomorphic to its restriction to {0, . . . , n̄}×{j+1, j+2, . . . }
(including transitions to the jth row), and since there is exactly
one more query in the n-th instance in the latter restriction,

the mean reward of zNn(t) earned when going from (i, j+1)
to row j is the same as the mean reward of zNn(t)+1 earned
when going from (i, j) to row j− 1. Hence, RD(i,j+1)→(?,j) =

E[
∫

(i,j+1)→(?,j)
zNn(t)dt] = E[

∫
(i,j)→(?,j−1)

zNn(t)+1dt] =

zRD(i,j)→(?,j−1).

B. Proof of Lemma 3

Proof: By induction, using (7) and (8), we can write
RDi = αiR

D
0 +βiz, where αi, βi are real constants. In particu-

lar, RDn̄ = αn̄R
D
0 +βn̄z. But, (9) gives RDn̄ =

Gz+HRD
0

I−Jz . Com-
bining both forms yields RD0 = Gz−(I−Jz)βn̄z

αn̄(I−Jz)−H := A0z+B0z
2

C−Dz ,
and injecting in RDi = αiR

D
0 + βiz gives the desired form.

For i = n̄, this precisely gives RDn̄ = αn̄Gz−βn̄zH
αn̄(I−Jz)−H , hence

Bn̄ = 0.

C. Proof of Lemma 4

Proof: By induction, we can express the RLi as a function
of RL1 , using equation (11): RLi = γiR

L
1 + εi, where γi, εi are

real constants. On the one hand, this gives RLn̄ = γn̄R
L
1 + εn̄.

On the other hand, (12) gives RLn̄ = K+LRL1 +MRDn̄ . Com-
bining these two forms gives RL1 = N + ORDn̄ := E1+F1z

C−Dz ,
hence the desired form for all i by injecting in RLi = γiR

L
1 +εi.

D. Proof of Theorem 2

Proof: Let p∗e > 0, β = log(2π(1 − p∗e)
2), and

ρ(n) = n̄ −
√
n̄(log n̄− β), the aim of this section is to

prove that limn→∞ ρ(n)πn̄ = 1 − p∗e . Using equation (1),
it is possible to write: ρ(n)πn̄ = ρ(n)n̄+1e−ρ(n)/(n̄!Sn),
where Sn = e−ρ(n)

∑n̄
i=0 ρ(n)i/i!. First, it will be shown that

limSn = 1. To that aim, one can notice that Sn = P[Yn ≤ n̄],
where Yn is a Poisson random variable of parameter ρ(n).
Applying the following Chernoff bound [55]:

P[X ≥ α] ≤ e−tαE[etX ]

to Yn with α = n and t = log(1 + 1√
n

) yields:

P[Yn ≥ n] ≤ e−tnE[etYn ] = e−tn+ρ(n)(et−1)

= e
−n log(1+ 1√

n
)+(
√
n−
√

logn−β)

= e
1
2−
√

logn−β+O( 1√
n

) →n→∞ 0

leading to limn→∞ Sn = 1. Therefore:

ρ(n)πn̄ =
ρ(n)n̄+1e−ρ(n)

n̄!(1 + o(1))
=

ρ(n)n̄+1e−ρ(n)

n̄n̄e−n̄
√

2πn̄(1 + o(1))

=
(n̄−

√
n̄(log n̄− β))n̄+1e−n̄+

√
n̄(log n̄−β)

n̄n̄e−n̄
√

2πn̄(1 + o(1))

=
e(n̄+1) log(1−

√
(log n̄−β)/n̄)+

√
n̄(log n̄−β)

√
n̄√

2π(1 + o(1))

=
eβ/2+O(n̄−1/2 log3/2 n̄)

√
2π(1 + o(1))

→n→∞

√
eβ

2π
= 1− p∗e

https://rfc-editor.org/rfc/rfc8754.txt
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E. Derivation of the Network Forwarding Overhead

Proof: Let F = min{k ∈ {1, . . . , n} : Nk = 0} be
the index of the first available instance. When a query enters
the first instance, it will incur a forwarding overhead of D =
(F − 1)δ until being accepted by an application instance. We
have, for all k ∈ {1, . . . , n}, P[F = k] = P[F ≥ k]−P[F ≥
k + 1], and thus E[F ] =

∑n
k=1 P[F ≥ k]. But P[F ≥ k] =

P[N1 = 1 ∩ N2 = 1 ∩ · · · ∩ Nk−1 = 1] (in other words,
if all the (k − 1) first instances are busy, the query will be
handled by instance k or greater). Since for all k ∈ {1, . . . , n̄},
the total number of queries handled by the first k instances
follows the law of an M/M/k/k queue, this can be rewritten as
P[F ≥ k] = ρk−1/(k−1)!∑k−1

i=0 ρ
i/i!

. This finally yields for the expected

forwarding delay: E[D] = E[F − 1]δ =
∑n̄
k=1

ρk/k!∑k
i=0 ρ

i/i!
× δ.
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