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Abstract
Ordinary Differential Equations (ODEs) appear to be a universally adopted and very natural way
for expressing properties for continuous time dynamical systems. They are intensively used, in
particular in applied sciences. There exists an abundant literature about the hardness of solving
ODEs with numerical methods.

We adopt a dual view: we consider ODEs as a way to program or to describe our mathematic-
al/computer science world. We survey several results considering ODEs under this computational
perspective, with a computability and complexity theory point of view. In particular, we provide
various reasons why polynomial ODEs should be considered as the continuous time analog of Turing
machines for continuous-time computations, or should be used as a way to talk about mathematical
logic.

This has already applications in various fields: determining whether analog models of computation
can compute faster than classical digital models of computation; solving complexity issues for
computations with biochemical reactions in bioinformatics; machine independent characterizations
of various computability and complexity classes such as PTIME or NPTIME, or proof of the
existence of a universal polynomial ordinary differential equation whose solutions can approximate
any continuous function if provided with a suitable well-chosen initial condition.
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1 Back to the history of analog models of computation

In 1941, Claude Shannon introduced in [42] the General Purpose Analog Computer (GPAC)
model as a model for the Differential Analyzer [13], on which he worked as an operator.

Differential Analysers were mechanical (and later on electronics) continuous time analog
machines. First ever built machine was built under the supervision of V. Bush 1931 at MIT:
Applications were from gunfire control up to aircraft design. First differential analyzers, such
as the ones at the time of Shannon, were mechanical. Electronic versions were used from
late 40s until 70s. Nowadays, company Analog paradigm is selling some modern differential
analyzers based on operational amplifiers.
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Figure 1 Presentation of the 4 types of units: constant, adder, multiplier, and integrator.
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Figure 2 Example of GPAC circuit: computing sine and cosine with two variables.

Basically, a GPAC is any circuit that can be build from the 4 basic units of Figure 1,
that is to say from basic units realizing constants, additions, multiplications and integrations,
all of them working over analog real quantities (that were corresponding to angles in the
mechanical Differential Analysers, and later on to voltage in the electronic versions).

Actually, not all kinds of interconnections must be allowed since this may lead to some
undesirable behavior (e.g. non-unique outputs. For further details, refer to [29]).

Figures 2 illustrates for example how the sine function can generated using two integrators,
with suitable initial state, as being the solution of ordinary differential equation{

y′(t)= z(t)
z′(t)= −y(t)

with suitable initial conditions.
Shannon, in his original paper, already mentioned that the GPAC generates polynomi-

als, the exponential function, the usual trigonometric functions, their inverses, and their
composition. More generally, Shannon claimed that all functions generated by a GPAC are
differentially algebraic in the sense of the following definition.

I Definition 1. A unary function y is differentially algebraic (d.a.) on the interval I if there
exists an n ∈ N and a nonzero polynomial p with real coefficients such that

p
(
t, y, y′, ..., y(n)

)
= 0, on I. (1)

As a corollary, and noting that the Gamma function Γ(x) =
∫∞

0 tx−1e−tdt is not d.a.
[38], we get that

I Proposition 2. The Gamma function cannot be generated by a GPAC.

Another famous example of not d.a. function is Riemann’s Zeta function ζ(x) =
∑∞
k=0

1
kx .
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2 Polynomial Ordinary Differential Equations (pODEs)

Following corrections and refinements [37, 34, 29, 27] of some statements from Shannon,
GPACs can be identified with polynomial Ordinary Differential Equations (pODE), i.e.
dynamics of type y′ = p(y) where y(t) = (y1(t), . . . , yd(t)) ∈ Rd is a (vectorial) function of
time, and p : Rd → Rd is a (vector of) polynomials, where d is some integer.

Hence, one can consider that a GPAC is a polynomial ordinary differential equation of
fixed dimension, or a polynomial initial value (pIVP) if some initial condition y(t0) = y0 is
added.

