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PICKL’S PROOF OF THE QUANTUM MEAN-FIELD LIMIT

AND QUANTUM KLIMONTOVICH SOLUTIONS

IMMANUEL BEN PORATH AND FRANÇOIS GOLSE

Abstract. This paper discusses the mean-field limit for the quantum dy-
namics of N identical bosons in R

3 interacting via a binary potential with
Coulomb type singularity. Our approach is based on the theory of quantum
Klimontovich solutions defined in [F. Golse, T. Paul, Commun. Math. Phys.
369 (2019), 1021–1053]. Our first main result is a definition of the interaction
nonlinearity in the equation governing the dynamics of quantum Klimontovich
solutions for a class of interaction potentials slightly less general than those
considered in [T. Kato, Trans. Amer. Math. Soc. 70 (1951), 195–211].
Our second main result is a new operator inequality satisfied by the quantum
Klimontovich solution in the case of an interaction potential with Coulomb
type singularity. When evaluated on an initial bosonic pure state, this opera-
tor inequality reduces to a Gronwall inequality for a functional introduced in
[P. Pickl, Lett. Math. Phys. 97 (2011), 151–164], resulting in a convergence
rate estimate for the quantum mean-field limit leading to the time-dependent
Hartree equation.

1. Introduction and Notation

In classical mechanics, the motion equations for a system of N identical point
particles of mass m with positions qj(t) ∈ R3 and momenta pj(t) ∈ R3 for all
j = 1, . . . ,N is

(1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

q̇j(t) = 1
m
pj(t) = ∇pj

HN(p1(t), . . . , qN(t)) ,

ṗj(t) = −
N

∑
k=1
k/=j

∇V (qj(t) − qk(t)) = −∇pj
HN(p1(t), . . . , qN(t)) ,

where the N -particle classical Hamiltonian is

HN(p1, . . . , qN) ∶=
N

∑
j=1

1
2m
∣pj ∣2 + ∑

1≤j<k≤N
V (qj − qk) .

Assuming that V ∈ C1,1(R3), this differential system has a unique global solution
for all initial data. If V is even1, the phase space empirical measure

(2) µN(t, dxdξ) ∶= 1
N

N

∑
j=1

δqj(t/N),pj(t/N)(dxdξ) , Nm = 1 ,
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1In this case, the exclusion j /= k in the right-hand side of Newton’s second law for ṗj(t) is

useless since V even Ô⇒ ∇V (0) = 0.
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2 I. BEN PORATH AND F. GOLSE

is an exact, weak solution of the Vlasov equation

(3) ∂tµN + ξ ⋅ ∇xµN − ∇x(V ⋆ µN(t)) ⋅ ∇ξµN = 0

with self-consistent, mean-field potential

V ⋆x,ξ µN(t, x) = 1
N

N

∑
k=1

V (x − qk(t))

This remarkable observation is due to Klimontovich, and solutions of the Vlasov
equation (3) of the form (2) are referred to as “Klimontovich solutions”. Thus, if
µN(0) → f indxdξ weakly in the sense of probability measures as N → ∞, where
f in is a probability density on R3

x ×R
3
ξ, one has

µN(t, dxdξ) → f(t, x, ξ)dxdξ weakly in the sense of probability measures

for all t ≥ 0 as N →∞, where f is the solution of the Vlasov equation

(4) ∂tf + ξ ⋅ ∇xf −∇x(V ⋆x,ξ f(t, ⋅, ⋅)) ⋅ ∇ξf = 0 , f ∣
t=0 = f

in .

Thus, the mean-field limit in classical mechanics is equivalent to the continuous
dependence for the weak topology of probability measures of solutions of the Vlasov
equation in terms of their initial data. See [4] for a proof of this result. For instance,
the weak convergence of the initial data can be realized by a random choice of
(qj(0), pj(0)), independent and identically distributed with distribution f in.

The mean-field limit for bosonic systems in quantum mechanics has been formu-
lated in different settings, by using the so-called BBGKY hierarchy [20, 2, 1, 6], or
in the second quantization setting [18]. Interestingly, these techniques allow consid-
ering singular potentials such as the Coulomb potential, instead of C1,1 potentials
as in the classical case. (The mean-field limit with Coulomb potentials in classical
mechanics is still an open problem at the time of this writing; see however [19] in
the special case of monokinetic particle distributions. See also [9, 10] for potentials
less singular than the Coulomb potential).

The quantum mean-field equation analogous to the Vlasov equation (4) is the
(time-dependent) Hartree equation

(5) ih̵∂tψ(t, x) = − 1
2
h̵2∆xψ(t, x) + (V ⋆ ∣ψ(t, ⋅)∣2)(x)ψ(t, x) = 0 , ψ∣

t=0 = ψ
in .

In [16, 14], an original method, close to the second quantization approach in
[18], but avoiding the rather heavy formalism of Fock spaces, was proposed and
successfully applied to singular potentials including the Coulomb potential.

All these approaches noticeably differ from the classical setting used in [4] for
lack of a quantum notion of phase-space empirical measures. However, a quantum
analogue of the notion of phase-space empirical measure was recently proposed in
[8], along with an equation analogous to (3) governing their evolution. This notion
was used in [8] to prove the uniformity of the mean-field limit in the Planck constant
h̵ > 0. However, the discussion in [8] only considers regular potentials (specifically
∂αV ∈ FL1(Rd) for ∣α∣ ≤ 3 + [d/2]). Even writing the equation analogous to (3)
satisfied by the quantum analogue of the phase-space empirical measure requires
V ∈ FL1(Rd) in the setting of [8].

The purpose of the present paper is twofold:
(a) to extend the formalism of quantum empirical measures considered in [8] to
treat the case of singular potentials including the Coulomb potential, which is of
particular interest for applications to atomic physics, and
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(b) to explain how the ideas in [16, 14] can be couched in terms of the formalism
of quantum empirical measures defined in [8].

Specifically, we prove an inequality between operators on the N -particle Hilbert
space, of which the key estimates in [16, 14] leading to the quantum mean-field
limit are straightforward consequences.

The next section briefly recalls only the essential part of [8] used in the sequel.
The main results obtained in the present paper are then stated in section 4. The
proofs of these results are given in the subsequent sections.

2. Quantum Klimontovich Solutions

Consider the quantum N -body Hamiltonian

(6) HN ∶=
N

∑
j=1
−

1
2
h̵2∆xj

+
1
N ∑

1≤j<k≤N
V (xj − xk)

on HN ∶= H⊗N ≃ L2(R3N), where H ∶= L2(R3). Henceforth it is assumed that V is
a real-valued function such that HN has a (unique) self-adjoint extension to HN ,
still denoted HN . A well-known sufficient condition for this to be true has been
found by Kato (see condition (5) in [12]): there exists R > 0 such that

(7) ∫∣z∣≤R V (z)2dz + esssup∣z∣>R ∣V (z)∣ <∞ .

In particular, these conditions include the (repulsive) Coulomb potential in R3. In
fact, HN has a self-adjoint extension to HN under a condition slightly more general
than Kato’s original assumption recalled above:

(8) V ∈ L2(R3) +L∞(R3)
(see Theorem X.16 and Example 2 in [17], and Theorem V.9 with m = 1 in [15]).

In the sequel, we adopt the notation in [8]. In particular, we set

(9) JkA ∶= I
⊗(k−1)
H

⊗A⊗ I
⊗(N−k)
H

, 1 ≤ n ≤ N ,

and

(10) Min
N ∶=

1
N

N

∑
k=1

Jk ∈ L(L(H),L(HN )) .
The dynamics of the morphismMin

N is defined by conjugation with the N -particle
dynamics as follows: for each A ∈ L(H),
(11) MN(t)A ∶= UN(t)∗(Min

NA)UN(t) , with UN(t) ∶= exp(−itHN /h̵) .
Since HN is self-adjoint, t ↦ UN(t) is a unitary group by Stone’s theorem. The
time-dependent morphism t ↦MN(t) ∈ L(L(H),L(HN)) is henceforth referred to
as the quantum Klimontovich solution.

Assume henceforth that V is even:

(12) V (x) = V (−x) , x ∈Rd .

The first main result in [8] (Theorem 3.3) is that, if V̂ ∈ L1(Rd), the quantum
Klimontovich solutionMN(t) satisfies
(13) ih̵∂tMN(t) = ad∗(K)MN(t) − C(V,MN(t),MN(t)) ,
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where K = − 1
2
h̵2∆ is the quantum kinetic energy, and where

(14) (ad∗(T )Λ)A ∶= −Λ([T,A])
for each unbounded self-adjoint operator T on H, each A ∈ L(H) satisfying the
condition [T,A] ∈ L(H), and each Λ ∈ L(L(H),L(HN)). Moreover

(15) C(V,Λ1,Λ2)(A) ∶= 1
(2π)d ∫

Rd
V̂ (ω)((Λ1E

∗
ω)Λ2(EωA) −Λ2(AEω)(Λ1E

∗
ω))dω

for each A ∈ L(H) and each Λ1,Λ2 ∈ L(L(H),L(HN)), where Eω ∈ L(H) is the
operator defined by

(16) (Eωφ)(x) ∶= eiω⋅xφ(x) for each φ ∈ H and ω ∈Rd .

Since the integrand of the right-hand side of (15) takes its values in the non sepa-
rable space L(HN), it is worth mentioning that this integral is a weak integral for
the ultraweak topology in L(HN) (see footnote 3 on p. 1032 in [8]).

At variance with the classical case recalled in (3), the differential equation (13)
satisfied by the quantum Klimontovich solution t↦MN(t) is not formally identical
to the mean-field, time-dependent Hartree equation (5). The relation between (5)
and (13) is explained in Theorem 3.5, the second main result in [8], recalled below.

If ψ is a solution of the the time-dependent Hartree equation (5) satisfying the
normalization condition

∥ψ(t, ⋅)∥H = 1 for all t ∈R ,

the time-dependent morphism t↦R(t) ∈ L(L(H),L(HN)) defined by the formula2

R(t)A ∶= ⟨ψ(t, ⋅)∣A∣ψ(t, ⋅)⟩IHN

is a solution of (13).

3. Extending the Definition of C(V,MN(t),MN(t)) when V ∉ FL1(R3)
Our first task is to extend the definition (15) of the term C(V,MN(t),MN(t))

to a more general class of potentials V , including the Coulomb potential in R3.
Since

MN(t)(E∗ω)MN(t)(Eω ∣φ⟩⟨φ∣) −MN(t)(∣φ⟩⟨φ∣Eω)MN(t)(E∗ω)
= UN(t)∗(Min

N (E∗ω)Min
N (Eω ∣φ⟩⟨φ∣) −Min

N (∣φ⟩⟨φ∣Eω)Min
N (E∗ω))UN(t) ,

the idea is to define ⟨Φin
N ∣C(V,MN(t),MN(t))(∣φ⟩⟨φ∣)∣Ψin

N ⟩
∶= 1
(2π)3 ∫

R3

V̂ (ω)⟨UN(t)Φin
N ∣SN [φ](ω)∣UN (t)Ψin

N ⟩dω
for all ΦN ,Ψ

in
N ∈ HN , where

SN [φ](ω) ∶=Min
N (E∗ω)Min

N (Eω ∣φ⟩⟨φ∣) −Min
N (∣φ⟩⟨φ∣Eω)Min

N (E∗ω)
2Throughout this paper, we adopt the Dirac bra-ket notation. Thus a wave function ψ ∈ H

viewed as a vector of the linear space H is denoted ∣ψ⟩, whereas ⟨ψ∣ designates the linear functional

⟨ψ∣ ∶ H ∋ φ ↦ ∫
Rd

ψ(x)φ(x)dx ∈C .

If A ∈ L(H), we denote

⟨ψ∣A∣φ⟩ ∶= ∫
Rd

ψ(x)(Aφ)(x)dx
and ⟨ψ∣φ⟩ ∶= ⟨ψ∣IH∣φ⟩ is the inner product on H.
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and to take advantage of the decay of SN[φ] in ω, assuming that φ is regular
enough. Our argument does not use any regularity on Φin

N or Ψin
N . This is quite

natural, since anyway Kato’s condition (8) on the interaction potential V does not
entail higher than (Sobolev) H2 regularity for UN(t)Φin

N or UN(t)Ψin
N , as observed

in Note V.10 of [15].
Our first main result in this paper is the following result, leading to a definition

of C(V,MN(t),MN(t))(∣φ⟩⟨φ∣) in the case of singular, Coulomb-like potentials V ,
and for bounded wave functions φ. This theorem can be regarded as an extension
to the case of singular, Coulomb like potentials V of the formalism of quantum
Klimontovich solutions in [8].

