N

N

[m "Bmb @ 1M #H2 6 bi- a+ H #H2- . i @. Bj
J M ;2K2Mi BM i?72 *HQm/

w?Bvm Mu Q-uQ MM .2bKQm+2 mt-Cm M@ MiQMBQ
hQrMbH2v- h?QK b *H mb2M

hQ +Bi2 i?Bb p2 " bBQM,

w?Bvm Mu Q-uQ MM .2bKQm+2 mt-Cm M@ MIiQMBQ *Q /2 Q@6m2 i2b:
[mMm "Bmb@ 1M #H2 6 bi-a+ H #H2-. i @. Bp2M a2 pB+2J M ;2K2Mi BM
QM L2irQ'F M/ a2 pB+2J M ;2K2Mi- kykk- TTXR@RX RyXRRyNfhLaJX

> G A/, ? H@yjd8R89]j
2iiTh,ff? H@ TQHViI2+?MB[m2X +?Bp2b@Qmp2 i2bX"
am#KBii2/ QM R9 m; kykk

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X


https://hal-polytechnique.archives-ouvertes.fr/hal-03751543
https://hal.archives-ouvertes.fr

Aquarius - Enable Fast, Scalable, Data-Driven
Service Management in the Cloud

Zhiyuan YatG™, Yoann Desmouceaux Juan-Antonio Cordero-FuericsMark Townsley~, Thomas Clauseii

Abstract—In order to dynamically manage and update net- The control plane adaptively manages and updates network-
working policies in cloud data centers, Virtual Network Functions  jng policies in dynamic cloud DC environments to offer high
(VNFs) use, and therefore actively collect, networking state in- garyice availability and QoS. Data-driven mechanisms based

formation - and in the process, incur additional control signaling hine | ; MLY 171778 d reinf tl .
and management overhead, especially in larger data centers. on machine learning (ML) [7]/[8] and reinforcement learning

In the meantime, VNFs in production prefer distributed and (RL) algorithms [9], [10] are applied and show performance
straightforward heuristics over advanced learning algorithms gains in various network applications. For instance, auto-
to avoid intractable additional processing latency under high- scaling systems and load balancers can achieve improved
performance and low-latency networking constraints. This paper QoS with reduced cost based on periodically polled resource

identies the challenges of deploying learning algorithms in S . . s
the context of cloud data centers, and proposes Aquarius to utilisation of distributed network devices., application

bridge the application of machine learing (ML) techniques on Servers)[11],[[12]. Traf c classi cation and anomaly detection
distributed systems and service management. Aquarius passively help detect security threats with increased accuracy based on
yet ef ciently gathers reliable observations, and enables the use of network traf ¢ characteristics extracted from of ine-collected
ML techniques to collect, infer, and supply accurate networking hatwork traces [13][T14]. However, it is challenging to harness

state information — without incurring additional signaling and th lqorithms to dri t decisi ) worki
management overhead. It offers ne-grained and programmable ese aigorithms 1o drive management decisions in networking

visibility to distributed VNFs, and enables both open- and close- Systems in real-time.

loop control over networking systems. This paper illustrates the ML and RL algorithms require ne-grained observations
use of Aquarius with a traf c classi er, an auto-scaling system, of network and system stat€s [15Fonventionally, period-
and a load balancer — and demonstrates the use of three different ically polling resource utilisation and system performance

ML paradigms — unsupervised, supervised, and reinforcement I f btaini ‘mel d dedi d ob .
learning, within Aquarius, for network state inference and service allows for obtaining timely an edicated observations to

management. Testbed evaluations show that Aquarius suitably make data-driven management decisiops| [11],| [12], [16]-
improves network state visibility and brings notable performance [19]. However, the active polling scheme incurs additional

gains for various scenarios with low overhead. control messages and reduces system scalability, especially
Index Terms—Service management, data-driven, high perfor- for large-scale distributed systems. Another way to gather a
mance network, cloud, performance evaluation wide range of ne-grained networking features is to parse and

