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This study investigates experimentally and numerically the
response of a magnetorheological elastomer (MRE) layer
placed atop an electromagnetic coil. The MRE layer is de-
flected upon application of a current in the coil, which cre-
ates highly non-uniform magnetic fields. Isotropic as well as
transversely isotropic layers (i.e., containing chains of mag-
netic particles) are tested experimentally, and the isotropic
layer exhibits the largest deflection. To enhance the ener-
getic efficiency of the model device, an iron core is intro-
duced inside the electromagnetic coil, thereby leading to an
increase of the resulting magnetic field near the center of the
MRE layer. In parallel, the boundary value problem (BVP)—
including the MRE layer, the coil, the core (if present)
and the surrounding air—is modeled numerically. For this,
a magneto-mechanical, vector-potential-based variational
formulation is implemented in a standard three-dimensional
finite element model at finite strains. For the material de-
scription, a recently proposed analytical homogenization-
guided model is used to analyze the MRE in the “coil-only”
configuration. It is then employed to predict the response
of the layer in the “coil plus core” configuration, thus cir-
cumventing the need for a separate material characterization
procedure. The proposed numerical simulation strategy pro-
vides a deeper understanding of the underlying complexity
of the magnetic fields and of their interaction with the MRE
layer. This study also reveals the importance of modeling the
entire setup for predicting the response of MRE materials
and, as a result, constitutes a step towards designing more
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efficient MRE-based devices.

1 Introduction
Magnetorheological elastomers (MREs) are man-made

smart composite materials obtained by dispersing magnetic
particles in an elastomer matrix. Rigbi and Jilken [1] have
been the first to conduct tests on MREs and thereby to in-
troduce previously unknown magneto-mechanical effects in
soft polymers. Indeed, the soft mechanical behavior of the
matrix, combined with the magnetic properties of the parti-
cles, allow these flexible composites not only to alter their
viscoelastic properties and stiffness but also to exhibit large
displacements and/or deformations in response to external
magnetic fields. While the former effect can be exploited in
controllable-stiffness devices for numerous advanced damp-
ing applications [2] (ranging from automobile [3–5] to pros-
theses [6] to adaptive materials applications [7, 8]), the latter
effect is of interest for haptic devices, shape control or actu-
ators [9–11].

MRE materials are thus undeniably appealing for mod-
ern high-tech applications. However, as pointed out in a re-
cent review [11], they have been seldom utilized in commer-
cial applications because the design of MRE-based devices
has been so far devised only through a rather empirical ap-
proach. Previous studies presenting theoretical and numeri-
cal modeling of MRE [12–25] or h-MRE (i.e., with particles
exhibiting remanent magnetization) [19, 20, 26, 27] samples
or structures have largely focused on magneto-mechanical
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(microstructure-based or continuum-based) material model-
ing and on uniformly applied magnetic far fields. Moreover,
despite a potential for slower time response applications in
actuators or shape control, only a handful of studies have
been dedicated to characterizing experimentally the coupled
magneto-mechanical behavior of MREs (or of MRE-based
structures and devices) under low-rate loadings [19, 28–30].
Furthermore, in these experimental studies, the applied mag-
netic field has also been consistently uniform.

The present study builds upon works undertaken in or-
der to characterize experimentally and theoretically the cou-
pled magneto-mechanical behavior of MREs at large strains
and large uniform magnetic fields. Specifically, a compre-
hensive experimental study [30] has revealed that characteri-
zation of the coupled magneto-mechanical behavior of MRE
materials necessitated specific samples and setups. Addition-
ally, shape effects and instabilities inherently present in MRE
samples impose numerical parameter identification instead
of straightforward analytical identification. Hence, in paral-
lel, numerically-assessed, microstructural analytical, explicit
models have been developed for MREs allowing for an effi-
cient numerical implementation in finite element (FE) codes
[16, 23, 24]. Here, experiments and theory are combined to
build and study a complete but highly non-trivial MRE-based
boundary value problem (BVP) with non-uniform magnetic
fields at finite strains, where material identification is per-
formed directly within the proposed device. In particular, a
simple model device (akin to a haptic surface) is proposed—
consisting of a magnetorheological layer resting atop an elec-
tromagnetic coil—and tested for different MRE layer param-
eters (with or without particle field-structuring) and configu-
rations (presence or absence of an iron core in the electro-
magnetic coil). The MRE device is faithfully reproduced
and numerically simulated with the finite element method.
To model the device, a vector-potential-based, finite-strain,
magneto-mechanical variational formulation is proposed and
implemented in three-dimensions using standard finite ele-
ments with standard nodal connectivity. The simulations ac-
curately capture the behavior of the device and produce re-
liable predictions of its behavior under a different configu-
ration. Experiments serve as a benchmark for the numerical
simulations, which in turn provide further insight into the
magneto-mechanical coupling mechanisms, as well as into
the non-uniformity of the applied magnetic fields at play.