Theorem 3.1. Assume that V is a real-valued measurable function on R3 satisfying
the parity condition (12), and

(17) V ∈ L2(R3) +FL1(R3) .
For each φ ∈ L2

∩L∞(R3) and each ΨN ∈ HN , the function

ω ↦ ⟨ΨN ∣SN [φ](ω)∣ΨN ⟩ belongs to L2
∩L∞(R3) .

The interaction operator C(V,MN(t),MN(t))(∣φ⟩⟨φ∣) is defined by the formula

C(V,MN(t),MN(t))(∣φ⟩⟨φ∣) ∶= 1
(2π)3 ∫

R3

V̂ (ω)UN(t)∗SN[φ](ω)UN (t)dω
The integral on the right-hand side of the equality above is to be understood as a
weak integral and defines

t ↦ C(V,MN(t),MN(t))(∣φ⟩⟨φ∣)
as a continuous map from R to L(HN) endowed with the ultraweak topology, which
is moreover bounded on R for the operator norm on L(HN).

Obviously, condition (17) is stronger than Kato’s condition (8). In particular,
HN has a self-adjoint extension to HN under condition (17)

Proof. Assuming that Ψin
N ∈ HN , one has

UN(t)Ψin
N ∈ HN with ∥UN(t)Ψin

N ∥HN
= ∥Ψin

N ∥HN
.

Therefore, we henceforth forget the time dependence in ΨN(t, ⋅) = UN(t)Ψin
N ,

which will be henceforth denoted ΨN ≡ ΨN(x1, . . . , xN ).
Observe first that

SN [φ](ω) = 1
N2 ∑

1≤k/=l≤N
(Jk(E∗ω)Jl(Eω ∣φ⟩⟨φ∣) − Jl(∣φ⟩⟨φ∣Eω)Jk(E∗ω))

since
Jk(E∗ω)Jk(Eω ∣φ⟩⟨φ∣) − Jk(∣φ⟩⟨φ∣Eω)Jk(E∗ω)

= Jk(E∗ωEω ∣φ⟩⟨φ∣) − Jk(∣φ⟩⟨φ∣EωE
∗

ω)
= Jk(∣φ⟩⟨φ∣) − Jk(∣φ⟩⟨φ∣) = 0 .

Without loss of generality, consider the term

⟨ΨN ∣J1(E∗ω)J2(Eω ∣φ⟩⟨φ∣)∣ΨN ⟩ = ∫
R6

e−iω⋅(x1−x2)φ(x2)
×(∫

R3N−6
ΨN(x1, x2, Z)(∫

R3

ΨN(x1, y2, Z)φ(y2)dy2)dZ)dx1dx2
= F̂ (−ω)
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where

F (X) ∶= ∫
R3

φ(X+x1)f(x1, x1 +X,x1)dx1 ,
with the notation

f(x1, x2, y1) ∶= ∫
R3N−6

ΨN(x1, x2, Z) (∫
R3

ΨN(y1, y2, Z)φ(y2)dy2)dZ .
We shall prove that F ∈ L1(R3) ∩L2(R3), so that F̂ ∈ L2(R3) ∩C0(R3).

First

∫
R3

∣F (X)∣dX ≤∫
R6

∣φ(X + x1)∣∣f(x1, x1 +X,x1)∣dx1dX
=∫

R3

(∫
R3

∣φ(x2)∣∣f(x1, x2, x1)∣dx2)dx2
≤∫

R3N−3
(∫

R3

∣φ(x2)∣∣ΨN(x1, x2, Z)∣dx2)
× (∫

R3

∣ΨN(x1, y2, Z)∣∣φ(y2)∣dy2)dZdx1
=∫

R3N−3
(∫

R3

∣φ(x2)∣∣ΨN(x1, x2, Z)∣dx2)2 dZdx1
≤∥φ∥2L2(R3)∫

R3N−3
∫
R3

∣ΨN(x1, x2, Z)∣2dx2dZdx1
=∥φ∥2L2(R3)∥ΨN∥2L2(R3N) <∞ .

where the last inequality is the Cauchy-Schwarz inequality for the inner integral.
On the other hand

∫
R3

∣F (X)∣2dX ≤ ∥φ∥2L∞(R3)∫
R3

(∫
R3

∣f(x1, x1 +X,x1)∣dx1)2 dX ,

and

∫
R3

∣f(x1, x1 +X,x1)∣dx1 ≤ ∫
R3N−3

∣ΨN(x1, x1 +X,Z)∣ΦN(x1, Z)dZdx1 ,
with

Φ(x1, Z) ∶= ∫
R3

∣ΨN(x1, y2, Z)∣∣φ(y2)∣dy2 ,
so that

ΦN(x1, ZN)2 ≤ ∥φ∥2L2(R3)∫
R3

∣ΨN(x1, y2, Z)∣2dy2 ,
and

∫
R3N−3

ΦN(x1, Z)2dZdx1 ≤∥φ∥2L2(R3)∫
R3

∣ΨN(x1, y2, Z)∣2dx1dy2dZ
=∥φ∥2L2(R3)∥ΨN∥2L2(R3N) .

Hence

(∫
R3

∣f(x1, x1 +X,x1)∣dx1)2 ≤ (∫
R3N−3

∣ΨN(x1, x1 +X,Z)∣ΦN(x1, Z)dZdx1)2
≤ ∫

R3N−3
∣ΨN(x1, x1 +X,Z)∣2dZdx1 ∫

R3N−3
ΦN(x1, Z)2dZdx1

≤ ∫
R3N−3

∣ΨN(x1, x1 +X,Z)∣2dZdx1∥φ∥2L2(R3)∥ΨN∥2L2(R3N) ,
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so that

∫
R3

(∫
R3

∣f(x1, x1 +X,x1)∣dx1)2 dX
≤ ∥φ∥2L2(R3)∥ΨN∥2L2(R3N)∫

R3
∫
R3N−3

∣ΨN(x1, x1 +X,Z)∣2dZdx1dX
= ∥φ∥2L2(R3)∥ΨN∥2L2(R3N)∫

R3
∫
R3N−3

∣ΨN(x1, x2, Z)∣2dZdx1dx2
= ∥φ∥2L2(R3)∥ΨN∥4L2(R3N) .

Therefore

∫
R3

∣F (X)∣2dX ≤ ∥φ∥2L∞(R3)∥φ∥2L2(R3)∥ΨN∥4L2(R3N) <∞

so that ω ↦ F̂ (−ω) belongs to L2(Rd) by Plancherel’s theorem. Hence, for each
k /= l ∈ {1, . . . ,N}, one has

V̂ ∈ L1(Rd) +L2(Rd) Ô⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∫
R3

∣V̂ (ω)∣∣⟨ΨN ∣Jk(E∗ω)Jl(Eω ∣φ⟩⟨φ∣)∣ΨN ⟩∣dω <∞ ,

∫
R3

∣V̂ (ω)∣∣⟨ΨN ∣Jl(∣φ⟩⟨φ∣Eω)Jk(E∗ω)∣ΨN ⟩∣dω <∞ .

Hence

(t, ω) ↦ V̂ (ω)⟨UN(t)Ψin
N ∣SN [φ](ω)∣UN (t)Ψin

N ⟩ belongs to Cb(Rt, L
1(R3

ω)) .
Since SN[φ](ω)∗ = −SN [φ](ω) ∈ L(HN) for each ω ∈ R3 and V̂ is even because of
(12), the formula

⟨Ψin
N ∣C(V,MN(t),MN(t))(∣φ⟩⟨φ∣)∣Ψin

N ⟩
∶= 1
(2π)3 ∫

R3

V̂ (ω)⟨UN(t)∗Ψin
N ∣SN [φ](ω)∣UN (t)∗Ψin

N ⟩dω
defines

C(V,MN(t),MN(t))(∣φ⟩⟨φ∣) = −C(V,MN(t),MN(t))(∣φ⟩⟨φ∣)∗ ∈ L(HN)
for each t ∈R by polarization, and the function

t ↦ C(V,MN(t),MN(t))
is bounded on R with values in L(HN) for the norm topology, and continuous on
R with values in L(HN) endowed with the weak operator topology, and therefore
for the ultraweak topology (since the weak operator and the ultraweak topologies
coincide on norm bounded subsets of L(HN)). �

Remark. In the sequel, we shall also need to consider terms of the form

(I) ∶= 1
(2π)3 ∫

R3

V̂ (ω)⟨ΨN ∣J1(E∗ω ∣φ⟩⟨φ∣)J2(Eω ∣φ⟩⟨φ∣)∣ΨN ⟩dω
(II) ∶= 1

(2π)3 ∫
R3

V̂ (ω)⟨ΨN ∣J1(∣φ⟩⟨φ∣E∗ω)J2(Eω ∣φ⟩⟨φ∣)∣ΨN ⟩dω
(III) ∶= 1

(2π)3 ∫
R3

V̂ (ω)⟨ΨN ∣J1(∣φ⟩⟨φ∣E∗ω ∣φ⟩⟨φ∣)J2(AEωB)∣ΨN ⟩dω
where A,B ∈ L(H).
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The term (III) is the easiest of all. Indeed,

(III) = 1
(2π)3 ∫

R3

V̂ (ω)̂∣φ∣2(ω)⟨ΨN ∣J1(∣φ⟩⟨φ∣)J2(AEωB)∣ΨN ⟩dω
=⟨ΨN ∣J1(∣φ⟩⟨φ∣)J2(A(V ⋆ ∣φ∣2)B)∣ΨN ⟩

and since V ∈ L2(R3) +Cb(R3) while φ ∈ L1
∩L∞(R3), one has V ⋆ ∣φ∣2 ∈ Cb(R3),

so that A(V ⋆ ∣φ∣2)B ∈ L(H).
The terms (I) and (II) are slightly more delicate, but can be treated by the same

method already used in the proof of the theorem above. First,

⟨ΨN ∣J1(E∗ω ∣φ⟩⟨φ∣)J2(Eω ∣φ⟩⟨φ∣)∣ΨN ⟩ = F̂1(ω) ,
with

F1(Y ) ∶=∫
R3N−6

A1(Y,Z)A2(Z)dZ ,
A1(Y,Z) ∶=∫

R3

φ(X + Y
2
)φ(X − Y

2
)ΨN(X + Y

2
,X − Y

2
, Z)dX ,

A2(Z) ∶=∫
R6

ΨN(y1, y2, Z)φ(y1)φ(y2)dy1dy2 ,
so that (I) = 1

(2π)3 ∫
R3

V̂ (ω)F̂1(ω)dω .
Then

(∫
R3

∣F1(Y )∣dY )2
≤ ∥A2∥2L2(R3N−6)∫

R3N−6
(∫

R3

∣A1(Y,Z)∣dY )2 dZ ≤ ∥A2∥2L2(R3N−6)

×∫
R3N−6

(∫
R6

∣φ(X + Y
2
)∣∣φ(X − Y

2
)∣∣ΨN(X + Y

2
,X − Y

2
, Z)∣dXdY )2 dZ

≤ ∥A2∥2L2(R3N−6)∫
R6

∣φ(X + Y
2
)∣2∣φ(X − Y

2
)∣2dXdY

×∫
R3N
∣ΨN(X + Y

2
,X − Y

2
, Z)∣2dXdY dZ

= ∥A2∥2L2(R3N−6)∫
R6

∣φ(x1)∣2∣φ(x2)∣2dx1dx2
×∫

R3N
∣ΨN(x1, x2, Z)∣2dx1dx2dZ

= ∥A2∥2L2(R3N−6)∥φ∥4L2(R3)∥ΨN∥2HN
.

Besides

∥A2∥2L2(R3N−6) ≤∫
R6

∣φ(y1)∣2∣φ(y2)∣2dy1dy2 ∫
R3N−6

∣ΨN(y1, y2, Z)∣2dy1dy2dZ
=∥φ∥4L2(R3)∥ΨN∥2HN

,

so that ∥F1∥L1(R3) ≤ ∥φ∥4L2(R3)∥ΨN∥2HN
<∞ .