extract from of ine collected network traces or in simulated
environments, which is employed for developing clustering
) i ) . algorithms and RL algorithms [13], [15], [20]. However, this
Growing demands for responsive, high-available, loWscheme assumes a minimal gap between real-time systems and
latency cloud services require content providers and cloyfine/simulated systems, which does not necessarily hold in
operators to ef ciently manage cloud data centers (DC5) [Wetworking systems [19]] [21].
[2]. To increase network programmability, and balance the The gata plane is constrained by low-latency and high-
trade-off between capital expenditures and quality of SerViﬂ‘?roughput requirements [22], which makes it challenging to
(QoS), Virtual Network Functions (VNFsg(g, rewalls, load 555y off.the-shelf ML algorithms on networking problems:
balancers, and VPN gateways [3]| [4]) are deployed in cloygyyyving advanced ML techniques alongside the data plane on
DCs to provide reliable service management and transpgfa y is computationally intractable [23]/ [24]. Therefore, in
ent operations. Running on commodity computing platformg,aworld high-performance and large-scale networking sys-
VNFs replace or augment dedicated hardware devices q@flis heuristics — which may not be adaptive to dynamic en-

play a signi cant role in large-scale DCs. To dynamically;ironments — prevail over advanced learning alrogithing [16],
monitor and con gure VNFs, software-de ned networklng[ls] [19], [25]-[31].

(SDN) schemes can be applied, dissociating the routing and
decision-making processcdntrol plang from the network o
packets forwarding procesddta plang [5], [6]. A. Contribution

Z. Yao, Y. Desmouceaux and M. Townsley are with Cisco Systems Paris T.hIS paper propos_es Aqua”us.’ a fast am.j Scalaple data col-
Innovation and Research Laboratory (PIRL), 92782 Issy-les-Moulinea >@,9“0n and exploitation mechanism that b”dQ?S different re-
France; email$ yzhiyuan, ydesmouc,townslg@cisco.com. quirements for data planes (low-latency and high-throughput)

_Z. Yao, J-A. Cordero-Fuertes and T. Clausen are Vtole Polytech- and control planes (making informed decisions). It enables
nique, 91128 Palaiseau, France; eméithiyuan.yao,juan- antonlo.cordero-Iearning algorithms to make inferences and open/close-loop

fuertes,thomas.clausg@polytechnique.edu. I~ ) : |
Digital Object Identi er 10.1109/TNSM.2022.3197130 control decisions based on ne-grained observations, and it

I. INTRODUCTION


https://orcid.org/0000-0002-7211-1506
https://orcid.org/0000-0001-6322-2338
https://orcid.org/0000-0001-5771-3122
https://orcid.org/0000-0001-7976-3470
https://orcid.org/0000-0002-7400-8887

17783 | ___ o wafiic o - 180
08 1 _o====m——TmT T 160 4
10000 1 —.— 4.8kpps traffic S07 - 140 © o
» 5623 { WM 95% predict interval = ) EE
2 206 vid 120 ® >
< 3162 | £ e P
5 gos| 7 0 ¢ &
S 1778 1 © 0.4 /'// 80 <9
=4
2 ] 5 / _ " 2
5 e 2 ) R crouse [0
562 1 $ 0.2 ir/ ' —e= #Thread 40 éml@
2
316 1 " 0.1 , S Control Message 20 X
0.0 -0
12 24 36 48 60 72 84 88 2.5 5.0 7.5 100 125 150 175 200
Number of servers Probing Frequency (/s)

Fig. 2: Correlation (Spearman) increases when the probing

Fig. 1: Linear regression on probing latencies (with anﬁj o
. " equency grows, yet, so do additional control messages.
without background network traf ¢) and additional response q Y9 y g

time collected on clusters of different numbers of servers.
reinforcement learning + online policy updates en-
abling closed-loop control, where collected networking

allows the deployment of distributed and intelligent VNFs, features help optimise routing policies and improve QoS.
which harness ML algorithms to make data-driven operational
decisions. This paper makes the following contributions. .
First, this paper identi es the challenges of gathering®: Paper Outline
networking features to make valuable inference and informedtne remainder of this paper is organized as follows. Sec-

operational decisions in high-performance and |arge'sca|l‘?onmdescribes the challenges of harnessing data-driven algo-
cloud DCs: Experimental evaluations demonstrate that trghms for networking problems and compares this paper with
ditional mechanisms for feature collectioe.d, active prob-  rejated work. Sectiofi Jji presents both the rationale and the
ing [12], [17], [32]-[36] and trace capture [37]-{42]) cause§esign of the feature collection and exploitation mechanism of
substantial overhead. Using a real-world testbed, it is Sho‘ﬂﬁuarius. Sectiofi TV demonstrates the use of Aquarius in the

that networking features gathered by Aquarius in real time CBntext of3 different VNFs on a realistic testbed. Sectfoh V
provide valuable information for system states inference, wWityncludes this paper.

no additional control message and limited resource consump-
tion.