2 Experiments
2.1 Sample fabrication

The MRE samples are made of a very soft and
stretchable two-part silicone elastomer (Ecoflex 00-20 from
Smooth-On Inc., USA) in which are dispersed soft (i.e.,
without remanence) iron particles having a 3.5 µm median
diameter (carbonyl iron powder (CIP) SM from BASF). For
practical convenience during polymer fabrication, particle
content is expressed in parts per hundred rubber (phr), which
corresponds to the mass of particles per hundred parts of
compounded elastomer mass. In this section, the correspond-
ing volume fraction c of particles (see [30] for details on

the conversion) is mentioned in parenthesis for clarity since
such a quantity is relevant in the modeling of the magneto-
mechanical couplings and is used as such in Sec. 3. Samples
of 70 phr (c = 0.08) are considered here. After mixing the
particles without prior chemical treatment [30, 31] in Part A
of the silicone elastomer, Part B is added and the mix is fur-
ther stirred thoroughly. The mix is then poured in a copper
mold, shaped so as to yield an MRE disk 3 mm in thickness
and 44 mm in diameter. The copper mold consists of heating
plates so that curing of the samples (1 h at 70◦C) can either
be performed outside or inside a magnetic field generated by
a large electromagnet (more details on the fabrication proce-
dure can be found in [30]). This leads, respectively, to either
isotropic MRE samples or to transversely isotropic samples,
also called “field-structured” samples, with particle chains
aligned either within the plane of the disk (so-called “per-
pendicular” to the subsequently applied magnetic field) or
along the thickness of the disk (so-called “parallel” to the
subsequently applied magnetic field).

Overall, three types of 70 phr (c = 0.08) MRE disks are
fabricated, denoted henceforth as isotropic, parallel and per-
pendicular.

2.2 Setup
In the model device considered in this study, the mag-

netic field is generated by an electromagnetic coil manu-
factured by the Caylar company (France) and powered by
a 20 V-20 A source. The winding is made with a pair of
insulated copper wires 1.2 mm in diameter and contains
360 turns. The coil has the following dimensions: 20 mm in-
ner diameter, 65 mm outer diameter and 33 mm height. This
coil is surrounded by a pure iron housing of 40 mm inner
diameter and 90 mm outer diameter that offers extra space
for 10◦C water provided by a chiller to circulate and cool
down the system. A tapered pure iron core can be installed
at the center of the coil to enhance the intensity of the mag-
netic field at the location where the MRE layer is to be in-
stalled. Note that the top of the iron core protrudes out of
the coil. This coil within its iron housing is inserted in a 3D-
printed plastic casing that permits placing and then clamping
an MRE disk on top of the coil. The diameter of the MRE
disk remaining outside of the clamp is then 30 mm and the
height of the clamping part of the casing is adjustable. A
photograph of the electromagnetic coil and its tapered pure
iron core is provided in Fig. 1a, and a schematic of the com-
plete device, including the plastic casing and the clamp, is
shown in Fig. 1b.

Tests can be carried out either with or without the ta-
pered iron core, and the MRE disk is then installed to main-
tain a vertical gap of 3 mm with either the top of the coil or
the top of the iron core. When the iron core is not installed,
the maximum current intensity applied to the electromag-
netic coil is 20 A (restricted by the power source) whereas,
when the iron core is installed, the maximum applied inten-
sity is chosen to be limited at 2.7 A. As a matter of fact, be-
yond this threshold, the layer is at risk of entering in contact
with the core despite the spacer installed for elevating the
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Fig. 1. (a) Photograph showing the coil surrounded by a pure iron
housing (left) and the tapered iron core that can be placed at its cen-
ter to enhance the generated magnetic field (right). (b) Schematic
(cross-section view along a symmetry plane) of the complete device
comprising an MRE layer placed atop the electromagnetic coil with
the iron core, iron housing, plastic casing and clamp.

disk and maintaining a 3 mm gap. This attests to the effi-
cacy of the core in enhancing the magnetic field intensity at
a given current and thus in reducing the need for current to
power MRE-based devices.

During the experiments, the displacements at the sur-
face of each MRE layer are monitored in-situ by 3D Digital
Image Correlation (3D-DIC) using the Correlated Solutions
software. In accordance with the requirements of DIC [32], a
random speckle pattern is applied onto the MRE layer using
white spray paint (here, the sample itself constitutes a dark
background). The MRE layer is lit symmetrically by two
LED optical fibers to obtain proper contrast without reflec-
tions when the surface deforms. The deforming MRE layer
is then imaged by two Pike 505-B cameras equipped with
Tamron lenses and installed symmetrically on both sides of
the prototype so as to form an angle with its normal (see
Fig. 2). A calibration of the system with a normalized tar-
get permits the Correlated Solutions 3D-DIC software to lo-
cate the cameras in space and relate the displacements of the
speckle pattern to the relative displacement of the layer in the
three-dimensional space.