On the other hand

∫
R3

∣F1(Y )∣2dY ≤ ∥A2∥2L2(R3N−6)∥A1∥2L2(R3N−3) ,
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where ∥A1∥2L2(R3N−3) ≤ sup
Y ∈R3

∫
R3

∣φ(X + Y
2
)∣2∣φ(X − Y

2
)∣2dX

×∫
R3N
∣ΨN(X + Y

2
,X − Y

2
, Z)∣2dXdY dZ

≤∥φ∥4L4(R3)∥ΨN∥2HN
,

so that

∫
R3

∣F1(Y )∣2dY ≤ ∥φ∥4L4(R3)∥φ∥4L2(R3)∥ΨN∥4HN
<∞ .

Thus, we have proved that F1 ∈ L1
∩L2(Rd), and since V̂ ∈ L2(Rd) +L1(Rd), the

product V̂ F̂ ∈ L1(Rd), which leads to a definition of (I).
The case of (II) is essentially similar. Observe that

⟨ΨN ∣J1(∣φ⟩⟨φ∣E∗ω)J2(Eω ∣φ⟩⟨φ∣)∣ΨN ⟩ = ∫
R3N−6

F̂2(ω,Z)F̂3(ω,Z)dZ ,
where

F2(y1, Z) ∶=φ(y1)∫
R3

φ(y2)ΨN(y1, y2, Z)dy2
F3(x2, Z) ∶=φ(x2)∫

R3

φ(x1)ΨN(x1, x2, Z)dx1 .
And (II) ∶= 1

(2π)3 ∫
R3

V̂ (ω)(∫
R3N−6

F̂2(ω,Z)F̂3(ω,Z)dZ)dω .
Observe that

(∫ ∣F2(y1, Z)∣dy1)2 ≤(∫
R6

∣φ(y1)∣∣φ(y2)∣∣ΨN(y1, y2, Z)∣dy1dy2)2
≤∥φ∥4L2(R3)∫

R6

∣ΨN(y1, y2, Z)∣2dy1dy2 ,
so that

sup
ω∈R3

∣∫
R3N−6

F̂2(ω,Z)F̂3(ω,Z)dZ∣2

≤ (∫
R3N−6

sup
ω∈R3

∣F̂2(ω,Z)∣ sup
ω∈R3

∣F̂3(ω,Z)∣dZ)2

≤ ∫
R3N−6

sup
ω∈R3

∣F̂2(ω,Z)∣2dZ ∫
R3N−6

sup
ω∈R3

∣F̂3(ω,Z)∣2dZ
≤ ∫

R3N−6
(∫ ∣F2(y1, Z)∣dy1)2 dZ ∫

R3N−6
(∫ ∣F3(x2, Z)∣dx2)2 dZ
≤ ∥φ∥8L2(R3)∥ΨN∥4HN

,

while

∫
R3N−6

(∫ ∣F2(y1, Z)∣dy1)2 dZ ≤ ∥φ∥4L2(R3)∥ΨN∥2HN
,

with a similar conclusion for F3. On the other hand

∫
R3

∣F2(y1, Z)∣2dy1 ≤ ∫
R3

∣φ(y1)∣2 (∫
R3

φ(y2)ΨN(y1, y2, Z)dy2)2 dy1
≤ ∥φ∥2L2(R3)∫

R3

∣φ(y1)∣2 (∫
R3

∣ΨN(y1, y2, Z)∣2dy2)dy1
≤ ∥φ∥2L2(R3)∥φ∥2L∞(R3)∫

R6

∣ΨN(y1, y2, Z)∣2dy1dy2 ,
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so that

∫
R3

∣∫
R3N−6

F̂2(ω,Z)F̂3(ω,Z)dZ∣2 dω
≤ ∫

R3
∫
R3N−6

∣F̂2(ω,Z)∣2 (∫
R3N−6

∣F̂3(ω,Z)∣2dZ)dZdω
≤ sup

ω∈R3

∫
R3N−6

∣F̂3(ω,Z)∣2dZ ∫
R3N−6

∫
R3

∣F̂2(ω,Z)∣2dZdω
≤ ∫

R3N−6
sup
ω∈R3

∣F̂3(ω,Z)∣2dZ ∫
R3N−6

(2π)3 (∫
R3

∣F2(y1, Z)∣2dy1)dZ
≤ (2π)3∫

R3N−6
(∫

R3

∣F̂3(x2, Z)∣dx2)2 dZ ∫
R3N−6

∫
R3

∣F2(y1, Z)∣2dy1dZ
≤ (2π)3∥φ∥6L2(R3)∥φ∥2L∞(R3)∥ΨN∥4HN

.

Therefore the map

ω ↦ ∫
R3N−6

F̂2(ω,Z)F̂3(ω,Z)dZ
belongs to L2

∩L∞(R3). Since V̂ ∈ L2(R3) +L1(R3), this implies that

ω ↦ V̂ ∫
R3N−6

F̂2(ω,Z)F̂3(ω,Z)dZ
belongs to L1(R3), thereby leading to a definition of (II).

4. An Operator Inequality. Application to the Mean-Field Limit

First consider the Cauchy problem for the time dependent Hartree equation (5).
Assuming that the potential V satisfies (8) and (12), for each φin ∈H2(R3), there
exists a unique solution φ ∈ C(R,H2(R3)) of (5) by Theorems 1.4 and 1.3 of [11].

Pickl’s key idea in his proof of the mean-field limit in quantum mechanics is to
consider the following functional (see Definition 2.2 and formula (6) in [16], with
the choice n(k) ∶= k/N , in the notation of [16]):

αN(ΨN , ψ) ∶= ⟨ΨN ∣Min
N (IH − ∣ψ⟩⟨ψ∣)∣ΨN ⟩

for all ΨN ∈ HN and ψ ∈ H.
Assuming that ψ ≡ ψ(t, x) is a solution of (5) while ΨN(t, ⋅) ∶= UN(t)Ψin

N , Pickl
studies in section 2.1 of [16] the time-dependent function t ↦ αN(ΨN(t, ⋅), ψ(t, ⋅)),
and proves that it satisfies some Gronwall inequality.

Observe first that Pickl’s functional αN(ΨN(t, ⋅), ψ(t, ⋅)) can be recast in terms
of the quantum Klimontovich solutionMN(t) as follows
(18)

αN (UN(t)Ψin
N , ψ(t, ⋅)) =⟨UN(t)Ψin

N ∣Min
N (IH − ∣ψ(t, ⋅)⟩⟨ψ(t, ⋅)∣)UN (t)∣Ψin

N ⟩
=⟨Ψin

N ∣UN (t) (Min
N (IH − ∣ψ(t, ⋅)⟩⟨ψ(t, ⋅)∣))UN(t)∣Ψin

N ⟩
=⟨Ψin

N ∣MN(t)(IH − ∣ψ(t, ⋅)⟩⟨ψ(t, ⋅)∣)∣Ψin
N ⟩ .

This identity suggests therefore to deduce from (13) and (5) the expression of

d
dt
MN(t)(IH − ∣ψ(t, ⋅)⟩⟨ψ(t, ⋅)∣)

in terms of the interaction operator C defined in (15).
This is done in the first part of the next theorem, which is our second main result

in this paper.
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Theorem 4.1. Assume that the (real-valued) interaction potential V , viewed as
an (unbounded) multiplication operator acting on H ∶= L2(R3), satisfies the parity
condition (12) and (17).

Let ψin ∈H2(R3) satisfy ∥ψin∥H = 1, let ψ be the solution of the Cauchy problem
(5) for the time-dependent Hartree equation, and set

(19) R(t) ∶= ∣ψ(t, ⋅)⟩⟨ψ(t, ⋅)∣ , and P (t) ∶= IH −R(t) .
Then

(1) the N -body quantum Klimontovich solution t↦MN(t) satisfies
ih̵∂t(MN(t)(P (t))) = C(V,MN(t) −R(t),MN(t))(R(t)) ,

where

R(t)A ∶= ⟨ψ(t, ⋅)∣A∣ψ(t, ⋅)⟩IHN
= traceH(R(t)A)IHN

;

(2) the operator C(V,MN(t) − R(t),MN(t))(P (t)) is skew-adjoint on HN and
satisfies the operator inequality

±iC(V,MN(t) −R(t),MN(t))(R(t)) ≤ 6L(t) (MN(t)(P (t)) + 2
N
IHN
) ,

where3

(20) L(t) ∶= 2max(1,CS)∥V ∥L2(R3)+L∞(R3)∥ψ(t, ⋅)∥H2(R3) ,

and where CS is the norm of the Sobolev embedding H2(R3) ⊂ L∞(R3).
The operator inequality for quantum Klimontovich solutions in the case of po-

tentials with Coulomb type singularity obtained in part (2) of Theorem 4.1 can
be thought of as the reformulation of Pickl’s argument in terms of the quantum
Klimontovich solutionMN(t).

Indeed, we deduce from parts (1) and (2) in Theorem 4.1 the operator inequality

(21) d
dt
MN(t)(P (t)) ≤ 6L(t)

h̵
(MN(t)(P (t)) + 2

N
IHN
) .

Then, evaluating both sides of this inequality on the initial N -particle state Ψin
N ,

and taking into account the identity (18) leads to the Gronwall inequality

d
dt
αN(UN(t)Ψin

N , ψ(t, ⋅)) ≤ 6L(t)
h̵
(αN(UN(t)Ψin

N , ψ(t, ⋅)) + 2
N
)

satisfied by Pickl’s functional αN(UN(t)Ψin
N , ψ(t, ⋅)). This last inequality corre-

sponds to inequality (11) and Lemma 3.2 in [16].

In the sequel, we shall denote by Lp(H) for p ≥ 1 the Schatten two-sided ideal of
L(H) consisting of operators T such that

∥T ∥p ∶= (traceH((T ∗T )p/2))1/p <∞ .

In particular L1(H) is set of trace-class operators on H and ∥ ⋅ ∥1 the trace norm,
while L2(H) is set of Hilbert-Schmidt operators on H and ∥ ⋅∥2 the Hilbert-Schmidt
norm.

3We recall that, if E,F∗ are Banach spaces

∥v∥E∩F ∶=max(∥v∥E , ∥v∥F ) ,
and

∥f∥Lp(Rd)+Lq(Rd) = inf{∥f1∥Lp(Rd)+∥f2∥Lq(Rd) s.t. f =f1+f2 with f1 ∈Lp(Rd), f2 ∈Lq(Rd)} .
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Corollary 4.2. Under the same assumptions and with the same notations as in
Theorem 4.1, consider the N -body wave function ΨN(t, ⋅) ∶= UN(t)(ψin)⊗N , and
the N -body density operator FN(t) ∶= ∣ΨN(t, ⋅)⟩⟨ΨN(t, ⋅)∣. For each m = 1, . . . ,N ,
the m-particle reduced density operator FN ∶m(t), defined by the identity

traceHm
(FN ∶m(t)A1 ⊗ . . .⊗Am) = ⟨ΨN(t, ⋅)∣A1 ⊗ . . . ⊗Am ⊗ IHN−m

∣ΨN(t, ⋅)⟩
for all A1, . . . ,Am ∈ L(H), satisfies

∥FN ∶m(t) −R(t)⊗m∥1 ≤ 4√m

N
exp( 3

h̵ ∫
t

0
L(s)ds) ,

with L given by (20).

Let us briefly indicate how one arrives at the operator inequality in part (2) of
Theorem 4.1. Let Λ1,Λ2 ∈ L(L(H),L(HN)) be such that

(22) ω ↦ ⟨ΨN ∣Λ1(E∗ω)Λ2(Eω)∣ΨN ⟩belongs to L1
∩L2(R3)

for all ΨN ∈ HN . For all V satisfying (12) and (17), define T (V,Λ1,Λ2) ∈ L(HN)
by polarization of the formula

⟨ΨN ∣T (V,Λ1,Λ2)∣ΨN ⟩ ∶= 1
(2π)d ∫

Rd
V̂ (ω)⟨ΨN ∣Λ1(E∗ω)Λ2(Eω)∣ΨN ⟩dω .