Second, this paper proposes a fast and con gurable Il. BACKGROUND
mechanism, Aquarius, that allows collecting a wide range of
ne-grained networking features in a scalable layout, which This section presents the challenges of efcient feature
is suitable for applying various ML techniques to networkingollection and data-driven VNFs in cloud DCs, and, with a
problems: Aquarius embeds programmable and exible fegtomparison of related work, motivates the design of Aquarius.
ture collection state machines in the data plane. These state
machines are used to extract user-de ned networking features.
To ef ciently gather observations, Aquarius colle@sypes of A. Challenges
features —countersand samples- usingmulti-buffering[43] e is 4 rising trend of embedding intelligence and ap-
andreservoir sampling44], respectively. Networking features

4 : lying ML techniques in the cloud and distributed systems to
are gathered separately corresponding to different nem%)%/namically monitor and adaptively con gure system parame-

applications and types of equipmerg.d, links, SEIVers). io,q ang characteristice.q, server con gurations, forwarding
Features are made available in a scalable layout, which off?m;es) (3], [15], [19], [23], [55], [58]. However, this raises

hig_h exibility when aggregatilng and p_rocessing data und‘?ﬁany challenges and trade-offs that require to be handled to
various requirements(g, by single equipment or by groupSg¢ ciently collect features and make data-driven decisions.

of equment)_. ) ) Online Feature Collection:Datasets with high quality
Third, this paper provides an extensive performancg essential to ML studies. However, few datasets are avail-
and overhead evaluation of Aquarius with use cases eXpgkie and considered as a benchmark for ML applications
imented in a realistic testbedWithin the context _of (i)“ in networking systemse(g, trafc analysis and anomaly
an unsuperwsed-ML—powered netwo_rk traf ¢ classi er’,__(")detection) [37]4742]. To collect a wide range of featuresy(
a supervised-ML-powered auto-scaling system, and (iii) @fL¢ ¢ rates, packet sizes, TCP congestion window sizes), these
RL-powered Laye# load balancer, this paper shows that thﬁatasets are collected based on logged network traegs (
collected features enable: by TCPdump). Though log-based feature collection provides
unsupervised learning+ of ine data analysis creating abundant information for various types of applications, it does
benchmark datasets to gain insight into different networkot scale in terms of log le size| [59]. Log-based feature
ing problems with minimal data collection overhead; collection also incurs performance overhead under heavy
supervised learning+ VNF management embedding traf ¢, which leads to inaccurate and irrelevant measurements
ML techniques to achieve self-aware monitoring and selénd makes it hard to bring ML algorithms “online” (making
adaptive orchestration in an elastic compute cloud; inference and management decisions in real-tifne) [23].



TABLE I: Comparison of data-driven VNF systems.

Property | 132], 133] | [45], [46] | [471-{49] | [11], [50}-{52] | [7], [22], [15]-{18] | [9], [53], [54] | [55] | 134], [35) | [56], [57) | [24] | Aquarius
No Control Message 7 7 7 7 7 3 3 7 3 3 3
Distributed 7 7 7 7 3 3 3 3 3 3 3
Commodity Device 3 7 3 3 3 3 3 3 7 7 3
Use Case Generic | Management Protocol Autoscaling Traf ¢ Optimisation Traf ¢ Classi cation Generic | Generic

Scalability vs. Visibility: Active probing is another way Deployability: the mechanism should be plug-and-play
of feature collection to monitor the system state and maked require no additional installation or con guration.
informed decisions|[12], [17],/ [32]-[36]. However, this re-
quires modi cations on each node to maintain management Related Work
and commun_icat_ion channels. There Is e_mlso a trade-off betweeQ/arious mechanisms (summarised in Tafile 1) dynamically
the communication overhead via probing channels, and tEI

o . . Sn gure and manage VNFs, making data-driven decisions.
visibility of VNFs over the system state. As depicted in fFig. 1, ML bene ts various networking applications,g, conges-

when a controller VM periodically (everpOms) probes a ..