Fig. 2. 3D-DIC experimental setup used to access the displace-
ments at the surface of the MRE layers under increasing magnetic
field generated within the model device.

2.3 Experimental results
During each test, an increasing current intensity is ap-

plied to the electromagnetic coil, thus yielding an increasing
magnetic field. Three tests per configuration are conducted
and average values are reported along with error bars corre-
sponding to a standard deviation. In what follows, the verti-
cal position at the center of the upper surface of the disk is
plotted as a function of the applied current intensity for each
test case.

2.3.1 Effect of particle field-structuring
70 phr (c = 0.08) MRE disk layers exhibiting particle

field-structuring as described in Sec. 2.1 (i.e., isotropic, per-
pendicular and parallel to the field) are first tested in the de-
vice with no iron core. The vertical positions at the center
of their upper surfaces are plotted in Fig. 3 as the applied
current increases.

Considering that the main direction of the magnetic field
is along the revolution axis of the coil, the results plotted in
Fig. 3 show that the smallest deflection is obtained when par-
ticle chains are parallel to the applied field. The maximum
deflection appears in the case of the isotropic MRE layer,
while the MRE layer with the particle chains aligned perpen-
dicular to the magnetic field show intermediate deflection.

These results shall be commented in light of those ob-
tained in the context of the MRE material characterization
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Fig. 3. Effect of particle field-structuring on the device behavior:
vertical position at the center of the upper surface of the disk for
70 phr (c=0.08) disk layers that are isotropic, perpendicular and par-
allel. The reported values correspond to the average over three tests
conducted in the same configuration and error bars represent a stan-
dard deviation.

conducted in [30] as well as of the instability results obtained
in [29]. In the present device, the MRE sample is fairly slen-
der, with its long dimension positioned perpendicular to the
applied magnetic field. Hence, upon application of the mag-
netic field, this causes a strong attraction of the MRE sam-
ple. This is directly related to the well-known compass effect
and to previously observed overall sample instabilities (con-
strained by boundary conditions), which occur in all sam-
ple configurations, i.e., isotropic, parallel and perpendicular.
Furthermore, it was shown that particle chains have an af-
fect akin to fibers in composite materials, thereby reinforcing
the stiffness of the material along their direction [13, 30, 33].
Hence, the perpendicular configuration, even if known to be
the most unstable [30, 34], is also rather stiff mechanically
due to the anisotropy induced by the particle chains. The
same is also true for the parallel configuration, which despite
having the largest magnetic susceptibility along the particle
chains [13, 30, 33], is simultaneously the stiffest mechani-
cally among all configurations considered here. This stiff-
ness is further enhanced by the presence of the magnetic field
in this case, which tends to keep the particles parallel to the
field. This interplay between the mechanical stiffness and
magnetic properties leads to an optimal response obtained in
the isotropic configuration. The latter is mechanically the
softest of all, while any potential benefits of field-structuring
in the parallel and perpendicular configurations are, in the
present case, outweighed by the corresponding mechanical
stiffening.

2.3.2 Influence of the core
In the following, focus is set on the optimal case of the

isotropic MRE layer. It is further tested in the presence of the
iron core, and the vertical position at the center of its upper
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Fig. 4. Influence of the core on the device behavior: vertical posi-
tion at the center of the upper surface of the disk for a 70 phr (c=0.08)
isotropic disk layer in the presence of and in the absence of the core.
The reported values correspond to the average over three tests con-
ducted in the same configuration and error bars represent a standard
deviation.

surface is plotted in Fig. 4.
As expected, Fig. 4 readily shows that installing an iron

core within the coil has a strong effect on the deflection evo-
lution of the layer. Indeed, the iron core provokes a magnetic
field concentration at the center of the MRE disk layer, as
will be highlighted in the numerical simulations presented
in Sec. 4.2. In the absence of an iron core, the maximum
displacement attainable is −1.8 mm at 20 A whereas, with
the iron core installed, a displacement of −2.3 mm is ob-
tained at the maximum applied current of 2.7 A. To highlight
the influence of the core, one can remark that a displace-
ment of −1.8 mm is reached at only about 2.5 A with the
core, versus 20 A with no core. This clearly demonstrates
the interest of the iron core for lowering the input current.
Note that no optimization was conducted for the design of the
iron core and this could be an interesting avenue to consider
when power consumption is an important design parame-
ter, or when power is supplied by standard batteries. This,
nonetheless, requires the capacity to model such electromag-
nets and the non-uniform magnetic fields they generate, si-
multaneously with the resulting finite displacements and de-
formations of the soft components (e.g., the MRE layer in
the present case).