In other words,

(23) T (V,Λ1,Λ2) ∶= 1
(2π)d ∫

Rd
V̂ (ω)Λ1(E∗ω)Λ2(Eω)dω

where the integral on the right hand is to be understood in the ultraweak sense (see
footnote 3 on p. 1032 in [8]).

For each A ∈ L(H), denote by Λj(●A) and Λj(A●) the linear maps

Λj(●A) ∶ L(H) ∋ B ↦ Λj(BA) ∈ L(HN)
Λj(A●) ∶ L(H) ∋ B ↦ Λj(AB) ∈ L(HN)

respectively. If A ∈ L(H) is such that Λ1,Λ2(●A) and Λ2(A●),Λ1 satisfy (22), then
one has

(24) C(V,Λ1,Λ2)A = T (V,Λ1,Λ2(●A)) − T (V,Λ2(A●),Λ1) .
Lemma 4.3. Let Λ1,Λ2 ∈ L(L(H),L(HN )) be ∗-homomorphisms, in other words

Λj(A∗) = Λj(A)∗ , j = 1,2

for all A ∈ L(H). Assume that Λ1,Λ2 satisfy (22). Then

T (V,Λ2,Λ1) = T (V,Λ1,Λ2)∗ .
Proof. Indeed

T (V,Λ2,Λ1) = 1
(2π)d ∫

Rd
V̂ (ω)Λ2(E∗ω)Λ1(Eω)dω

= 1
(2π)d ∫

Rd
V̂ (ω)Λ2(Eω)∗Λ1(E∗ω)∗dω = T (V,Λ1,Λ2)∗

where the first equality follows from the fact that Λ1 and Λ2 are *-homomorphisms,
while the second equality uses the fact that V̂ is real-valued, since V is real-valued
and even. �
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An easy consequence of (24) and of this lemma is that, for each A = A∗ ∈ L(H)
such that Λ1,Λ2 ∈ L(L(H),L(HN)) are ∗-homomorphisms such that Λ1,Λ2(●A)
satisfy (22), then

(25) (C(V,Λ1,Λ2)A)∗ = −C(V,Λ1,Λ2)A.
The key observations leading to Theorem 4.1 are summarized in the two following

lemmas. In the first of these two lemmas, the interaction operator is decomposed
into a sum of four terms.

Lemma 4.4. Under the same assumptions and with the same notations as in
Theorem 4.1, the interaction operator satisfies the identity

C(V,MN(t) −R(t),MN(t))(R(t)) = T1 + T2 + T3 + T4 ,
with

T1 ∶=T (V,MN(t)(P (t)●P (t)),MN(t)(P (t)●R(t))
− T (V,MN(t)(R(t)●P (t)),MN(t)(P (t)●P (t)) ,

T2 ∶=MN(t)(R(t)VR(t)P (t))MN(t)(P (t))
−MN(t)(P (t))MN(t)(P (t)VR(t)R(t)) ,

T3 ∶=T (V,MN(t)(P (t)●R(t)),MN(t)(P (t)●R(t))
− T (V,MN(t)(R(t)●P (t)),MN(t)(R(t)●P (t)) ,

T4 ∶= 1
N
MN(t)[VR(t),R(t)] .

All the terms involved in this decomposition can be defined by the same method
already used in the proof of Theorem 3.1. Indeed, one can check that all these
terms involve only expressions of the type (I), (II) or (III) in the Remark following
Theorem 3.1. This easy verification is left to the reader, and we shall henceforth
consider this matter as settled by the detailed explanations concerning (I), (II) and
(III) given in the previous section.

Each term in this decomposition satisfies an operator inequality involving only
the operator norm of the “mean-field squared potential” (V 2)R(t), instead of the
“bare” interaction potential V itself.

Lemma 4.5. Under the same assumptions and with the same notations as in
Theorem 4.1, set

(26) ℓ(t) ∶= ∥V 2
⋆ ∣ψ(t, ⋅)∣2∥ 1

2 .

Then

±iT1 ≤2ℓ(t) ((1 − 1
N
)MN(t)(P (t))+ 4

N
IHN
) ,

±iT2 ≤2ℓ(t)(MN(t)(P (t)) + 1
N
IHN
) ,

±iT3 ≤2ℓ(t)((1− 1
N
)MN(t)(P (t)) + 1

N
IHN
) ,

±iT4 ≤ 2
N
ℓ(t)IHN

.

Remarks on ℓ(t) in (26) and L(t) in (20).

(1) If V satisfies condition (17) in Theorem 3.1, then V ∈ L2(R3)+L∞(R3), so that
V 2 ∈ L1(Rd)+L∞(Rd). Thus (V 2)R(t), which is the multiplication operator by the



14 I. BEN PORATH AND F. GOLSE

function V 2
⋆ ∣ψ(t, ⋅)∣2, satisfies

ℓ(t)2 ∶= ∥V 2
⋆ ∣ψ(t, ⋅)∣2∥L∞(R3 ≤∥V 2∥L1(R3)+L∞(R3)∥ψ(t, ⋅)∥2L1∩L∞(R3)

≤2∥V ∥2L1(R3)+L∞(R3)max(1, ∥ψ(t, ⋅)∥L∞(R3))2
≤2C2

S∥V ∥2L1(R3)+L∞(R3)∥ψ(t, ⋅)∥2H2(R3)

where we recall that CS is the norm of the Sobolev embedding H2(R3) ⊂ L∞(R3).
(2) If V satisfies (8), then ∥V (I −∆)−1∥ ≤M for some positive constantM (see the
discussion in §5.3 of chapter V in [13], so that

V 2 ≤M2(I −∆)2 .
In this remark, we shall make a slightly more restrictive assumption, namely that
V 2 satisfies

(27) V 2 ≤ C(I −∆) .
In space dimension d = 3, the Hardy inequality, which can be put in the form4

1∣x∣2 ≤ 4(−∆)
implies that the Coulomb potential satisfies the assumption above on V . If the
potential V satisfies the (operator) inequality (27), then

0 ≤ (V 2)R(t)(x) = ∫
Rd
V 2(y)∣ψ(t, x − y)∣2dy = ⟨ψ(t, x − ⋅)∣V 2∣ψ(t, x − ⋅)⟩

≤ C⟨ψ(t, x − ⋅)∣(I −∆)∣ψ(t, x − ⋅)⟩ = C∥ψ(t, x − ⋅)∥2L2 +C∥∇ψ(t, x − ⋅)∥2L2

= C∥ψ(t, ⋅)∥2L2 +C∥∇ψ(t, ⋅)∥2L2 .

Thus, if ψ ∈ C(R;H1(Rd)) is a solution of the Hartree equation,

ℓ(t) ≤√C∥ψ(t, ⋅)∥H1(R3) .

(3) A bound on ℓ(t) in terms of ∥ψ(t, ⋅)∥H1(R3) instead of ∥ψ(t, ⋅)∥H2(R3) is advan-
tageous since the former quantity can be controlled rather explicitly by means of
the conservation of energy for the Hartree equation (5). This explicit control is
useful in particular to assess the dependence in h̵ of the convergence rate for the
mean-field limit obtained in Corollary (4.2).

Clearly, the convergence rate for the quantum mean-field limit in Corollary 4.2 is
not uniform in the semiclassical regime, in the first place because of the factor 3/h̵
on the right hand side of the upper bound for ∥FN ∶m(t) −R(t)⊗m∥1, which comes
from the ih̵∂t part of the quantum dynamical equation.

However, one should expect that the function ℓ(t), or at least the upper bound for
ℓ(t) obtained in (2), grows at least as 1/h̵, since it involves ∥∇xψ(t, ⋅)∥L2 , expected
to be of order 1/h̵ for semiclassical wave functions ψ (think for instance of a WKB
wave function, or of a Schrödinger coherent state).

4To see that 4 is optimal, minimize in α > 0 the expression

∫
R3
∣∇u + α x

∣x∣2 u∣
2

dx .
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We shall discuss this issue by means of the conservation of energy satisfied by
the Hartree solution ψ (see formula (5.2) in [3]):

1
2
h̵2∥∇ψ(t, ⋅)∥2L2 +

1
2 ∫

Rd
∣ψ(t, x)∣2(V ⋆ ∣ψ(t, x)∣2)dx

= 1
2
h̵2∥∇ψin∥2L2 +

1
2 ∫

Rd
∣ψin(x)∣2(V ⋆ ∣ψin(x)∣2)dx .

Observe that

(28) ∣V ⋆ ∣ψ(t, x)∣2 ∣ ≤ ∥ψ(t, ⋅)∥L2(V 2
⋆ ∣ψ(t, x)∣2)1/2 = ℓ(t) ,

so that
1
2
h̵2∥∇ψin∥2L2 +

1
2 ∫

Rd
∣ψin(x)∣2(V ⋆ ∣ψin(x)∣2)dx

≤ 1
2
h̵2∥ψin∥2H1 +

1
2
ℓ(t) ≤ 1

2
h̵2∥ψin∥2H1 +

1
2

√
C∥ψin∥H1 .

Thus, if V ≥ 0, or if V̂ ≥ 0, one has

∫
Rd
∣ψ(t, x)∣2(V ⋆ ∣ψ(t, x)∣2)dx = 1

(2π)d ∫
Rd
V̂ (ω)∣F(∣ψ(t, ⋅)∣2)∣2(ω)dω ≥ 0

(where F designates the Fourier transform on Rd), so that the conservation of mass
and energy for the Hartree solution implies that

h̵2∥ψ(t, ⋅)∥2H1 ≤ h̵2∥ψin∥2H1 +

√
C∥ψin∥H1 .

In that case

ℓ(t) ≤ 1
h̵

√
C(h̵2∥ψin∥2

H1 +

√
C∥ψin∥H1) .

Typical states used in the semiclassical regime (WKB or coherent states, for in-
stance) satisfy h̵∥∇ψin∥L2 = O(1). Thus, in that case

ℓ(t) ≤ h̵−3/2√C(h̵3∥ψin∥2
H1 +

√
Ch̵∥ψin∥H1) = O(h̵−3/2) .

Things become worse if the potential energy is a priori of indefinite sign. With
(28), the energy conservation implies that

h̵2∥ψ(t, ⋅)∥2H1 ≤h̵2∥ψin∥2H1 +

√
C∥ψin∥H1 +

√
C∥ψ(t, ⋅)∥H1

≤h̵2∥ψin∥2H1 +

√
C∥ψin∥H1 +

C
2h̵2 +

1
2
h̵2∥ψ(t, ⋅)∥2H1 ,

so that

h̵2∥ψ(t, ⋅)∥2H1 ≤ 2 (h̵2∥ψin∥2H1 +

√
C∥ψin∥H1 +

C
2h̵2 ) ≤ 3h̵2∥ψin∥2H1 + 2 C

h̵2 ,

and thus

ℓ(t) ≤ h̵−2√C(3h̵4∥ψin∥2
H1 + 2C) = O(h̵−2) .

Therefore, the exponential amplifying factor in Corollary 4.2 is exp(Kt/h̵5/2) in
the first case, and exp(Kt/h̵3) in the second. These elementary remarks suggest
that Pickl’s clever method for proving the quantum mean-field limit with singular
potentials including the Coulomb potential (see [16, 14]) is not expected to give
uniform convergence rates (as in [7, 8] in the case of regular interaction potentials)
for the mean field limit in the semiclassical regime.
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5. Proof of part (1) in Theorem 4.1

For each σ ∈SN and each ΨN ∈ HN , set

(UσΨN)(x1, . . . , xN ) = ΨN(xσ−1(1), . . . , xσ−1(N)) .
Since ψ(t, ⋅) ∈ H2(R3), the commutator [∆,R(t)] is a bounded operator on H.

According to formula (25) in [8], denoting by Vkl the multiplication operator

(29) (VklΨN)(x1, . . . , xN ) = V (xk − xl)ΨN(x1, . . . , xN ) ,
one has
(30)
traceHN

((ih̵∂tMN(t) − ad∗(− 1
2
h̵2∆)MN(t))(P (t))FN)

= − traceHN
(N−1

N
([V12, J1P (t)])FN) = traceHN

(N−1
N
([V12, J1R(t)])FN)

for all FN ∈ L(HN) such that

(31) FN = F ∗N ≥ 0 , traceHN
(FN) = 1 , and UσFNU

∗

σ = FN for all σ ∈SN .