Following Shannon,

I Definition 3 ([42]). A function f : R→ R is GPAC-generable if it corresponds to some
(coordinate) projection of a solution of an pIVP: that is there exists a pODE (i.e. some p, t0,
i0 ∈ {1, 2, . . . , d} and y0 over Rd for some d) such that f(t) = yi0(t) for all t ∈ R.

The concept can naturally be extended to function f : Rm → Rm [42, 2]. From definition,
a GPAC-generable function is necessarily (real) analytic.

In modern terms, this concept is strongly related to the so-called class of Noetherian
functions [36] (and hence also to Pfaffian or differentially algebraic functions: see e.g. [24]).

The class of generable functions is particularly robust: Several variations on the GPAC
circuits were explored and proven to be all equivalent. This essentially shows that the above
notion is probably the right definition to be considered [27]. Furthermore, it has very strong
closure properties: For example.

I Proposition 4 ([28]). The class of functions generated by GPACs is closed under the
operations +,−,×,÷, under composition, derivation, and compositional inverses (i.e. if f is
generated by a GPAC, then so is f−1).

The following result states that the solution of an initial-value problem defined with
functions generated by GPACs is also generated by a GPAC.

I Proposition 5 ([28]). Consider the initial value problem (IVP){
x′ = f(t, x),
x(t0) = x0,

(2)

where f : Rn+1 → Rn and each component of f is a composition of polynomials and functions
generated by GPACs. Then there exist m ≥ n, a polynomial p : Rm+1 → Rm and a y0 ∈ Rm
such that the solution of (2) is given by the first n components of y = (y1, ..., ym), where y is
the solution of the polynomial IVP{

y′ = p(t, y),
y(t0) = y0.

(3)

A digression in order to possibly help with intuition: Let us authorize ourselves in this
single paragraph to leave the world of formal mathematical statements, to possibly help
for intuition: It follows from all these closure properties that “most” “common” analytic
functions fall in the class of generable functions and turn out to be GPAC-generable, i.e.
generable with a differential analyzer. Of course, this last statement is not referring to a
well-defined concept of “most” and “common”, but to some well-known fact to engineers
at the time of analog machines: Repeating Shannon [42], “When the Differential Analyzers
was first built it was thought that all functional relationships between terms of the equation

STACS 2020



3:4 Computability, Complexity and Programming with Ordinary Differential Equations

being solved would have to be introduced into the machine by means of input tables. Soon
it was found that practically all the important simple functions could be ’generated’ using
only integrators and adders.”. This phenomenon has similarities with the class of computable
functions in classical computability which include all “most” “common” functions, even if
we can build some non-computable functions (e.g. by diagonalization).

Back to the mathematical world: From Shannon’s analysis, as we know some (analytic)
Turing computable (in the sense of computable analysis) non-differentially algebraic functions
(e.g. Euler’s ζ and Riemann’s Γ) it was deduced that the model is not Turing complete, and
the model was mainly forgotten.
I Remark 6. Observe that the proofs of the non-differential algebraicity of ζ and Γ by
respectively Hilbert and Hölder [31] can consequently be seen as a proof of uncomputability
(ungenerability to be more precise) really different from usual methods of (un)computability
such as diagonalization.

3 Revisiting computability with polynomial ordinary differential
equations

We proved in 2007 [6] that this statement about the limitation of the computational power
of the GPAC model comes mainly from a misconception of what was called computable at
the time of Shannon with respect to what would be called such today: If the input is given
as some initial data, and if we allow the machine not to produce its output in real-time,
but after some delay (i.e. after some computation time (encoded by the delay required
for yj to be less than required precision in Theorem 9 which follows)), as in all modern
models of computations, then the model can compute any function that is classically (Turing)
computable.

Call this notion GPAC-computability by opposition to GPAC-generability: GPAC-
computability does correspond to classical (i.e. Turing) computability [5]. Consequently, the
class of GPAC-computable does inherit from all the closure and robustness properties of
computable functions and does include all GPAC-generable functions, as well as functions
such as Γ, ζ and many others, as soon as we know that there are (Turing) computable.

Formally (see Figure 3 for illustration).