3 Theory and numerical implementation
In this section, a general-purpose numerical framework

capable of modeling the device is developed. To capture
the full BVP, a vector potential-based magneto-mechanical
variational principle is proposed that can describe the MRE
layer, electromagnetic coil, iron core, and surrounding air,
all with a single user-element definition. Modeling all com-
ponents of the device creates a useful and realistic problem
setting where the sole input is the current applied to the
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coil, matching the experimental setting. Furthermore, de-
tailed non-uniform magnetic fields can be captured since the
air surrounding the device is modeled. Based on this frame-
work, a three-dimensional finite element is implemented in
finite strain.

3.1 A single variational principle
First, a total Lagrangian variational formulation is estab-

lished, from which a finite-strain, magneto-elastic, finite ele-
ment framework is defined. More generally, consider a finite
volume V with boundary ∂V occupied by a magneto-elastic
material. A material point at position X in the undeformed
configuration is mapped to x in the deformed configuration,
via the displacement vector u as x = X+u(X). The defor-
mation gradient is then given by F = I+Gradu, where Grad
denotes the gradient operator with respect to X. In addition,
the reference density of the solid ρ0 is related to the current
density ρ by ρ = Jρ0, where J = detF > 0.

In order to parameterize the magnetic field, there is a
choice as to which variable is considered as independent
(see for instance equivalent formulations in [15, 23]). In
this work, the magnetic field B is chosen as the independent
magnetic variable, which, in turn, is described in terms of
the magnetic vector potential A by B = CurlA (where the
“Curl” operator is defined with respect to the undeformed
configuration). This is a convenient choice because on one
hand, A is work-conjugate to the current density J (which
leads to a straightforward means of modeling the coil) and
on the other hand, it leads identically to DivB = 0 (where
the “Div” operator is defined with respect to the undeformed
configuration). In addition, one can show by standard push-
forward operations that the Eulerian magnetic field is given
by b = J−1FB. Henceforth, unless stated otherwise, lower
case variables represent Eulerian quantities, while upper case
ones represent Lagrangian quantities. The conjugate stress
and h-fields are defined later in this section.

Building on the works of [35] and [36], the total poten-
tial energy contained in V is

P (u,A) =
∫

V
W (F(u),B(A))dV −

∫
V
(J ·A+ f ·u)dV

−
∫

∂V
T ·udS+

1
2µ0ξ

∫
V
(DivA)2dV, (1)

where u is a kinematically admissible displacement field in
the usual sense and A is the vector potential to be discussed
in the following, while the corresponding boundary condi-
tions are detailed in Sec. 3.3.2. This formulation is based
on the eddy current approximation, which consists of ne-
glecting the electric displacement currents in the Maxwell
equations [37]. Such an approximation is valid for low-rate
quasi-static loading conditions such as those in the present
study. The first term captures the internal energy of the ma-
terial that occupies V . The energy density W is defined for
each material in the device in Sec. 3.2. The second and third
terms represent external work due to body forces f, applied
traction T, and current density J. Inclusion of the J ·A term

is consistent with the source term in Ampère’s law [36]. By
incorporating the work done by the current density in the
variational formulation, electromagnets can conveniently be
modeled by assuming a continuum current density.

The last term in (1) serves to introduce the so-called
Coulomb gauge constraint DivA = 0. As mentioned pre-
viously, only the rotational part (i.e., Curl) of A affects the
magnetic field B, and as a result its divergence remains unde-
termined. To resolve this indeterminacy, several approaches
have been proposed in the literature of electro-magnetics us-
ing the so-called edge elements (see for instance [38] and
numerous works resulting from that study). Nonetheless,
such a formulation expresses the vector-potential as an un-
known at the edges of the element and not the nodes. In turn,
the continuity of the displacement field in a finite-strain me-
chanical problem with multiple (perfect) interfaces requires
the displacement to be defined at the nodes. This observation
makes the combination of these two formulations extremely
cumbersome technically. Consequently, Coulomb [39] and
several other authors thereafter [39–43] have proposed the
use of the last term in (1) to guarantee the uniqueness of
the vector potential as well as its “continuity” across mate-
rial interfaces (such as material/air/coil), without affecting
in essence the primary magnetic field B. The advantage of
such a formulation allows the present form of a standard
displacement-based finite element formulation to be main-
tained, and leads to a straightforward implementation. Note
further that the constraint DivA = 0 may be implemented
with different methods. For simplicity, in the present work,
the Coulomb gauge is dealt with via the penalty method with
ξ denoting the penalty parameter that should take small val-
ues for the constraint to be satisfied up to a numerical toler-
ance. The permeability of vacuum µ0 is introduced simply
for dimensional reasons. This term does not have physical
meaning other than to enforce uniqueness of A. In practice,
the exact value of the penalty ξ does not affect numerical so-
lutions so long as it is sufficiently small and the correspond-
ing term is under-integrated since it behaves as a strong con-
straint. In this study, a value ξ = 10−6 delivers converged
and stable numerical results.