lust f ﬁ 2 TCP kets. the lat h tjon control [63], [64], intrusion detection systems [55%], [[65],
cluster ot servery via SOCKeLs, the 1atency overn€ag ;. classication [66], [67], and task scheduling |[7]} |[9].
increases with the number of servers, which diminishes t

e
QoS. As depicted in Fid.]2, the visibility of VNFs over th
system state correlates with the probing frequency. Addition,
management traf c can exceed tl88-th percentile of per-
destination-rack ow rate X0Ckbps) in production[[2].
Flexibility vs. Performance: Developing, prototyping,

allows inferring system states from networking features.
obtain networking features, these ML applications operate
the Application Layer. However, they are not application-
agnostic and do not generalise to different use cases. Acting as
proxies, they also terminate networking connections, increas-

ing processing latency [68]] [69]. Aquarius collects a wide

and benchmarkmg ML applications on different networkmgange of features at the Transport Layer and enables generic
problems is hard in high performance networks because of tdhaeta-driven network functions with minimal overhead.

low-latency and h|gh-thr_oughput expectation in the data plane. anagement and Orchestration (MANO) frameworks use
A general data processing framework has been proposéed [fﬁﬂf

. . entralised controllers to monitor and update VNF con g-
to accelerate data-driven network functions on recon gurab b g

hardware, which provides line-rate performance. However, | ations [[37], [33]. Based on active monitoring, MANO
S b . p ' . h%lps provision computing, storage, and networking resources.
dynamic and elastic networking environments where additio

and removals of nodes and services happen frequently [2 ftware-De ned Network (SDN) provides ‘programmable

. : Is to gather per-ow or application-level features in a
hardware devices are scalable in terms of performaaag ( g P PP

: centralised way, to adaptively update con gurations, using
throughput) but notin terms of network topology.g, number network equipment that supports the OpenFlow protdcdl [45],

0: serc;/lc;es/noiesl). Hsrd(\;\;?reItpr%%ra:ir?nmmgnan?ni\r:erlfc?ttl%es]_ Other management protocols collect and send data
procedures can aiso be dif cult a €-consuming o om network equipment to a centralised controller via active

ML community [60], which thus relies more on SimUIationsprobing, but with high communication overhedd |[A72{49].

for interdisciplinary research [10]| [15]/ [61], [62]. Yet the ; . .
exibility offered by simulations hinders the real-world de_Aquarlus passively extracts networking features from the data

lovment of ML alqorithms because simulators fail to cant Ipelane and lets VNFs make decisions in a distributed way.
ploy gon u imu : PWUI® histributed VNFs also benet from periodically polled

the complexity of high performance networking systems [19|1fetwork statesd(g, packet arrival rates, CPU and memory

) usage), to ensure service availability, and improve Qo$ [12],
B. Requirements [17], or classify networking trafc [[34], [35]. Additional
Based on the challenges, this paper summarises the follasntrol messages and communication latency limit the system
ing requirements to enable data-driven VNFs in the cloud: scalability [14], [36]. In [16], controllers are noti ed of the
Universality: the feature collection mechanism shouldccurrence of malfunctioning nodes to avoid periodic probing.
cover a wide range of features and be application-agnosticSome network functions gain more visibility via in-network
Relevance: the collected features should be represemelemetry (INT) [53] and covert-channels [70]. However, these
tative, providing useful information to address real-worldequire either deploying agents or modifying the protocol
applications in different circumstances; stack on network nodes, which reduces the deployability
Scalability: the feature collection and exploitation mechef data-driven mechanisms. Aquarius employs the plug-and-
anism should incur minimal performance overhead and suppplay design and requires no coordinated modi cation in the
large-scale and dynamically changing network topology; network.
Flexibility: the mechanism should be con gurable and Learning algorithms incur additional inference and process-
easy to be tailored for various use cases and learning algey latencies. To reduce latency, dedicated hardwarg,
rithms; NPU [71] and NetFPGA [57], helps improve data processing

ef ciency for in-network ML applications|[72]. Taurus [24
1 In the 69-byte control packet emitted by the server, tiebyte payload y pp L ] [ ]

consists of the server ID, CPU and memory usage, and the number of b@@yables in-network diSt_ribUted data Plane intelligence using
application threads. a map-reduce abstraction for generic ML algorithms on a



} New Connection — Established Connection Hash Collision

Encapsulate

[ Virtual Network Functions Management (Sec. 4.}2

7
-

aue|d
j0IU0D

T [ #0 SYN
Sec. 3.2 kI Y o X #1
e(_:._ . Network Features B 3-8 NULL
Partitioner Counters | Samples | 3 < #2 NULL
1 1 v E Feature

o R
Sec.31 Ry Q:advo N @ @N s

Parser X Feature Collector Table X

aue|d
ereq

Fig. 4: Flow table data structure and work ow.