IDefinition 7. A function f : [a, b]→ R is GPAC-computable iff there exist some polynomials
with polynomial coefficients p : Rn+1 → Rn, p0 : R→ R, and n− 1 computable real values
α1, ..., αn−1 such that:
1. (y1, ..., yn) is the solution of the Cauchy problem y′ = p(y, t) with initial condition

(α1, ..., αn−1, p0(x)) set at time t0 = 0
2. There are i, j ∈ {1, ..., n} such that limt→∞ yj(t) = 0 and |f(x) − yi(t)| ≤ yj(t) for all

x ∈ [a, b] and all t ∈ [0,+∞).

We remark that α1, . . . , αn−1 are auxiliary parameters needed to compute f .
The following is true with this notion of computation:

I Proposition 8 ([27]). The Gamma function Γ is GPAC-computable.

And more generally:

I Theorem 9. Let a and b be computable reals. A function f : [a, b]→ R is computable in
the sense of computable analysis iff it is GPAC-computable.
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Figure 3 Graphical illustration of Definition 7.
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Figure 4 A continuous system before and after an exponential time speed-up.

More importantly, to prove so, we developed some ad hoc techniques to program with
pODEs: how to realize assignments, iterations, loops, etc. with differential equations. This
led us to understand that pODEs play a very particular role, in particular, if one wants to
go to complexity theory, and not only computability theory.

4 Complexity theory with polynomial ordinary differential equations

This connection between Turing computability and the GPAC was recently refined [9, 8] at
the level of complexity, with a characterization of the class PTIME and polynomial time
computable real functions.

Defining a robust time complexity notion for continuous time systems was a well-known
open problem [4], with several attempts, but with no generic solution provided. In short, the
difficulty is that the naive idea of using the time variable of the ODE as a measure of “time
complexity” is problematic, since time can be arbitrarily contracted in a continuous system
due to the “Zeno phenomena” (here time-contraction). For example, consider a continuous
system defined by an ODE y′ = f(y) where f : R→ R and with solution θ : R→ R. Now
consider the following system y′ = f(y)z, z′ = z with solution φ : R2 → R2. This system
re-scales the time variable and that its solution φ = (φ1, φ2) is given by φ2(t) = et and
φ1(t) = θ(et) (see Figure 2). Therefore, the second ODE simulates the first ODE, with an
exponential acceleration. Similarly, it is also possible to present an ODE which has a solution
with a component ϕ1 : R→ R such that ϕ1(t) = φ(tan t), i.e. it is possible to contract the
whole real line into a bounded set. Thus any language computable by the first system (or, in
general, by a continuous system) can be computed by another continuous system in time
O(1). This problem appears not only for PIVPs (or, equivalently, GPACs), but also for many
continuous models (see e.g. [40], [41], [35], [3], [14], [21], [18], [19]). We illustrated here time
contraction, but a space contraction (or both simultaneously) is also possible, using a change
of variable on space variable y.

We solved the above mentioned open problem for time complexity and proved that a
robust notion of computation time for a pIVP is provided by the length of the solution (up
to polynomial time) in [9, 8].

This has been established by proving that a time t Turing machine can be simulated (we
established this direction using ad hoc suitable pODE programming) in a length poly(t),
and conversely that pODE can be solved (we established this direction using an original
numerical method) by a Turing machine in a time polynomial in the length of the solution.

STACS 2020
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L(0)

e−1

L(1)

Figure 5 Graphical representation of Theorem 2: on input x, starting from initial condition
(x, 0, . . . , 0), the pODE y′ = p(y) ensures that yi(t) gives f(x) with accuracy better than e−µ as
soon as the length of y (from 0 to t) is greater than L(µ). Other variables y1, . . . , yi−1, yi+1, . . . , yn
are not plotted and the horizontal axis measures the length of y (instead of time t).

Formally: We recall that the length of a curve y ∈ C1(I,Rn) defined over some interval
I = [a, b] is given by leny(a, b) =

∫
I
‖y′(t)‖2 dt.