Then, minimization of P with respect to u and A, im-
plies setting the first variation of P equal to zero, i.e.,

δP =
∫

V

(
∂W (F,B)

∂F
·δF+

∂W (F,B)
∂B

·δB
)

dV

−
∫

V
(J ·δA+ f ·δu)dV −

∫
∂V

(T ·δu)dS

+
1

µ0ξ

∫
V

DivA ·DivδAdV = 0, (2)

where δF = Gradδu and δB = CurlδA. From this expres-
sion, the first Piola-Kirchhoff stress and Lagrangian h-field
are readily identified as

S =
∂W (F,B)

∂F
, H =

∂W (F,B)
∂B

. (3)
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The Eulerian counterparts of these fields are obtained
by standard push-forward operations [44], such that σσσ =
J−1SFT and h = HF−T .

Expression (2) constitutes the weak form of the me-
chanical equilibrium equations and Maxwell equations of
magneto-statics (see detailed discussion in [45] for instance).
Subsequently, the second variation of the total potential en-
ergy reads

∆δP =
∫

V

(
∆F · ∂2W

∂F∂F
·δF+∆F · ∂2W

∂F∂B
·δB

+∆B · ∂2W
∂B∂F

·δF+∆B · ∂2W
∂B∂B

·δB
)

dV

+
1

µ0ξ

∫
V

Div∆A ·DivδAdV. (4)

Use of expressions (2) and (4) allows for a standard finite
element discretization and resolution by standard Newton-
Raphson schemes (see for instance details in [41]). In the
present example, a three-dimensional finite strain magneto-
elastic user-element is implemented in ABAQUS.

3.2 Constitutive models
Each component of the boundary value problem at hand

is modeled by use of a suitable constitutive model defined
for each material. Following recent work [21,23], the energy
density per unit referential volume of a magneto-elastic ma-
terial can be partitioned into contributions from mechanical,
magnetic, and vacuum terms, i.e.,

W (F,B) = Ψ
mech(I1,J)+Ψ

mag(J, I5)

+Ψ
vac(J, I5). (5)

The corresponding magneto-mechanical invariants are de-
fined as

I1 = F : F, J = detF, I5 = FB ·FB. (6)

For simplicity in the numerical implementation, a quasi-
incompressible form of the models is used. That is also in ac-
cord with experiments [30] that show a quasi-incompressible
response of the present MREs (i.e. J ≈ 1 but not equal to
unity).

Each of the four materials in the device (MRE, iron, air,
and coil) are modeled with the same energy density defined
in equation (5), but with different material coefficients. Since
the core and coil are modeled as rigid and the air is modeled
with negligible stiffness, the mechanical contribution Ψmech

is most relevant for the MRE. Consequently, the mechani-
cal energy density is chosen to model the MRE and is taken
from the family of models proposed in [46]. The polymeric
matrix phase is modeled as a Neo-Hookean material and the

iron particles as mechanically rigid. The corresponding con-
tinuum (homogenized) energy density for the MRE reads

Ψ
mech(I1,J) =

Gm

2(1− c)5/2 [I1−3−2lnJ]

+
G′m

2(1− c)6 (J−1)2, (7)

where Gm and G′m are the Lamé moduli of the polymer ma-
trix phase and c denotes the volume fraction of the parti-
cles. Note that the magneto-elastic response depends on the
particle content expressed as a volume fraction c and not as
phr. Nevertheless, one can obtain the first from the second
by using the density of the matrix ρm = 1,070 kg/m3 and the
particles ρp = 7,874 kg/m3 [30]. Table 1 summarizes the
moduli used to model each material. To model the quasi-
incompressible matrix of the MRE, the bulk modulus is taken
as G′m = 200Gm. The shear modulus of the matrix is fit as
Gm = 0.0075 MPa based on the experiment without the iron
core, which is discussed in Sec. 4.1. The coil and core are
modeled as nearly rigid by taking sufficiently large values
for the moduli in (7).

Ideally, the air should have zero stiffness. In this model-
ing framework, however, a very soft material description for
the air is employed, following existing literature [17]. That
requires small, but nonetheless finite values for the mechan-
ical air properties. As a consequence, the stiffness of the
air affects the solution as a whole, but only weakly. This
effect only leads to the use of slightly larger material proper-
ties (e.g., magnetic susceptibility and shear modulus) for the
MRE layer for a good calibration of the model. Such a de-
viation from the actual properties is on the order of a couple
of percents. Alternative ways to deal with the air [21] may
improve on this aspect, however, the difficulty in the present
problem lies in the very complex air geometry that results
from the device itself. Thus, the simple but fairly efficient
approach of a very soft mechanical energy has been used for
the air.