The core result in the proof of Theorem 3.1 is that the function

ω ↦ ⟨ΨN ∣Jk([Eω,R(t)])Jl(E∗ω)∣ΨN ⟩ ∈ L2
∩L∞(R3)

for each k /= l ∈ {1, . . . ,N}. Since V̂ ∈ L1(R3) +L2(R3), this has led us to define

⟨ΨN ∣[Vkl, JkR(t)]∣ΨN⟩ ∶= 1
(2π)3 ∫

R3

V̂ (ω)⟨ΨN ∣Jk([Eω ,R(t)])Jl(E∗ω)∣ΨN ⟩dω ,
and more generally, using a spectral decomposition of the trace-class operator FN ,

traceHN
([Vkl, JkR(t)]FN) ∶= 1

(2π)3 ∫
R3

V̂ (ω) traceHN
(Jk([Eω,R(t)])Jl(E∗ω)FN)dω

with

ω ↦ traceHN
(∣Jk([Eω ,R(t)])Jl(E∗ω)FN ) ∈ L2

∩L∞(R3) .
Since UσFNU

∗
σ = FN for all σ ∈SN , for each m /= n ∈ {1, . . . ,N}, one has

traceHN
(N−1

N
([V12, J1R(t)])FN) = traceHN

(N−1
N
([Vmn, JmR(t)])FN)

= 1
N2 ∑

1≤k/=l≤N

1
(2π)3 ∫

R3

V̂ (ω) traceHN
(Jk([Eω,R(t)])Jl(E∗ω)FN)dω

= 1
(2π)3 ∫

R3

V̂ (ω) traceHN
(SN [ψ(t, ⋅)](ω)FN)dω .

With the definition of C in Theorem 3.1, we conclude that the operator

SN = (ih̵∂tMN(t) − ad∗(− 1
2
h̵2∆)MN(t))(P (t)) − C(V,MN(t),MN(t))(R(t))

satisfies

traceHN
(SNFN) = 0

for each operator FN ∈ L(HN) satisfying (31). One easily checks that

U∗σSNUσ = SN for all σ ∈SN .

Let DN ∈ L(HN) be a density operator on HN , i.e.

(32) DN =D∗N ≥ 0 and traceHN
(DN) = 1 .

Obviously

FN ∶= 1
N ! ∑

σ∈SN

UσDNU
∗

σ
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satisfies (31), so that

0 = traceHN
(SNFN) = 1

N ! ∑
σ∈SN

traceHN
(U∗σSNUσDN) = traceHN

(SNDN)
for all DN ∈ L(HN) satisfying (32). Since any trace-class operator on HN is a linear
combination of 4 density operators, we conclude that

traceHN
(SNTN) = 0 for all TN ∈ L1(HN) ,

so that

(33) SN = 0 .

On the other hand

MN(t)(ih̵∂tP (t)) =MN(t)([− 1
2
h̵2∆ + V ⋆ ∣ψ(t, ⋅)∣2, P (t)])

=MN(t)([− 1
2
h̵2∆, P (t)]) −MN(t)([V ⋆ ∣ψ(t, ⋅)∣2,R(t)])

so that
(34)
ih̵∂t(MN(t)(P (t))) =ad∗(− 1

2
h̵2∆)MN(t)(P (t)) + C(V,MN(t),MN(t))(R(t))

+MN(t)([− 1
2
h̵2∆, P (t)]) −MN(t)([V ⋆ ∣ψ(t, ⋅)∣2,R(t)])

=C(V,MN(t),MN(t))(R(t))−MN(t)([V ⋆ ∣ψ(t, ⋅)∣2,R(t)]) .
Finally, by condition (17) on V , one has

ψ(t, ⋅) ∈ H2(R3) ⊂ L2
∩L4(R3) Ô⇒ V ⋆ ∣ψ(t, ⋅)∣2 ∈ FL1(R3)

so that

(35)

V ⋆ ∣ψ(t, ⋅)∣2 = 1
(2π)3 ∫

R3

V̂ (ω)F(∣ψ(t, ⋅)∣2)(ω)Eωdω

= 1
(2π)3 ∫

R3

V̂ (ω)⟨ψ(t, ⋅)∣E∗ω ∣ψ(t, ⋅)⟩Eωdω

= 1
(2π)3 ∫

R3

V̂ (ω)R(t)(E∗ω)Eωdω .

Hence

(36)
MN(t)([V ⋆ ∣ψ(t, ⋅)∣2,R(t)]) = 1

(2π)3 ∫
R3

V̂ (ω)R(t)(E∗ω)MN(t)[Eω ,R(t)]dω
=C(V,R(t),MN(t))(R(t))

so that, returning to (34), one arrives at the equality

ih̵∂t(MN(t)(P (t))) = C(V,MN(t),MN(t))(R(t))− C(V,R(t),MN(t))(R(t)) ,
which proves part (1) in Theorem 4.1.

Remark. In [8], the equality

ih̵∂tMN(t)(A) = ad∗(− 1
2
h̵2∆)MN(t)(A) − C(V,MN(t),MN(t))(A)

is proved for all A ∈ L(H) such that [∆,A] ∈ L(H) assuming that V ∈ FL1(R3).
This argument cannot be used here since V ∉ FL1(R3). Besides, the definition of
the operator C(V,MN(t),MN(t))(R(t)) in Theorem 3.1 makes critical use of the
fact that R(t) = ∣ψ(t, ⋅)⟩⟨ψ(t, ⋅)∣ with ψ(t, ⋅) ∈ L2

∩L∞(R3). This is the reason for
the rather lengthy justification of (33) in this section.
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6. Proof of Lemma 4.4

In the sequel, we seek to “simplify” the expression of the interaction operator

C(V,MN(t) −R(t),MN(t))(R(t)) .
This will lead to rather involved computations which do not seem much of a simpli-
fication. However, we shall see that the final result of these computations, reported
in Lemma 4.4, although algebraically more cumbersome, has better analytical prop-
erties.

6.1. A First Simplification. First we decompose EωR(t) and R(t)Eω in the
termsMN(t)(EωR(t)) andMN(t)(R(t)Eω) as

EωR(t) = P (t)EωR(t)+R(t)EωR(t) ,
and observe that

C(V,MN(t) −R(t),MN(t))(R(t))
= 1
(2π)3 ∫

R3

V̂ (ω)((MN(t) −R(t))(E∗ω)MN(t)(P (t)EωR(t))
−MN(t)(R(t)EωP (t))(MN(t) −R(t))(E∗ω))dω

+
1

(2π)3 ∫
R3

V̂ (ω)[(MN(t) −R(t))(E∗ω),MN(t)(R(t)EωR(t))]dω .
All the terms in the right hand side of the equality above are either similar to the
one considered in Theorem 3.1, or of the type denoted (III) in the Remark following
Theorem 3.1.

An elementary computation shows that, for all ω ∈Rd,

[(MN(t) −R(t))(E∗ω),MN(t)(R(t)EωR(t))]
= [MN(t)(E∗ω),MN(t)(R(t)EωR(t))]

= 1
N
MN(t)[E∗ω,R(t)EωR(t)] .

Recall indeed that, for each A,B ∈ L(H), one has

[MN(t)A,MN(t)B] = 1
N
MN(t)([A,B])

— see formula before (41) on p. 1041 in [8]. On the other hand

(37) R(t)EωR(t) = ∣ψ(t, ⋅)⟩⟨ψ(t, ⋅)∣Eω ∣ψ(t, ⋅)⟩⟨ψ(t, ⋅)∣ = F(∣ψ(t, ⋅)∣2)(−ω)R(t) ,
so that [(MN(t) −R(t))(E∗ω),MN(t)(R(t)EωR(t))]

= 1
N
F(∣ψ(t, ⋅)∣2)(−ω)MN(t)[E∗ω,R(t)] .

Besides (MN(t) −R(t))(E∗ω) =MN(t)E∗ω − ⟨ψ(t, ⋅)∣E∗ωψ(t, ⋅)∣⟩ IHN

=MN(t)E∗ω −F(∣ψ(t, ⋅)∣2)(ω)IHN

=MN(t)(E∗ω −F(∣ψ(t, ⋅)∣2)(ω)IH) .
Indeed

(38) Min
N IH = IHN

Ô⇒ MN(t)IH = UN(t)∗(Min
N IH)UN(t) = IHN

where we recall that UN(t) ∶= e−itHN /h̵, while HN is the N -body Hamiltonian.
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Therefore

C(V,MN(t) −R(t),MN (t))(R(t))
= 1
(2π)3 ∫

R3

V̂ (ω)((MN(t)(E∗ω −F(∣ψ(t, ⋅)∣2)(ω)IH)MN(t)(P (t)EωR(t))
−MN(t)(R(t)EωP (t))(MN(t)(E∗ω −F(∣ψ(t, ⋅)∣2)(ω)IH))dω

+
1

(2π)3 ∫
R3

V̂ (ω)F(∣ψ(t, ⋅)∣2)(ω) 1
N
MN(t)[Eω ,R(t)]dω ,

in view of (12). With the formula (36), we conclude that
(39)

C(V,MN(t) −R(t),MN(t))R(t)
= 1
(2π)3 ∫

R3

V̂ (ω)((MN(t)(E∗ω −F(∣ψ(t, ⋅)∣2)(ω)IH)MN(t)(P (t)EωR(t))
−MN(t)(R(t)EωP (t))(MN(t)(E∗ω −F(∣ψ(t, ⋅)∣2)(ω)IH))dω

+
1
N
MN(t)[V ⋆ ∣ψ(t, ⋅)∣2,R(t)] .

6.2. A Second Simplification. Next we decompose E∗ω inMN(t)(E∗ω) as
E∗ω = P (t)E∗ωP (t) + P (t)E∗ωR(t) +R(t)E∗ωP (t) +R(t)E∗ωR(t) .

The identity (37) shows that

R(t)E∗ωR(t) = F(∣ψ(t, ⋅)∣2)(ω)R(t) ,
and hence

R(t)(E∗ω −F(∣ψ(t, ⋅)∣2)(ω)IH)R(t) = 0 .
Therefore

MN(t)(E∗ω −F(∣ψ(t, ⋅)∣2)(ω)IH) =MN(t)(P (t)E∗ωP (t) −F(∣ψ(t, ⋅)∣2)(ω)P (t))
+MN(t)(P (t)E∗ωR(t)+R(t)E∗ωP (t)) ,

since R(t)P (t) = P (t)R(t) = 0. Thus
C(V,MN(t) −R(t),MN(t))(R(t))

= ∫
R3

V̂ (ω)((MN(t)(P (t)E∗ωP (t) −F(∣ψ(t, ⋅)∣2)(ω)P (t))MN(t)(P (t)EωR(t))
−MN(t)(R(t)EωP (t))(MN(t)(P (t)E∗ωP (t) −F(∣ψ(t, ⋅)∣2)(ω)P (t))) dω

(2π)3

+∫
R3

V̂ (ω)(MN(t)(P (t)E∗ωR(t)+R(t)E∗ωP (t))MN(t)(P (t)EωR(t))
−MN(t)(R(t)EωP (t))MN(t)(P (t)E∗ωR(t) +R(t)E∗ωP (t))) dω

(2π)3

+
1
N
MN(t)[(V ⋆ ∣ψ(t, ⋅)∣2),R(t)] .

Using again (12) implies that

∫
R3

V̂ (ω)(MN(t)(R(t)E∗ωP (t))MN(t)(P (t)EωR(t))dω
= ∫

R3

V̂ (ω)(MN(t)(R(t)EωP (t))MN(t)(P (t)E∗ωR(t))dω ,
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so that

C(V,MN(t) −R(t),MN(t))(R(t))
= ∫

R3

V̂ (ω)((MN(t)(P (t)E∗ωP (t) −F(∣ψ(t, ⋅)∣2)(ω)P (t))MN(t)(P (t)EωR(t))
−MN(t)(R(t)EωP (t))(MN(t)(P (t)E∗ωP (t) −F(∣ψ(t, ⋅)∣2)(ω)P (t))) dω

(2π)3

+∫
R3

V̂ (ω)(MN(t)(P (t)E∗ωR(t))MN(t)(P (t)EωR(t))
−MN(t)(R(t)EωP (t))MN(t)(R(t)E∗ωP (t))) dω

(2π)3

+
1
N
MN(t)[(V ⋆ ∣ψ(t, ⋅)∣2),R(t)] .