I Theorem 10 ([8], Equivalence between GPAC and CA (Complexity)). A function f : [a, b]→
R is computable in polynomial time (in the sense of Computable Analysis) if and only if
there exists a polynomial L : R+ → R+, an integer d, i ∈ {1, 2, . . . , d} and a vector of
polynomials p : Rd → Rd with coefficients in Q, such that for any x ∈ [a, b], the unique
solution y : R+ → Rd to

y(0) = (x, 0, . . . , 0), y′(t) = p(y(t))

satisfies for all t ∈ R+:
for any µ ∈ R+, if leny(0, t) > L(µ) then |f(x)− yi(t)| 6 e−µ,
‖y′(t)‖ > 1.

In other words, the precision of yi increases with the length of the curve. More precisely,
as soon as the length between 0 and t is at least L(µ), the precision is at least e−µ. Notice
how rescaling the curve would not help here since it does not change the length of y. The
second condition on the derivative of y prevents some pathological cases and ensures that
curve has infinite length, and thus that yi indeed converges to f(x). It is possible to extend
this equivalence to multivariate functions and unbounded input domains such as R, by
making L take into account the norm of x.

Previous statement is a characterization of functions computable in polynomial time, i.e.
FPTIMER over the reals. If one wants to talk about decision problems over alphabet {0, 1},
it possible to define the class PTIME directly in terms of differential equations, by encoding
words with rational numbers. Again the length plays a crucial role, but since a differential
equation does not “stop”, the component yi is used to signal that it accepts (yi > 1) or
rejects (yi 6 −1).

I Theorem 11 ([8], Analog characterization of PTIME). A language L ⊆ {0, 1}∗ belongs
to PTIME, the class of polynomial time decidable languages, if and only if there exist a
polynomial L : N→ N, an integer d, i ∈ {1, 2, . . . , d} and a vector of polynomials p : Rd → Rd
with coefficients in Q, such that for all words w ∈ {0, 1}∗, the unique solution y : R+ → Rd
to

y(0) = (0, . . . , 0, |w|, ψ(w)), y′(t) = p(y(t))

where ψ(w) =
∑|w|
i=1 wi2−i, satisfies for all t ∈ R+:

if |yi(t)| > 1 then |yi(u)| > 1 for all u > t > 0 (and similarly for |yi(t)| 6 −1),
if w ∈ L (resp. /∈ L) and leny(0, t) > L(|w|) then yi(t) > 1 (resp. 6 −1),
‖y′(t)‖ > 1.
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One clear interest of the previous statements is that they provide a way to define
classical concepts from the theory of computation (computable function, polynomial time
computable functions) only using concepts from analysis, namely polynomial ordinary
differential equations.

This has many consequences: This provides a way to define classical concepts from the
theory of computation using only concepts from analysis: Theorem 10 provides a definition
of computability for functions more natural than the classical digression through type 2
computability (see e.g. [43]), in particular when presenting the concept to people working in
analysis. This transforms the question whether analog models can solve faster problems (even
about the discrete) than classical means to a question about lengths of solutions. This proves
that pODE solving is (PTIME-)complete in its length and solves the issue of avoidance of
the so-called Zeno’s phenomenon in the verification community in models of hybrid and
cyberphysical systems [8]. This also brings new perspectives on some philosophical concepts
such as time for systems of our physical world.

5 Some applications of pODE programming

Actually, more generally, ODEs is universal language in many domains, in particular in
applied fields (physics, biology, . . . ). We already used our “ODE programming technology”
to solve several open problems in various fields. We illustrate this with several examples in
the rest of this article.

5.1 A universal ordinary differential equation
In computer algebra, a well-known surprising result is due to L. A. Rubel who proved in
1981 in [39] that there exists a fixed non-trivial fourth-order polynomial differential algebraic
equation (DAE)

p(y, y′, . . . , yd) = 0

such that for any continuous positive function ϕ on the reals, and for any continuous positive
function ε(t), it has a C∞ solution with |y(t)− ϕ(t)| < ε(t) for all t. Lee A. Rubel provided
an explicit example of such a polynomial DAE [39]. Other examples of universal DAE have
later been proposed by other authors.