In turn, the purely magnetic contribution is taken as

Ψ
mag(J, I5) =−

χ

2µ0(1+χ)

I5

J2 2F1

[
1
k
,

2
k
,1+

2
k
,

−
(

χ

µ0(1+χ)ms

√
I5

J

)k
]
, (8)

where ms and χ are the magnetic saturation and magnetic
susceptibility of the MRE, while 2F1 is the hypergeometric
function. The hypergeometric function can be used to re-
cover a wide range of magnetic responses from Langevin to
hyperbolic tangent. For the MRE, a value k = 6 defines ac-
curately the magnetization curve, as discussed in [23]. The
saturation and susceptibility of the MRE can be derived from
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Table 1. Material properties.

Property MRE Iron Coil Air

Gm (MPa) 0.0075 0.75 0.75 3.75×10−5

G′m (MPa) 1.5 3 3 7.5×10−5

µ0ms (T) - 2.5 0 0

χ 0.235 2000 0 0

c 0.08 - - -

µ0ms
p(T) 2.5 - - -

χp 30 - - -

the matrix and particle constituents as [23]

ms = cms
p, χ =

3cχp

(2+ c)+(1− c)(1+χp)
, (9)

where the particles have volume fraction c, saturation mag-
netization ms

p and magnetic susceptibility χp. The hyperge-
ometric function is also suitable to model the magnetic re-
sponse of iron, for which k = 2 is used. Finally, the coil and
air are not magnetic. Table 1 summarizes the magnetic pa-
rameters used for each material. Specifically, a very large
susceptibility is used for the iron taken from standard hand-
books.

Finally, the contribution of the magnetic field in vacuum
is

Ψ
vac(J, I5) =

I5

2µ0J
. (10)

This term is present in all materials and serves to describe
the presence of the background magnetic field [35].

It is remarked here that a more elaborate constitutive law
could also include a coupling term Ψcouple in equation (5)
to describe magnetostrictive coupling in the MRE. For this
specific boundary value problem, however, the coupling term
has been shown (not included here for brevity) to have neg-
ligible contribution to the simulations (see also [21]), due to
the fairly small strains (but significant rotations and thus the
finite strain framework) in the MRE disk. Thus, the coupled
term in the constitutive equation is omitted and the reader is
referred to [23] for a more detailed discussion of this point.

3.3 Numerical implementation
A finite element model is implemented in ABAQUS via

a user-element routine to represent the device. The model de-
scribes as faithfully as possible the three-dimensional bound-
ary value problem of the device, with the sole input being the
current applied to the electromagnetic coil. To capture this
problem setting, the volume containing the MRE layer, coil,
iron core and casing, and surrounding air must be modeled.

MRE

Air

Iron

Coil

xy
z

Fig. 5. Finite element mesh for the device configuration with the
core present.

The various aspects of the implementation are discussed in
this section.

3.3.1 Meshing
A user element, based on the variational principle of

Sec. 3.1 and constitutive model of Sec. 3.2, is used to
model all materials in the problem. The user element is
implemented as an 8-node hexahedral element with a 2×2
Gauss integration rule (except for the Coulomb gauge term
that uses a single Gauss point in the middle of the element).
There are six degrees of freedom per node describing the
displacements ui (i = 1,2,3) and magnetic vector potential
Ai (i = 1,2,3). For elements belonging to the MRE phase,
which is quasi-incompressible, reduced integration is also
used for the term (J−1)2.

By employing quarter-symmetry, a quarter-cylindrical
domain is used to encompass the device and surrounding air.
For resolving accurately the magnetic field, convergence is
considered with respect to the domain size and use of Neu-
mann and Dirichlet type boundary conditions for the vector
potential (not shown here for brevity). A domain with a ra-
dius of 112 mm and a height of 161 mm is found to be suf-
ficiently large, thereby leading to no differences in the MRE
response irrespective of the type of far boundary conditions
on the vector potential. As a consequence, further extend-
ing the domain has negligible effects on the solution. Fig. 5
shows the mesh, with each material highlighted. The de-
vice configuration with the core present is depicted in this
figure. For the configuration with the core inserted, a mesh
with 181,576 elements and 192,105 nodes is used. For the
device configuration without the core, a mesh with 160,646
elements and 171,000 nodes is used. In both cases, the total
size of the problem is on the order of 106 degrees of freedom
(as there are 6 degrees of freedom per node).

The mesh represents all components of the experimental
setup shown in Fig. 1b, except the plastic casing. Since the
plastic casing is non-magnetic, it exhibits negligible defor-
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mation, and does not interfere with the important parts of the
device (e.g. MRE, core, coil). For this reason, it is replaced
with undeformable air in the numerical model. To model
the clamping of the MRE by the plastic casing, displacement
boundary conditions are applied along the outer edge of the
MRE surface, which is highlighted in yellow in Fig. 5.