By (35), one can further simplify the term

∫
R3

V̂ (ω)F(∣ψ(t, ⋅)∣2)(ω)MN(t)(P (t))MN(t)(P (t)EωR(t))
−MN(t)(R(t)EωP (t))(MN(t)(P (t))) dω

(2π)3

=MN(t)(P (t))MN(t)(P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t))
−MN(t)(R(t)(V ⋆ ∣ψ(t, ⋅)∣2)P (t))MN(t)(P (t)) .

Finally

C(V,MN(t) −R(t),MN(t))(R(t)) = T1 + T2 + T3 + T4
with

T1 ∶=∫
R3

V̂ (ω)((MN(t)(P (t)E∗ωP (t))MN(t)(P (t)EωR(t))
−MN(t)(R(t)EωP (t))(MN(t)(P (t)E∗ωP (t))) dω

(2π)3

T2 ∶=MN(t)(R(t)(V ⋆ ∣ψ(t, ⋅)∣2)P (t))MN(t)(P (t))
−MN(t)(P (t))MN(t)(P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t))

T3 ∶=∫
R3

V̂ (ω)(MN(t)(P (t)E∗ωR(t))MN(t)(P (t)EωR(t))
−MN(t)(R(t)EωP (t))MN(t)(R(t)E∗ωP (t))) dω

(2π)3

T4 ∶= 1
N
MN(t)[(V ⋆ ∣ψ(t, ⋅)∣2),R(t)] .

Observe again that all the integrals in the right hand side of the equalities defining
T1 and T3 are of the form defined in Theorem 3.1, or of the form (I), (II) or (III),
or their adjoint, in the Remark following Theorem 3.1.

That
T1 =T (V,MN(t)(P (t)●P (t)),MN(t)(P (t)●R(t)))

− T (V,MN(t)(R(t)●P (t)),MN(t)(P (t)●P (t)))
T3 =T (V,MN(t)(P (t)●R(t)),MN(t)(P (t)●R(t)))

− T (V,MN(t)(R(t)●P (t)),MN(t)(R(t)●P (t)))
follows from (12) and the definition (23). This concludes the proof of Lemma 4.4.

7. Proof of Lemma 4.5

In the sequel, we shall estimate these four terms in increasing order of technical
difficulty.
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7.1. Bound for T4. The easiest term to treat is obviously T4. We first recall that

(40) ∥MN(t)(A)∥ ≤ ∥A∥ for each A ∈ L(H)
— see the formula following (41) on p. 1041 in [8]. Thus

∥T4∥ ≤ 1
N
∥[V ⋆ ∣ψ(t, ⋅)∣2,R(t)]∥ ≤ 1

N
(∥R(t)V ⋆ ∣ψ(t, ⋅)∣2∥ + ∥(V ⋆ ∣ψ(t, ⋅)∣2)R(t)∥)

= 2
N
∥(V ⋆ ∣ψ(t, ⋅)∣2)R(t)∥ ,

where the equality follows from the fact that R(t) = R(t)∗, which implies that

(41) ((V ⋆ ∣ψ(t, ⋅)∣2)R(t))∗ = R(t)(V ⋆ ∣ψ(t, ⋅)∣2) .
On the other hand, by Jensen’s inequality

(∣V ∣ ⋆ ∣ψ(t, ⋅)∣2)2 ≤ V 2
⋆ ∣ψ(t, ⋅)∣2 ,

so that

(42)
∥(V ⋆ ∣ψ(t, ⋅)∣2)R(t)∥2 ≤∥V ⋆ ∣ψ(t, ⋅)∣2∥2L∞

≤∥ ∣V ∣ ⋆ ∣ψ(t, ⋅)∣2 ∥2L∞ ≤ ∥(V 2) ⋆ ∣ψ(t, ⋅)∣2∥L∞ = ℓ(t)2 ,
and therefore

(43) ∥T4∥ ≤ 2
N
ℓ(t) .

Finally, we recall that

(Min
NA)∗ = 1

N

N

∑
k=1
(JkA)∗ = 1

N

N

∑
k=1

Jk(A∗) =Min
N (A∗)

for each A ∈ L(H), so that
(44)(MN(t)A)∗ = (UN(t)∗(Min

NA)UN(t))∗ =UN(t)∗(Min
NA)∗UN(t)

=UN(t)∗Min
N (A∗)UN(t) =MN(t)(A∗) .

Then (41) and (44) imply that

(MN(t)[V ⋆ ∣ψ(t, ⋅)∣2,R(t)])∗ =MN(t)([V ⋆ ∣ψ(t, ⋅)∣2,R(t)]∗)
=MN(t)(−[V ⋆ ∣ψ(t, ⋅)∣2,R(t)])
= −MN(t)([V ⋆ ∣ψ(t, ⋅)∣2,R(t)])

so that T ∗4 = −T4. Hence ±iT4 are self-adjoint operators on HN , so that

(45) ∥T4∥ ≤ 2
N
ℓ(t) Ô⇒ ±iT4 ≤ 2

N
ℓ(t)IHN

.

7.2. Bound for T2. Set

(46) S2 ∶=MN(t)(P (t))MN(t)(P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t)) .
One has

S2 =UN(t)∗Min
N (P (t))Min

N (P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t))UN(t)
= 1
N

N

∑
k=1
UN(t)∗(JkP (t))Min

N (P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t))(JkP (t))UN(t)
+

1
N

N

∑
k=1
UN(t)∗(JkP (t))[JkP (t),Min

N (P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t))]UN(t) .
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Then [JkP (t),Min
N (P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t))]

= 1
N
[JkP (t), Jk(P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t))]

= 1
N
Jk(P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t)) ,

so that

S2 = 1
N

N

∑
k=1
UN(t)∗(JkP (t))Min

N (P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t))(JkP (t))UN(t)
+

1
N2

N

∑
k=1
UN(t)∗Jk(P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t))UN(t) .

By cyclicity of the trace, for each F in
N satisfying (31), denoting

FN(t) ∶= UN(t)F in
N UN(t)∗ ,

one has

traceHN
(S2F

in
N )

= 1
N

N

∑
k=1

traceHN
(Min

N (P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t))(JkP (t))FN(t)(JkP (t)))
+

1
N2

N

∑
k=1

traceHN
(Jk(P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t))FN(t))

so that

(47)

∣ traceHN
(S2F

in
N )∣

≤ 1
N

N

∑
k=1
∥Min

N (P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t))∥∥(JkP (t))FN(t)(JkP (t)))∥1
+

1
N2

N

∑
k=1
∥Jk(P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t))∥∥FN(t)∥1

≤ ∥(V ⋆ ∣ψ(t, ⋅)∣2)R(t)∥ 1
N

N

∑
k=1

traceHN
((JkP (t))FN(t)(JkP (t))))

+∥(V ⋆ ∣ψ(t, ⋅)∣2)R(t)∥ 1
N2

N

∑
k=1
∥FN(t)∥1

= ∥(V ⋆ ∣ψ(t, ⋅)∣2)R(t)∥(traceHN
(MN(t)(P (t))F in

N ) + 1
N
∥F in

N ∥1) .
By (44),

S∗2 =MN(t)(R(t)(V ⋆ ∣ψ(t, ⋅)∣2)P (t))MN(t)(P (t)) ,
so that

T2 = S∗2 − S2 = −T ∗2 .

Thus

∣ traceHN
(T2F in

N )∣ ≤∣ traceHN
(S∗2F in

N )∣ + ∣ traceHN
(S2F

in
N )∣

=∣ traceHN
(F in

N S2)∣ + ∣ traceHN
(S2F

in
N )∣ = 2∣ traceHN

(S2F
in
N )∣ ,
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so that

(48)

∣ traceHN
(T2F in

N )∣
≤ 2∥(V ⋆ ∣ψ(t, ⋅)∣2)R(t)∥(traceHN

(MN(t)(P (t))F in
N ) + 1

N
∥F in

N ∥1)
≤ 2ℓ(t)(traceHN

(MN(t)(P (t))F in
N ) + 1

N
traceHN

(F in
N ))

by (42).

Next we use the following elementary observation.

Lemma 7.1. Let T = T ∗ ∈ L(HN) satisfy
UσTU

∗

σ = T for all σ ∈ SN , and traceHN
(TF ) ≥ 0

for each F ∈ L(HN) satisfying (31). Then T ≥ 0.

Proof. Indeed, we seek to prove that

⟨Ψ∣T ∣Ψ⟩ ≥ 0 for each Ψ ∈ HN .

For each Ψ ∈ HN such that ∥ΨN∥HN
= 1, set

F = 1
N ! ∑

σ∈SN

∣UσΨ⟩⟨UσΨ∣ .
Then F satisfies (31), so that

0 ≤ trace(TF ) = 1
N ! ∑

σ∈SN

⟨UσΨ∣T ∣UσΨ⟩ = 1
N ! ∑

σ∈SN

⟨Ψ∣U∗σTUσ∣Ψ⟩ = ⟨Ψ∣T ∣Ψ⟩
since U∗σTUσ = T for each σ ∈ SN . Thus ⟨Ψ∣T ∣Ψ⟩ ≥ 0 for each Ψ ∈ HN such that∥ΨN∥HN

= 1, and thus for each Ψ ∈ HN ∖ {0} by normalization. �

The inequality (48) implies that

2ℓ(t) traceHN
((MN(t)(P (t)) + 1

N
IHN
)F in

N ) ≥∣ traceHN
(T2F in

N )∣
≥ traceHN

(±iT2F in
N ) ,

and we conclude from Lemma 7.1 that

(49) ± iT2 ≤ 2ℓ(t)(MN(t)(P (t)) + 1
N
IHN
) .

7.3. Bound for T1. Next we estimate

S1 ∶=T (V,MN(t)(P (t)●P (t)),MN(t)(P (t)●R(t)))
=UN(t)∗T (V,Min

N (P (t)●P (t)),Min
N (P (t)●R(t)))UN(t)

= 1
N

N

∑
k=1
UN(t)∗T (V,Jk(P (t)●P (t)),Min

N (P (t)●R(t)))UN(t) .
Observe that

T (V,Jk(P (t)●P (t)),Min
N (P (t)●R(t)))

= ∫
R3

V̂ (ω)(JkP (t))Jk(P (t)E∗ωP (t))Min
N (P (t)EωR(t))(JkP (t)) dω

(2π)3

+
1
N ∫

R3

V̂ (ω)(JkP (t))Jk(P (t)E∗ωP (t))[JkP (t), Jk(P (t)EωR(t))] dω
(2π)3 ,

since P (t) = P (t)2, so that JkP (t) = (JkP (t))2. Then
[JkP (t), Jk(P (t)EωR(t))] = Jk(P (t)EωR(t)) ,
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so that

Jk(P (t)E∗ωP (t))[JkP (t), Jk(P (t)EωR(t))] = Jk(P (t)E∗ωP (t)EωR(t))
= Jk(P (t)E∗ω(I −R(t))EωR(t)) = −F(∣ψ(t, ⋅)∣2)(−ω)Jk(P (t)E∗ωR(t)) .

Hence (12) implies that

1
N ∫

R3

V̂ (ω)(JkP (t))Jk(P (t)E∗ωP (t))[JkP (t), Jk(P (t)EωR(t))] dω
(2π)3

= − 1
N
(JkP (t))Jk(P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t)) .

On the other hand

∫
R3

V̂ (ω)(JkP (t))Jk(P (t)E∗ωP (t))Min
N (P (t)EωR(t))(JkP (t)) dω

(2π)3

= 1
N ∫

R3

V̂ (ω)(JkP (t))Jk(P (t)E∗ωP (t)) N

∑
l=1
l/=k

Jl(P (t)EωR(t))JkP (t) dω
(2π)3

= 1
N ∫

R3

V̂ (ω)(JkP (t))Jk(E∗ω) N

∑
l=1
l/=k

Jl(P (t)EωR(t))JkP (t) dω
(2π)3

= (JkP (t))⎛⎜⎝ 1
N

N

∑
l=1
l/=k

(JkP (t))(JlP (t))Vkl(JlR(t))(JkP (t))⎞⎟⎠(JkP (t)) ,
since Jk(P (t)EωR(t))Jk(P (t)) = 0, with Vkl defined as in (29).