w Received >Count(n_rtr) ¢ Count(n_p)
6’5“\9\ | Sample(iatTp)ﬂj

Fig. 3: Aquarius architecture overview.

coarse-grained recon gurable array (CGRA)|[73]. These hard-

Agtion :
ware solutions boost performance, yet they lack exibility jzw
when developing ML algorithms for different use cases in ~ huL R _
elastic networking systems. MVFST-RL [15] proposes to of

Count(n_norm, n_dpk, n_rtr, n_ooo)
Sample(byte_p, win, d_win, tau,
iat_ppf, pt_1st, pt_gen)

asynchronously update networking con gurations to bene't

from learning algorithms without inducing additional latency 8%
in the data plane. However, performance gains are shown only ey glff)

in simulators with a single use case. Aquarius can incorporate

intelligence in a variety of VNFs, requiring no dedicatedrig. 5: A state machine of feature collector for TCP traf c.
device, yet it is ready to be deployed in real-world systems.

L

I1l. DESIGN Stateless feature collection mechanismse-g, sketch-
. _ . ing [20], [77], which is a family of streaming algorithms
To me?t theE_> requirements sumr_nansed n SeCtI'Bfor networking measurement summarisations — do not track
Aquanus is designed as3alayer architecture (Fig]3). Aqu_ar— he state of network ows, yet they can gather counters as
|dus emlbeds a lfeatlgrf coIIectfor. at Ithe Tdranqurt ILayer N Bfjinal features for ML algorithms using hashing functions,
ata_cﬁ) anedep 0);af||tt>), toe .C|ent BI(tan _{)hasr?Nﬁy eXtI.r?Ct with little performance overhead. However, ordinal features
a \INI € range dOI e"’ll Ltjresumlve(rjsalyf Wi '9 quﬁ'ﬁ icounters) contain less information than quantitative features —
(relevancg, and low atency and performance overhead. o ro|ateq featurese(g, round-trip time, inter-arrival time,
makes the features available and easily accessible via sha{) duration) and throughput informatione(g, congestion

memory scalabmty)., for applications Of. ML algorithms on window size, ow size), which are not captured by stateless
various use cases in the control planexipility ). mechanisms

Aquarius tracks ow states in bucket entries with a stateful
A. Parser Layer table (Fig[#), which can be con gured to collect a wide range
To balance the tradeoff between scalability and visibilit)?]c features using a state macr_une dep_|cted in Fg. 5. !n the
networking features which indicate system states can be patl)vy table, Aququus stores the ||jformat|on of eac h ow into
23bucket entry indexed blgash(fid )%M , wherefid is the

sively collected from the data plane to avoid active probing andW IDE] andM is the ow table size. An entry in the ow

aqldl_nonal mstallatlor_]s and con guratlo_ns. However, locate Thle can be in one of three statesS¥YN CONNand NULL
within network function chains, VNFs in modern DCs ma)(Fi [5). When a new ow arrives (TCBYN), it is registered
observe onlyl-way trafc (i.e, half-trafc of each ow) 9.9 ' 9

addressing to their egress equipmeag( links and servers) in a bucket entry of the ow table with iteid and state$YN.
9 9 quip ' On receipt of its subsequent packets, the state in the entry is

tp reduce add_monal processing Iat_ent:y [74] Thls requI"Rstrieved and updated t6ONN(connected) if the ow starts
(i) careful design of feature collection mechanisms to off

r o ) . .
high scalability and con gurabilityand (ii) domain knowledge ?ransmntm.g da@ On receipt of packets whn;h term|nate TCP
) . ows (or timeout for UDP ows), the ow is evicted and
to extract valur?lble and represe ntative networkl_n g featur?ﬁe entry state returns tNULL, so that the bucket entry is
and reason their correlations with system stat@his paper vailable for new ows. In the case where the bucket entry is
illustrates the design using TCP traf c, which is the most '

widely used protocol in the cloud[2]; T75]; [76]. The Samenot available when a new ow appears, the ow is considered

work ow also applies to other network traf cg.g, UDP). a "miss” and is excluded by the feature collector.
1) Stateful Feature CollectionNetwork traf ¢ consists of
ows that traverse different n0d6$g edge routers. load 2TCP network ows are identied by their5-tuples: protocol number,
. ~ ! source and destination IP addresses and port numbers.
balancers, servers) in the system, whose states can be trac ra TCP ow, if it is well-establishedd.g, after 3-way handshakes),
and retrieved from the ows — along with traf c characteristicsand the rst data packet is received, its state will be update@@NN