3.3.2 Boundary Conditions
Three sets of boundary conditions are applied to the do-

main. The first set enforces symmetry along the xz and yz
planes. The displacement degrees of freedom of nodes on
these faces are constrained such that no displacement can oc-
cur normal to the plane of symmetry. To enforce symmetry
of the magnetic field, the corresponding boundary conditions
on the vector potential read

A1(y = 0) = 0,
∂A2

∂y

∣∣∣∣
y=0

= 0, A1(y = 0) = 0 (11)

∂A1

∂x

∣∣∣∣
x=0

= 0, A2(x = 0) = 0, A3(x = 0) = 0. (12)

These conditions are consistent with tangential continuity
[42, 43] of A across the symmetry planes (i.e., JAK×n = 0
with n denoting the normal to the symmetry plane).

The second set of boundary conditions is applied to the
far-field boundary, which includes the top, bottom, and outer
radial surface of the quarter-cylindrical domain. On the far-
field boundary, either homogeneous Neumann or Dirichlet
conditions can be enforced on all vector potential compo-
nents. In this study, a sufficiently large domain is employed.
Thus the obtained solutions are independent of the far bound-
ary conditions on the vector potential.

The third set of boundary conditions models the clamp-
ing of the MRE by the plastic casing. Along the lower yel-
low segment on the MRE in Fig. 5, the z-displacement is
fixed. Along the upper yellow segment, a vertical displace-
ment of −1 mm is applied following the experimental setup.
Sliding is prevented by fixing all displacement components
on the inner radius of the lower yellow segment. In reality,
the clamping of the MRE by the casing may exhibit a more
complex behavior. As the device is loaded and the MRE is
pulled downward by the magnetic field, the grip of the cas-
ing may not be perfect and the MRE may slide with respect
to the casing. A more complex model taking into account ap-
proximately the friction (see for instance [21]) could perhaps
capture more accurately the clamping boundary condition.
Nonetheless, the focus of this study is to capture the over-
all behavior of the device BVP and this simplified boundary
condition will prove sufficient.

3.3.3 Loading
The source of loading in the device is the current applied

to the electromagnetic coil. There is a trade-off regarding
the level of detail of the model: more details can always be
added to the model to better capture the experimental setting
at the cost of working with an overly complex model. Instead

of modeling individual loops of wire in the coil, a continuum
model is adopted. The continuum model assumes axisymme-
try and uniform current density, which provides a reasonable
approximation for a thick coil with many turns [47]. Current
density in the coil is approximated by

J = JΘeΘ, JΘ =
NI

h(ro− ri)
. (13)

In this expression, JΘ is the current density along the angular
direction eΘ of a cylindrical coordinate system describing the
coil. The current in each of the N turns of the wire is I and
ri = 10 mm, ro = 32.5 mm, and h = 33 mm are the inside
radius, outside radius, and height of the coil, respectively.

To better capture the experimental setting, self-weight of
the MRE is also considered, which is implemented as a body
force f =−ρge3 in the z direction where ρ = (1−c)ρm+cρp

and g is acceleration due to gravity. Loading of the boundary
value problem is performed as a three-step process. First,
the clamp boundary condition is applied, representing the
mounting of the MRE in the plastic casing. The second step
is to apply gravitational loading. Finally, the current I is ap-
plied to the coil, producing a magnetic field that loads the
MRE.

4 Discussion
4.1 Comparison between experimental and numerical

results
Figure 6 compares experimental and numerical vertical

displacements at the center of the top surface of the isotropic
MRE layer, with and without the core present. The consti-
tutive model requires the calibration of the shear modulus of
the MRE matrix Gm only, while the rest is taken from hand-
books and earlier studies as reported in Table 1. To identify
the value of Gm, the experimental data from the “coil only”
configuration is used to obtain a fit. A shear modulus of
Gm = 7.5 kPa provides good agreement between the exper-
iment and simulation for the “coil only” configuration. This
value is in close agreement with earlier work using similar
MRE materials [21, 30].

The model additionally demonstrates predictive capabil-
ity, which is evident through the good agreement between the
experiment and simulations for the “coil plus core” config-
uration. This agreement is rather impressive given that the
magnetic fields in the configurations with and without the
core are very different, as discussed in Sec. 4.2. It is noted
that no further calibration is performed to obtain the response
with the core.