Hence

S1 = 1
N2 ∑

1≤k/=l≤N
UN(t)∗(JkP (t))2(JlP (t))Vkl(JlR(t))(JkP (t))2UN(t)

−
1
N2

N

∑
k=1
UN(t)∗(JkP (t))Jk(P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t))UN(t) .

Therefore, by cyclicity of the trace, for each F in
N ∈ L(HN) satisfying (31), denoting

FN(t) ∶= UN(t)F in
N UN(t)∗, one has

traceHN
(S1F

in
N )

= 1
N2 ∑

1≤k/=l≤N
traceHN

((JkP (t))(JlP (t))Vkl(JlR(t))(JkP (t))2FN (t)(JkP (t)))
−

1
N2

N

∑
k=1

traceHN
(Jk(P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t))FN(t)(JkP (t))) ,

so that
(50) ∣ traceHN

(S1F
in
N )∣

≤ 1
N2 ∑

1≤k/=l≤N
∥(JkP (t))(JlP (t))Vkl(JlR(t))(JkP (t))∥∥(JkP (t))FN(t)(JkP (t)))∥1

+
1
N2

N

∑
k=1
∥Jk(P (t)(V ⋆ ∣ψ(t, ⋅)∣2)R(t))∥∥FN(t)∥1∥JkP (t))∥
≤ (1 − 1

N
)∥V12J2R(t)∥ traceHN

(F in
N MN(t)(P (t)))

+
2
N
∥(V ⋆ ∣ψ(t, ⋅)∣2)R(t)∥∥FN(t)∥1 .
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Finally

T1 =T (V,MN(t)(P (t)●P (t)),MN(t)(P (t)●R(t)))
− T (V,MN(t)(R(t)●P (t)),MN(t)(P (t)●P (t))) = S1 − S

∗

1 = −T
∗

1

because of Lemma 4.3, so that

∣ traceHN
(T1F in

N )∣ ≤2(1 − 1
N
)∥V12J2R(t)∥ traceHN

(F in
N MN(t)(P (t)))

+
4
N
∥(V ⋆ ∣ψ(t, ⋅)∣2)R(t)∥∥FN(t)∥1 .

Since R(s) is a rank-one orthogonal projection

(51)
∥V12(J2R(t))∥2 =∥(J2R(t))V 2

12(J2R(t))∥
=∥(V 2

⋆ ∣ψ(t, ⋅)∣2)⊗R(s)∥ ≤ ∥(V 2
⋆ ∣ψ(t, ⋅)∣2∥L∞ = ℓ(t)2 .

Thus
(52)∣ traceHN

(T1F in
N )∣ ≤2ℓ(t) ((1− 1

N
) traceHN

(F in
N MN(t)(P (t)))+ 2

N
∥F in

N ∥1)
=2ℓ(t) ((1− 1

N
) traceHN

(F in
N MN(t)(P (t)))+ 2

N
traceHN

(F in
N )) .

In particular

2ℓ(t) traceHN
(F in

N ((1− 1
N
)MN(t)(P (t))) + 2

N
IHN
)) ≥ traceHN

(±iT1F in
N )

and since this inequality holds for each F in
N ∈ Ls(HN) such that F in

N = (F in
N )∗ ≥ 0,

we conclude from Lemma 7.1 that

(53) ± iT1 ≤ 2ℓ(t) ((1− 1
N
)MN(t)(P (t)))+ 2

N
IHN
)

7.4. The Operator ΠN . In order to treat the last term T3, we need the following
auxiliary lemma — see the formula preceding (13) in [16].

Lemma 7.2. Let R = R∗ be a rank-one projection on H and let P ∶= I − R. Set
ΠN ∶=Min

N P . For each N > 1,

Π∗N = ΠN , Π2
N ≥

1
N
ΠN , and KerΠN = Ker(I −R⊗N) ,

so that

ΠN ≥ 1
N
(1 −R⊗N) .

In particular, there exists a pseudo-inverse Π−1N ∶ (KerΠN)⊥ → (KerΠN)⊥, with
extension by 0 on KerΠN also (abusively) denoted ΠN , such that

(54) Π−1N ΠN = ΠNΠ−1N = I −R
⊗N .

In [16], the definition of the pseudo-inverse of ΠN immediately follows from
formula (6), which can be viewed as the spectral decomposition of ΠN . The proof
below is quite straightforward and avoids using the clever argument leading to
formula (6) in [16], which is not entirely obvious unless one already knows the
result.

Proof. That ΠN is self-adjoint is obvious by definition ofMin
N . Then

Π2
N =

1

N2
( N

∑
k=1

JkP + 2 ∑
1≤k<l≤N

JkPJlP) ≥ 1

N2

N

∑
k=1

JkP =
1

N
ΠN .
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If X ∈ KerΠN , one has, for each k = 1, . . . ,N ,

0 =
N

∑
k=1
⟨X ∣JkP ∣X⟩ Ô⇒ ⟨X ∣JkP ∣X⟩ = 0 Ô⇒ JkPX = 0 .

Hence

X = JNRX = JN−1RX = . . . = J2RX = J1RX
so that

X = JNRX = JNRJN−1RX = . . . = JNRJN−1R . . . J2RJ1RX = R⊗NX .

Thus KerΠN = Ker(I −R⊗N). Finally
Π3

N = Π
1/2
N Π2

NΠ
1/2
N ≥

1

N
Π

1/2
N ΠNΠ

1/2
N =

1

N
Π2

N .

Therefore, for each X ∈ HN , one has

⟨ΠNX ∣ΠN ∣ΠNX⟩ ≥ 1

N
∥ΠNX∥2 .

Since ΠN = Π∗N , one has

ImΠN = (KerΠN)⊥
(see for instance Corollary 2.18 (iv) in chapter 2 of [5]). Since

⟨Y ∣ΠN ∣Y ⟩ ≥ 1

N
∥Y ∥2 , Y ∈ ImΠN ,

and since one has obviously ∥ΠN∥ ≤ 1, a straightforward density argument shows
that ⟨Y ∣ΠN ∣Y ⟩ ≥ 1

N
∥Y ∥2 , Y ∈ (KerΠN )⊥ .

Hence

ΠN ≥ 1
N
(1 −R⊗N) .

The existence of the pseudo-inverse Π−1N follows from this inequality. �

7.5. Bound for T3. Finally, we treat the term T3. Set

S3 =T (V,MN(t)(P (t)●R(t)),MN(t)(P (t)●R(t)))
=UN(t)∗T (V,Min

N (P (t)●R(t)),Min
N (P (t)●R(t)))UN(t) .

One easily checks that

T (V,Min
N (P (t)●R(t)),Min

N (P (t)●R(t)))
= ∫

R3

V̂ (ω)Min
N (P (t)E∗ωR(t))Min

N (P (t)EωR(t)) dω
(2π)3

= 1
N2 ∑

1≤k/=l≤N
(JlP (t))(JkP (t))Vkl(JkR(t))(JlR(t)) .

At this point, we set ΠN(t) ∶=Min
NP (t) and use Lemma 7.2 to define the pseudo-

inverse ΠN(t)−1. One has ΠN(t) = ΠN(t)∗ ≥ 0, so that ΠN (t)−1 = (ΠN(t)−1)∗ ≥ 0
on Ker(I −R(t)⊗N). Abusing the notation ΠN(t)−1/2 to designate the linear map(ΠN(t)−1)1/2, we deduce from (54) that

ΠN (t)1/2ΠN(t)−1/2 = I −R(t)⊗N ,
so that

(JkP (t))ΠN(t)1/2ΠN(t)−1/2 = ΠN (t)1/2ΠN (t)−1/2(JkP (t)) = JlP (t) .
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Hence

T (V,Min
N (P (t)●R(t)),Min

N (P (t)●R(t)))
= 1

N2 ∑
1≤k/=l≤N

(JlP (t))(JkP (t))ΠN(t)− 1

2ΠN(t) 1

2Vkl(JkR(t))(JlR(t)) ,
and we study the quantity

traceHN
(S3F

in
N ) = traceHN

((F in
N ) 1

2S2(F in
N ) 1

2 )
= traceHN

(FN(t) 1

2 T (V,Min
N (P (t)●R(t)),Min

N (P (t)●R(t)))FN(t) 1

2 ) .
where FN(t) = UN(t)F in

N UN(t)∗, for each F in
N ∈ L(HN) satisfying (31). Observe

that

∣traceHN
(FN(t) 1

2(JlP (t))(JkP (t))ΠN(t)− 1

2ΠN(t) 1

2Vkl(JkR(t))(JlR(t))FN(t) 1

2)∣
≤ ∥ΠN(t)− 1

2 (JkP (t))(JlP (t))FN(t) 1

2 ∥2∥ΠN(t) 1

2 Vkl(JkR(t))(JlR(t))FN(t) 1

2 ∥2,
so that, by the Cauchy-Schwarz inequality,

∣ traceHN
(S3F

in
N )∣ ≤ 1

N2

⎛⎝ ∑
1≤k/=l≤N

∥ΠN(t)− 1

2 (JkP (t))(JlP (t))FN(t) 1

2 ∥22⎞⎠
1/2

×
⎛⎝ ∑
1≤k/=l≤N

∥ΠN(t) 1

2Vkl(JkR(t))(JlR(t))FN(t) 1

2 ∥22⎞⎠
1/2

.

First, one has

∥ΠN (t)− 1

2 (JkP (t))(JlP (t))FN(t) 1

2 ∥22
= traceHN

(FN(t) 1

2 (JlP (t))(JkP (t))ΠN(t)−1(JkP (t))(JlP (t))FN(t) 1

2 )
= traceHN

(FN (t) 1

2ΠN(t)−1(JkP (t))(JlP (t))FN(t) 1

2 )
= traceHN

(ΠN(t)−1(JkP (t))(JlP (t))FN(t)) ,
(the second equality follows from the fact that Jk(P (t)) commutes with ΠN (t) and
ΠN(t)−1), so that

∑
1≤k/=l≤N

∥ΠN(t)− 1

2 (JkP (t))(JlP (t))FN(t) 1

2 ∥22
≤ traceHN

⎛⎝ΠN(t)−1 ∑
1≤k,l≤N

(JkP (t))(JlP (t))FN(t)⎞⎠
=N2 traceHN

(ΠN(t)−1ΠN(t)2FN (t)) = N2 traceHN
(ΠN(t)FN(t)) .

The inequality above follows from the fact that

traceHN
(ΠN (t)−1(JkP (t))2FN (t))

= traceHN
(FN(t) 1

2 (JkP (t))ΠN(t)−1(JkP (t))FN(t) 1

2 ) ≥ 0 .
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On the other hand

∑
1≤k/=l≤N

∥ΠN(t) 1

2Vkl(JkR(t))(JlR(t))FN(t) 1

2 ∥22
= ∑

1≤k/=l≤N
trace(FN(t) 1

2 (JlR(t))(JkR(t))VklΠN (t)Vkl(JkR(t))(JlR(t))FN(t) 1

2 )
= 1

N ∑
1≤k/=l≤N

∥Jk(P (t))Vkl(JkR(t))(JlR(t))FN(t) 1

2 ∥22
+

1
N ∑

1≤k/=l≤N
∥Jl(P (t))Vkl(JkR(t))(JlR(t))FN(t) 1

2 ∥22
+

1
N ∑

1≤m/=k/=l≤N
∥(JmP (t))Vkl(JkR(t))(JlR(t))FN(t) 1

2 ∥22
≤ 2

N ∑
1≤k/=l≤N

∥Vkl(JkR(t))(JlR(t))FN(t) 1

2 ∥22
+

1
N ∑

1≤m/=k/=l≤N
∥(JmP (t))Vkl(JkR(t))(JlR(t))FN(t) 1

2 ∥22 .
Now, m ∉ {k, l} implies that JmP (t) commutes with Vkl, JkR(t) and JlR(t), so
that ∥(JmP (t))Vkl(JkR(t))(JlR(t))FN(t) 1

2 ∥22
= ∥Vkl(JkR(t))(JlR(t))(JmP (t))FN(t) 1

2 ∥22
≤ ∥Vkl(JkR(t))(JlR(t))∥2∥(JmP (t))FN(t) 1

2 ∥22
= ∥V12R(t)⊗R(t)∥2 traceHN

((JmP (t))FN(t)(JmP (t)))
= ∥V12R(t)⊗R(t)∥2 traceHN

(ΠN(t)FN (t)) .
Therefore

(55)

∣ traceHN
(S3F

in
N )∣

≤ 1
N2 ⋅N traceHN

(ΠN(t)FN(t)) 1

2 ( 2N(N−1)
N

∥V12R(t)⊗R(t)∥2∥FN(t)∥1
+
N(N−1)(N−2)

N
∥V12R(t)⊗R(t)∥2 traceHN

(ΠN(t)FN(t))) 1

2

≤ 1√
N
∥V12R(t)⊗R(t)∥ traceHN

(MN(t)(P (t))F in
N ) 1

2

× (2∥FN(t)∥1 +(N−2)traceHN
(MN(t)(P (t))F in

N )) 1

2 .