However, while this result may seem very surprising, its proof is quite simple, is frustrating,
and is mainly an indication that DAE is too loose a model for modeling purpose:

First, the involved notions of universality is far from usual notions of universality in
computability theory because the proofs heavily rely on the fact that constructed DAE
does not have unique solutions for a given initial data. Indeed, in general a DAE may
not have a unique solution, given some initials conditions. But Rubel’s DAE never has a
unique solution, even with a countable number of conditions of the form y(ki)(ai) = bi.
This is very different from usual notions of universality where one would expect that
there is clear unambiguous notion of evolution for a given initial data, for example as in
computability theory.
Second, the proofs usually rely on solutions that are piecewise defined. Hence they cannot
be analytic, while analycity is often a key expected property in experimental sciences.
Third, the proofs of these results can be interpreted more as the fact that (fourth-order)
polynomial algebraic differential equations is a too loose a model compared to classical
ordinary differential equations. In particular, one may challenge whether the result is
really a universality result.

STACS 2020



3:8 Computability, Complexity and Programming with Ordinary Differential Equations

The question whether one can require the solution that approximates ϕ to be the unique
solution for a given initial data was a well-known open problem [39, page 2], [1, Conjecture
6.2]. In [10], using ODE programming, we solved it and showed that Rubel’s statement holds
for polynomial ordinary differential equations, and since polynomial ODEs have a unique
solution given an initial data, this positively answers Rubel’s open problem:

I Theorem 12 ([11], Universal PIVP). There exists a fixed polynomial vector p in d variables
with rational coefficients such that for any functions f ∈ C0(R) and ε ∈ C0(R,R∗+), there
exists α ∈ Rd such that there exists a unique solution y : R → Rd to y(0) = α, y′ = p(y).
Furthermore, this solution satisfies that |y1(t)− f(t)| 6 ε(t) for all t ∈ R, and it is analytic.

Furthermore, α can be computed from f and ε (in the sense of Computable Analysis).

Using the fact that polynomial ODEs can be transformed into differentially algebraic
equations (see [15]), the following then follows.

I Theorem 13 ([11], Universal DAE). There exists a fixed polynomial p in d+ 1 variables
with rational coefficients such that for any functions f ∈ C0(R) and ε ∈ C0(R,R∗+), there
exists α0, . . . , αd−1 ∈ R such that there exists a unique analytic solution y : R → R to
y(0) = α0, y

′(0) = α1, . . . , y
(d−1)(0) = αd−1, p(y, y′, . . . , yd) = 0. Furthermore, this solution

satisfies that |y(t)− f(t)| 6 ε(t) for all t ∈ R.
Furthermore, α can be computed from f and ε (in the sense of Computable Analysis).

5.2 Strong Turing completeness of biochemical reactions
Ordinary differential equations is a well-used models for modeling the dynamics of chemical
reactions. In particular, the Turing completeness of kinetic reactions was an open problem
(see e.g. [17, Section 8]) that we solved using previous polynomial ODE programming
technology: we prove the Turing completeness of chemical reaction networks over a finite set
of molecular species under the differential semantics in [23].

A biochemical reaction system is a positive dynamical system living in the cone Rn+, where
the state is defined by the positive concentration values of the molecular species. We restrict
to elementary reaction systems, governed by the mass-action-law kinetics and where each
reaction has at most two reactants.

In short, letM be a finite set of n molecular species {y1, . . . , yn}.

I Definition 14 ([22]). A reaction is a triple (R,P, f), where R :M→ N is a multiset of
reactants, P :M→ N is a multiset of products and f : Rn+ → R+, called the rate function,
is a partially differentiable function verifying R(yi) > 0 iff ∂f

∂yi
(y) > 0 for some y ∈ Rn+.

A reaction system is a finite set of reactions.
A mass-action-law reaction is a reaction in which the rate function f is a monomial of

the form k ∗Πy∈My
R(y) where k is called the rate constant.

An elementary reaction is a mass-action-law reaction with at most two reactants.

I Definition 15 ([22]). The differential semantics of a reaction system {(Ri, Pi, fi)}i∈I is
the ODE system

{y′ = Σi∈I(Ri(y)− Pi(y)) ∗ fi}y∈M.