Tables on the left Data structures in the data piane Algorithm 1 Reservoir sampling with no rejection
Tables on the right Network features | Notati T Explanati - -
M: Number of bucket entries in Bow tables | otation ype xplanation 1: k reservoir buffer size
E’gsg?féifgsiﬁfgiuﬁe(;ize » | - E:z ::22:2:2:':‘5 2: buf  [(0;0);:::;(0;0)] . Size ofk
4:T>C;’ZTJZ?SCE?;ZIS;:MI“O“N varbles | n__fcl u32 | Number of completed Bows 3 for each observed Samp'ea"ivmg att do
n_cls u32 | Number of hash collisions 4 !’andomld rang () .
o | us2 | Number of normal data packet 5. idx  randomld %N . randomly select one index
Notation| Type Explanation n_dpk u32 | Number of duplicated ACKs 6: buf [ldX] (t' V) . regISter sample in buffer
hash | u32 | Hash digest of TCP 5-tuple n_ooo u32 Number of out of orders
g egress | u32 | Egress ID n_rr u32 | Number of retransmissions
-‘.E timeout | u32 | Timeout for packet validity
g state | ul6é |Connection state
vip_| ul6 |VIP of the network application Notation | Type Explanation 3) Number of out-of-ordered packetas_(ooo ), which in-
ack_last| u32 | Last ACK number byte_p |(f32, u32) Byte per packet H H H H
B e e vt I - dicates the multl_ple _path eX|stence_|n networks, where
8| win_last u32 | Last TCP window size L byte_f_on (132, u32) lper on-going Bow g the packet ordering is not necessarily preserved.
- t0 32 | Flow beginning timestamp win (f32, u32) TCP window size £ s .
° t_last | f32 | Last packet arrival time per Rg d_win | (f32, i32) | Change of TCP window size : For TCP traf C" addltlonal Counters can be gathered
tsecr | u32 | Last TCP echo timestamp lat_sa | (f32, f32)| SYNACK latency 1) Number of Comp'eted Owﬁn_fct )' which is incre-
tau (f32, f32) | Flow duration - -
o sz 152)| Flow som mented when ow terminates. The number of on-going
3 pletion time ) N . X
ptist (132, u32) EQress processing time derive connections (canonical feature) is derivedtlews =
8 n from TCP timestamp options f . B
{4 Notation Type Explanation plgen |(132, u32) the prstigeneral data packets n_ f n_fct , to estimate instant queue lengths.
% t0_ecr | u32 | TCP timestamp option anchorJ—> iat_f (f32, f32) | Flow inter-arrival time - - ! . . .
2 t_last_f| f32 |Last Bow arrival time I—> iat_p | (f32, f32)| Packet inter-arrival time 2) Number Of dupllcated ACK paCketS1 rEtransmISSIOHS
t_last_p| f32 | Last packet arrival time iat_ppf | (132, 132)| Packet inter-arrival time per R (n_dpk, n_rtr ), which can be used for diagnostics’
Fig. 6: Notations, categories, variable dependencies, and space '€ €cting e.g, the level of congestion on links.
complexity of all network features. Quantitative featuresre collected as samples, using reser-

voir sampling [[78] (Algorithm[]l). To capture the system
dynamic, besides feature values, it is also important to trace
the timestamps of different events,g, for sequential ML

2) Network FeaturesVarious features can gainfully bene t algorithms. Reservoir sampling gathers a representative group