Now

T3 =T (V,MN(t)(P (t)●R(t)),MN(t)(P (t)●R(t)))
−T (V,MN(t)(R(t)●P (t)),MN(t)(R(t)●P (t))) = S3 − S

∗

3 = −T
∗

3 ,

according to Lemma 4.3. Thus (55) implies that

∣ traceHN
(T3F in

N )∣ ≤2∥V12R(t)⊗R(t)∥ traceHN
(MN(t)(P (t))F in

N ) 1

2

× ( 2
N
∥FN(t)∥1 + N−2

N
traceHN

(MN(t)(P (t))F in
N )) 1

2 .

According to (51)

∥V12R(t)⊗R(t)∥ = ∥V12(J1R(t))(J2R(t))∥ ≤ ∥V12J2R(t)∥ ≤ ℓ(t) ,
so that

(56) ∣ traceHN
(T3F in

N )∣ ≤ 2ℓ(t) ((1 − 1
N
) traceHN

(MN(t)(P (t))F in
N ) + 2

N
∥F in

N ∥1) .



PICKL’S PROOF AND QUANTUM KLIMONTOVICH SOLUTIONS 29

In particular

traceHN
(±iT3F in

N )∣ ≤ 2ℓ(t) traceHN
(F in

N ((1 − 1
N
)MN(t)(P (t)) + 1

N
IHN
)) .

Since this last inequality holds for each F in
N ∈ L(HN) satisfying (31), we deduce

from Lemma 7.1 that

(57) ± iT3 ≤ 2ℓ(t) ((1 − 1
N
)MN(t)(P (t)) + 1

N
IHN
) .

8. Proofs of part (2) in Theorem 4.1 and Corollary 4.2

8.1. Proof of part (2) in Theorem 4.1. Applying Lemma 4.4 shows that

±iC(V,MN(t) −R(t),MN(t))(R(t)) = ±i(T1 + T2 + T3 + T4) .
With Lemma 4.5, this shows that

(±iC(V,MN(t) −R(t),MN(t))(R(t)))∗ = ±iC(V,MN(t) −R(t),MN(t))(R(t))
and that

±iC(V,MN(t) −R(t),MN(t))(R(t)) ≤ 6ℓ(t) (MN(t)(P (t)) + 2
N
IHN
) .

It remains to bound the function

ℓ(t) ∶= ∥V 2
⋆ ∣ψ(t, ⋅)∣2∥1/2

L∞(R3) .

Since

V = V1 + V2 with V1 ∈ FL1(R3) ⊂ L∞(R3) and V2 ∈ L2(R3)
one has

0 ≤V 2
⋆ ∣ψ(t, ⋅)∣2 ≤ 2V 2

1 ⋆ ∣ψ(t, ⋅)∣2 + 2V 2
2 ⋆ ∣ψ(t, ⋅)∣2

≤2∥V1∥2L∞(R3)∥ψ(t, ⋅)∥2L2(R3) + 2∥V2∥2L2(R3)∥ψ(t, ⋅)∥2L∞(R3) .

Minimizing ∥V1∥L∞(R3) + ∥V2∥L2(R3) over all possible decompositions of V = V1 +V2
as above, one has

0 ≤ V 2
⋆ ∣ψ(t, ⋅)∣2 ≤4∥V ∥2L2(R3)+L∞(R3)max(∥ψ(t, ⋅)∥2L2(R3), ∥ψ(t, ⋅)∥2L∞(R3))

≤4∥V ∥2L2(R3)+L∞(R3)max(∥ψ(t, ⋅)∥2L2(R3),C
2
S∥ψ(t, ⋅)∥2H2(R3))

≤4max(1,CS)2∥V ∥2L2(R3)+L∞(R3)∥ψ(t, ⋅)∥2H2(R3) =∶ L(t)2 .
8.2. Proof of Corollary 4.2. In [16], Pickl considers the functional

αN (t) ∶= traceH(FN ∶1(t)P (t))
(see Definition 2.2 and formula (6) in [16]), where FN ∶1(t) is the single-body reduced
density operator deduced from

FN(t) ∶= UN(t)F in
N UN(t)∗ ,

where F in
N ∈ L(HN) satisfies (31). Specifically FN ∶1(t) is defined by the formula

traceH(FN ∶1(t)A) = traceHN
(FN(t)J1A) , for all A ∈ L(H) .
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8.2.1. The Gronwall inequality for Pickl’s functional. One deduces from part (2)
in Theorem 4.1 that

MN(t)(P (t)) =Min
N (P (0)) + 1

h̵ ∫
t

0
−iC(V,MN(s) −R(s),MN(s))(R(s))ds

≤Min
N (P (0)) + 6

h̵ ∫
t

0
L(s) (MN(s)(P (s))+ 2

N
IHN
)ds .

This inequality implies that

traceHN
((F in

N ) 1

2MN(t)(P (t))(F in
N ) 1

2 ) ≤ traceHN
((F in

N ) 1

2Min
N (P (0))(F in

N ) 1

2 )
+

6
h̵ ∫

t

0
L(s) (traceHN

((F in
N ) 1

2MN(s)(P (s))(F in
N ) 1

2 ) + 2
N
traceHN

(F in
N ))ds .

Now, by cyclicity of the trace and Lemma 2.3 in [8] (the raison d’être ofMN(t))
traceHN

((F in
N ) 1

2MN(t)(P (t))(F in
N ) 1

2 ) = traceHN
(F in

N MN(t)(P (t)))
= traceH(FN ∶1(t)P (t)) = αN(t) ,

so that, by Gronwall’s inequality,

αN(t) ≤ αN(0) exp( 6h̵ ∫ t

0
L(s)ds) + 2

N
(exp( 6

h̵ ∫
t

0
L(s)ds) − 1) .

For instance, if F in
N = ∣ψin⟩⟨ψin∣⊗N with ψin ∈ H and ∥ψin∥H = 1, one has

αN(0) = traceHN
(R(0)⊗NMin

N (P (0))) = traceH(R(0)P (0)) = 0 ,
so that

αN(t) ≤ 2

N
(exp( 6

h̵ ∫
t

0
L(s)ds) − 1) = O ( 1

N
) .

8.2.2. Pickl’s functional and the trace norm. How the inequality above implies the
mean-field limit is explained by the following lemma, which recaps the results stated
as Lemmas 2.1 and 2.2 in [14], and whose proof is given below for the sake of keeping
the present paper self-contained.

If F in
N ∈ L(HN) satisfies (31), for each m = 1, . . . ,N , we denote by FN ∶m(t) the

m-particle reduced density operator deduced from FN(t) = UN(t)F in
N UN(t)∗, i.e.

traceHm
(FN ∶m(t)A1 ⊗ . . .⊗Am) = traceHN

(FN (t)(J1A1) . . . (JmAm))
for all A1, . . . ,Am ∈ L(H).
Lemma 8.1. The Pickl functional satisfies the inequality

∥FN ∶m(t) −R(t)⊗m∥1 ≤ 2√2m traceH(FN ∶1(t)P (t)) , m = 1, . . . ,N .

Proof. Call P− the spectral projection on the direct sums of eigenspaces of the
trace-class operator FN ∶m(t)−R(t)⊗m corresponding to negative eigenvalues. Then
the self-adjoint operator

P−FN ∶m(t)P− −P−R(t)⊗mP− = P−FN ∶m(t)P− − ∣P−ψ(t, ⋅)⊗m⟩⟨P−ψ(t, ⋅)⊗m∣
must have only negative eigenvalues by definition of P−, and is obviously nonnega-
tive on the orthogonal complement of P−ψ(t, ⋅)⊗m in the range of P−. By definition
of P−, this orthogonal complement must be {0}. Hence P− is a rank-one projection,
so that FN ∶m(t) − R(t)⊗m has only one negative eigenvalue λ0, with all its other
eigenvalues λ1, λ2, . . . being nonnegative. Since

traceHm
(FN ∶m(t) −R(t)⊗m) =∑

j≥1
λj + λ0 = 0 ,
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one has5

∥FN ∶m(t) −R(t)⊗m∥1 =∑
j≥1

λj + ∣λ0∣ = 2∣λ0∣ =2∥FN ∶m(t) −R(t)⊗m∥
≤2∥FN ∶m(t) −R(t)⊗m∥2 .

Now FN ∶m(t) is self-adjoint, and therefore

∥FN ∶m(t) −R(t)⊗m∥22 = traceHm
((FN ∶m(t) −R(t)⊗m)2)

= traceHm
(FN ∶m(t)2 +R(t)⊗m)

− traceHm
(FN ∶m(t)R(t)⊗m +R(t)⊗mFN ∶m(t))

≤2 − 2 traceHm
(R(t)⊗mFN ∶m(t)R(t)⊗m)

=2 traceHm
(FN ∶m(t)(I⊗mH −R(t)⊗m)) .

Hence

∥FN ∶m(t) −R(t)⊗m∥1 ≤ 2√2 traceHm
(FN ∶m(t)(I⊗mH

−R(t)⊗m)) .
Since R(t) = ∣ψ(t, ⋅)⟩⟨ψ(t, ⋅)∣ is a self-adjoint projection

R(t)⊗ I⊗(m−1)
H

−R(t)⊗m
= (I⊗mH − IH ⊗R(t)⊗(m−1))R(t)⊗ I⊗(m−1)H

(I⊗mH − IH ⊗R(t)⊗(m−1))
≤ (I⊗mH − IH ⊗R(t)⊗(m−1))2 = (I⊗mH − IH ⊗R(t)⊗(m−1))

so that
traceH(FN ∶1(t)R(t))− traceHm

(FN ∶m(t)R(t)⊗m)
= traceHm

(FN ∶m(t)(R(t)⊗ I⊗(m−1)H
−R(t)⊗m))

≤ traceHm
(FN ∶m(t)(I⊗mH − IH ⊗R(t)⊗(m−1)))

= 1 − traceHm−1(FN ∶m−1(t)R(t)⊗(m−1)) .
Since F in

N satisfies (31), the reduced m-particle operator FN ∶m(t) ∈ L(Hm) also
satisfies (31) (with N replaced by m), and hence

traceHm
(FN ∶m(t)(I⊗mH −R(t)⊗m)) ≤1 − traceH(FN ∶1(t)R(t))

+ 1 − traceHm−1(FN ∶m−1(t)R(t)⊗(m−1))
≤m(1 − traceH(FN ∶1(t)R(t)))
=m traceH(FN ∶1(t)P (t)) ,

by induction, which implies the inequality in the lemma. �

With this lemma, the consequence of the Gronwall inequality above implies that,
under the assumptions of Corollary 4.2,

∥FN ∶m(t) −R(t)⊗m∥1 ≤√8mαN(t) ≤ 4√m

N
exp( 3

h̵ ∫
t

0
L(s)ds) .

This completes the proof of Corollary 4.2.

5This observation is attributed to Seiringer on p. 35 in [18].
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Cedex, France

Email address: immanuel.ben-porath@polytechnique.edu@polytechnique.edu

(F.G.) CMLS, École polytechnique, CNRS, Université Paris-Saclay , 91128 Palaiseau
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