The dynamics given by the law of mass action leads to a polynomial ODE system of
the form y′(t) = p(y(t)) with p(y)i =

∑
j(Pj(yi) − Rj(yi) ∗ kj ∗ Πn

i=1yi
Rj(yi). There are

thus additional constraints, compared to general polynomial ordinar differential equations:
the components yi must always be positive, and the monomials of pi whose coefficient is
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negative must have a non-zero yi exponent. These constraints are necessary conditions for the
existence of a set of biochemically realizable reactions that react according to the dynamics
y′ = p(y).

Interestingly, we prove that the previous computability and complexity results can be
generalized to elementary biochemical reaction systems. First, the restriction to positive
systems is shown complete, by encoding each component yi by the difference between two
positive components y+

i and y−i , which can be normalized by a mutual annihilation reaction,
y+
i + y−i ⇒ _, so that one variable is null.

I Definition 16. A function f : R+ → R+ is chemically-computable if there exist a mass-
action-law reaction system {(Ri, Pi, fi)}i∈I over some molecular species {y1, ..., yn}, and a
polynomial q ∈ R+

n[R+] defining the initial concentration values, such that f is GPAC-
computed by q and its (polynomial) differential semantics p ∈ R+

n[R+
n].

A function f : R+ → R is chemically-computable if there exists a chemically computable
function f+ : R+ → R+

2over {y+
1 , ..., y

+
n , y

−
1 , ..., y

−
n } such that f = f+

1 − f
−
2 .

In this definition, to compute f(x), one has thus to design a reaction system over a finite
set of molecular species, initialized to some values defined by a vector of polynomials q(x)
(e.g. following [12, 16]), which guarantees that the result is obtained in the concentration
of one distinguished molecular species, with a precision indicated by another distinguished
molecular species (see Definition 7).

We prove.

I Theorem 17 ([23]). Any GPAC-computable function can be computed by a mass-action-law
reaction system under the differential semantics preserving the polynomial length complexity.

I Theorem 18 ([23]). Elementary reaction systems on finite universes of molecules are
Turing-complete under the differential semantics.

5.3 Revisiting classical computability theory with discrete ODEs
We also came to a discrete counterpart of classical continuous ODEs: discrete ODEs: Its
associated derivative notion, called finite differences, has been widely studied in numerical
optimization for function approximation [25] and is reminiscent in discrete calculus [30, 26,
32, 33] for combinatorial analysis. Similarities between discrete and continuous statements
have also been historically observed, under the terminology of umbral or symbolic calculus as
early as in the 19th century. However, even if the underlying computational content of finite
differences theory is clear and has been pointed out many times, no fundamental connections
with algorithms and complexity have been exhibited so far.

We started to demonstrate that discrete ODEs is a very natural tool for algorithm
design and to prove that complexity and computability notions can be elegantly and simply
captured using discrete ordinary differential equations. We illustrated this by providing a
characterization of FPTIME, the class of polynomial time computable functions, and of
its non deterministic analog FNP. To this aim, we also demonstrated how some notions
from the analog world such as linearity of differential equations or derivatives along some
particular functions (i.e. changes of variables) are representative of a certain computational
hardness and can be used to solve efficiently some (classical, digital) problems.

More concretely, we focus on functions over the integers of type f : Np → Zd, or functions
of type f : Zp → Zd, for some integers p, d. The basic idea is to consider the following concept
of derivative, introduced here for the case where p = 1. We will later on consider more
general functions, with partial derivatives instead of derivatives (defined then as expected).

STACS 2020



3:10 Computability, Complexity and Programming with Ordinary Differential Equations

I Definition 19 (Discrete Derivative). The discrete derivative of f(x) is defined as ∆f(x) =
f(x + 1) − f(x). We will also write f ′ for ∆f(x) to help to understand statements with
respect to their classical continuous counterparts.

We proposed to introduce the following variation on the notion of derivation: derivation
along some function L(x, y).