Specifically, the simulations are in excellent agreement
with the experiments for a large range of applied current. As
the MRE displacement increases, there is some divergence
between the experimental and numerical curves (see Fig. 6).
This is due to the complex boundary conditions of the plas-
tic casing gripping the MRE. In the experiment, the MRE
is not perfectly gripped by the casing and some sliding is
inevitable. This sliding is not modeled in the present simu-
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Fig. 6. Comparison between experiments and finite element simu-
lations for device configurations with and without the core: vertical
position at the center of the upper surface of the isotropic MRE layer.
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Fig. 7. Eulerian magnetic field b plotted on the xz face and along
the axis of symmetry. The field corresponds to an applied current
I = 20 A in the “coil only” configuration.

lation, thus leading to a slightly stiffer response as the MRE
disk displaces.

4.2 Magnetic fields
The simulations are now used to provide further insight

into aspects of the device that are out of reach experimen-
tally, such as a detailed description of the induced magnetic
fields. Figs. 7 and 8 show the Eulerian magnetic fields b and
h on the xz face of the mesh (refer to Fig. 5) in the “coil only”
configuration corresponding to a 20 A applied current. Simi-
larly, Figs. 9 and 10 show the Eulerian magnetic fields on the
xz face in the “coil plus core” configuration corresponding to
a 2.7 A applied current.

The simulated magnetic fields highlight the role of the
core. By focusing but also intensifying the magnetic field
near the MRE, the core leads to stronger attractive magnetic
forces towards the MRE disk and thus to larger deflections at
much lower applied currents. In contrast, the magnetic fields
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Fig. 8. Eulerian h-field plotted on the xz face and along the axis of
symmetry. The field corresponds to an applied current I = 20 A in the
“coil only” configuration.
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Fig. 9. Eulerian magnetic field b plotted on the xz face and along
the axis of symmetry. The field corresponds to an applied current
I = 2.7 A in the “coil plus core” configuration.
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Fig. 10. Eulerian h-field plotted on the xz face and along the axis of
symmetry. The field corresponds to an applied current I = 2.7 A in the
“coil plus core” configuration.
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created by the coil in the “coil only” configuration strongly
diminish near the MRE layer. Additionally, the fields are
able to show the effect of surrounding materials, such as
the iron casing (see, for instance, Figs. 7 and 8) as well as
the effect of the iron core geometry which exhibits a rather
non-uniform internal distribution of the magnetic field b (see
Fig. 9).

From a numerical standpoint, Figs. 7-10 demonstrate
that highly non-uniform magnetic fields can be modeled by
the presented formulation. Furthermore, jumps in the mag-
netic field at interfaces are properly captured with the pro-
posed formulation. This is evident in the h-fields, where
there are jumps on the top and bottom of the MRE layer as
expected by the tangential-only continuity required for those
fields.

5 Conclusion
In this work, experiments and numerical simulations of

a model device composed of an electromagnetic coil that de-
flects a magnetorheological elastomer layer are presented.
Experimental results show that particle field-structuring and
their associated instabilities do not present any advantage
in the proposed configuration. The fact that an isotropic
MRE performs best is counter-intuitive considering the re-
sults from material characterization (see [30]), but is useful
from a fabrication standpoint. Furthermore, the experiments
show that the presence of an iron core inside the coil concen-
trates the magnetic field near the layer to cause large deflec-
tions at smaller applied currents.

Alongside the experiments, a general framework for nu-
merical simulations of magneto-mechanical BVPs involving
coils is presented. A magnetic vector potential variational
framework is proposed, from which a three-dimensional
magneto-elastic finite element model is derived at finite
strains and arbitrary magnetic fields. The numerical imple-
mentation introduces two key features that contribute to its
versatility. First, the external work due to current density
is included in a Lagrangian formulation, allowing electro-
magnets to be modeled using an eddy current approximation.
Second, a Coulomb gauge is enforced using a penalty term,
ensuring uniqueness of the vector potential. Together, these
terms allow for highly non-uniform magnetic fields gener-
ated by electromagnets to be captured along with a finite
strain Lagrangian formulation.

The numerical implementation allows for versatile mod-
eling of non-trivial magneto-mechanical BVPs since every-
thing, from electromagnets to MREs to magnetic metals, can
be modeled with a single user-element definition. Thus, sim-
ulations of the MRE device could be performed in a set-
ting that parallels the experiment, where the only controlled
variable is the current that is applied to the electromagnet.
The model shows very good agreement with experiments in
both of the considered device configurations, i.e., with and
without the iron core. Here, it is important to recall that
constitutive calibration is only performed in the “coil only”
configuration, thereby circumventing the need for a sepa-
rate material characterization procedure. In view of this, the

model shows powerful predictive capability through agree-
ment with experiment in the “coil plus core” configuration.
Furthermore, the simulations provide insights that cannot be
obtained experimentally, such as detailed magnetic fields,
which properly reproduce jumps at material interfaces. Over-
all, the proposed simulation framework proves to be an ac-
curate and robust tool for modeling complex BVPs involving
MREs and, thus, constitutes a step towards designing more
efficient MRE-based devices.
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