I Definition 20 (L-ODE). Let L : Np+1 → Z. We write

∂f(x, y)
∂L

= ∂f(x, y)
∂L(x, y) = h(f(x, y), x, y), (4)

as a formal synonym for f(x+ 1, y) = f(x, y) + (L(x+ 1, y)− L(x, y)) · h(f(x, y), x, y).

I Remark 21. This is motivated by the fact that the latter expression is similar to classical
formula for classical continuous ODEs:

δf(x, y)
δx

= δL(x, y)
δx

· δf(x, y)
δL(x, y) .

This allows us to simulate suitable changes of variables using this analogy. We talk about
L-Initial Value Problem (IVP) when some initial condition is added. An important special
case is when L(x, y) corresponds to the bit length L(x, y) = `(x) function: we call this special
case length-ODEs. Let sg(x) : Z→ Z denotes the function that takes value 1 for x > 0 and
0 in the other case.

I Definition 22. A sg-polynomial expression P (x1, ..., xh) is an expression built-on +,−,×
(often denoted ·) and sg() functions over a set of variables V = {x1, ..., xh} and integer
constants. The degree deg(x, P ) of a term x ∈ V in P is defined inductively as follows:

deg(x, x) = 1 and for x′ ∈ X ∪ Z such that x′ 6= x, deg(x, x′) = 0
deg(x, P +Q) = max{deg(x, P ),deg(x,Q)}
deg(x, P ×Q) = deg(x, P ) + deg(x,Q)
deg(x, sg(P )) = 0

A sg-polynomial expression P is essentially constant in x if deg(x, P ) = 0.

Compared to the classical notion of degree in polynomial expression, all subterms that
are within the scope of a sign function contributes 0 to the degree. A vectorial function (resp.
a matrix or a vector) is said to be a sg-polynomial expression if all its coordinates (resp.
coefficients) are. It is said to be essentially constant if all its coefficients are.

I Definition 23. A (possibly vectorial) sg-polynomial expression g(f(x, y), x, y) is essentially
linear in f(x, y) if it is of the form g(f(x, y), x, y) = A[f(x, y), x, y] · f(x, y) +B[f(x, y), x, y]
where A and B are sg-polynomial expressions essentially constant in f(x, y).

I Example 24. The expression P (x, y, z) = x · sg((x2 − z) · y) + y3 is linear in x, essentially
constant in z and not linear in y. The expression P (x, 2`(y), z) = sg(x2 − z) · z2 + 2`(y) is
essentially constant in x, essentially linear in 2`(y) (but not essentially constant) and not
essentially linear in z. The expression: if(x, y, z) = y+ s̄g(x) · (z−y) = y+ (1− sg(x)) · (z−y)
is essentially constant in x and linear in y and z.

I Definition 25. Function f is linear L-ODE definable (from u, g and h) if it corresponds
to the solution of L-IVP

∂f(x,y)
∂L = u(f(x, y), h(x, y), x, y) f(0, y) = g(y) (5)

where u is essentially linear in f(x, y). When L(x, y) = `(x), such a system is called linear
length-ODE.
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I Definition 26 (DL). Let DL be the smallest subset of functions, that contains 0, 1,
projections πpi , the length function `(x), the addition function x+y, the subtraction function
x−y, the multiplication function x × y (often denoted x · y), the sign function sg(x) and
closed under composition (when defined) and linear length-ODE scheme.

I Theorem 27 ([7]). DL = FPTIME

Previous ideas used here for FPTIME can also be extended to provide a characterization
of other complexity classes. This includes the possibility of characterizing the class FNP
as we did in [7]. Our current investigations concern PTIME[0,1] of functions computable in
polynomial time over the reals in the sense of computable analysis, or more general classes
of classical discrete complexity theory such as FPSPACE.

More generally, it is also very instructive to revisit classical algorithmic under this
viewpoint, and for example one may realize that even inside class PTIME, the Master
Theorem (see e.g. [20, Theorem 4.1] for a formal statement) can be basically read as a
result on (the growth of) a particular class of discrete time length ODEs. Several recursive
algorithms can then be reexpressed as particular discrete ODEs of specific type.
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