the decision making process for different use cases. Countf?_fgSamples in_x-sized _buffer from a stream with t.he sampling
the number of ongoing ows helps track instant server loa§l1eStamps. For a Poisson stream of events with ratthe
states, thus helping balance workloads distribution (Sec] Iv-¢yPectation of the amount of samples that are preserved in
Throughput information helps classify whether the netwofRuffer aftern steps isE = & ©, wherek is the size
traf ¢ is 10-intensive (Sec[TV-A). Time-related features helf reservoir buffer. Based on the characteristics of different
understand the QoS on servers, thus helping predict resout¥etem dynamicse.g, Iong-term distrib_ution shifts or short-
utilisation and schedule scaling events ($ec. |V-B). term oscillations, the reservoir sampling mechanism can to
As a generic feature collection mechanism, Aquarius shoUl§ tuned €.g. number of buffers) to collect representative
be able to collect as much information as possible Wilﬂaﬂstl_cal FiIStI'IbutIOI”IS of the states_ over.t|m.e, since both the
minimal overheadd.g, memory space consumption). With the’samplmg timestamps and equnentla}lIy-dlstrlbu_ted. numb(_ers of
ow table, Aquarius allows exible con guration of attributes, Samples are captured over a time window. Periodic queries to
to gather the most signi cant features and optimise the merti€ reservoir sampling buffers can generate generic time-series
ory usage overhead for different applications. Fig. 6 lists it Which is suitable for sequential pattern analysis.
con gurable features that are implemented in this g8per For general network ows, the following features can be
Ordinal featuresare collected as counters, which are insampled in reservoir buffers:
cremented either as integer variables or using sketches. Fot) Bytes transmitted per packdtyte_p ) and bytes trans-

simplicity, this paper uses accumulative integer variatdes, mitted per ow (yte_f_on ), which help estimate
when a ow state transits fror8YNto CONNthe total number overall 10 occupation in the networks. Bytes transmitted
of received owsn_f is incrementedl Counters for general per ow keep increasing as more data packets are
network protocols include: received, until the ow ends or times out.

2) Flows and packets inter-arrival tim@at_f ,iat p ),
which re ect the arrival rates of ows thus the burst
of network requests. The values iat_f are updated

2) Number of hash collisiong_cls ), which evaluates the when new ows arrive whilgat_p - requires no stateful

. tracking of connections.
amount of untracked connections and can be used to . . .
: 3) Flow duration(tau ), which helps characterize the type
estimate the coverage of collected features.

of network traf c, e.g, long-lived ows or short queries.
_ _ _ This feature is updated on receipt of each data packet
4All features depend on the state and timeout attributes in the ow table,

thus these dependencies are omitted for clarity. More attributes can be of the ow.
potentially added to obtain more featuresg, to track packet TTL. For TCP traf c, additional features can be collected:

5The countem_fct is incremented only if one ow ends with a previous 1) ¢ ti ind . . d wi hich bed
connection state a8SONNA similar DDoS mitigation mechanism based on ) ongestion window SIZeNm ,; d_win )* which embe

ow tables is proposed in Prisnfi [76], but it is out of the scope of this paper. the congestion states of networking systems. Their val-

1) Number of packets and ow@_p, n_f ), which quan-
ties the volume of network traf c addressed to each
egress equipment.



Client VNF Server Data Field Client i
SYN (First Packet) Initialize local Trivial T ple: shm_dip0
i Vacant VNF e: shm_dip
timestamp tvr(Q)__ - Local timestamp ts(0) [ Activated \Jto f\tl \412 / \B \4 ta /
ACK=1 Local timestamp tvne(1) tsval = ts(0) ctivated  Server \/ \ \ \ \ -
tsecr = ts(0) = Initialise tsecr(0) = tsecr SYN Reply FIN 20 | ‘ E ‘
PToestwen)-ane(0) T\ T ple: shm_vip0 2l 2 B |E |
ACK=1 Local timestamp t vnNr(2) - e
—————— RN 51 ] oeaes | [Elregisier H 2 [ E |
Local timestamp ts(2) g Bitindex 15! 5 | Missed
e — = x Hi 2 L<< | i
tsecr = ts(2) SEQ=x| tsval = ts(2) % % eader Datapoint
ACK= . =3 Counters n_f Increment n_fet 24 | ‘ E ‘
=X Local timestamp t vnr(3) ** Cache ++ Counters ++
] =1 T 1 Tune Counters
Time 25 | Time Window
n Bu! er 0 g‘ Pull for Sequential
- ) ] ) e 38 Counters 26 Models
Fig. 7: Calculation of egres®/(g, application server) process- T, 1 Couners ] =
. - . . . u: er i =
ing time with TCP timestamp options. flocked]_memepying g
a Reservoir &
= Bu! er =
8 o &
Tigig: i
,,,,,, T — Tigig, 2 142
1 Service 1 [VIPO] |iService 2 [VIP1] G i5 5 i =
i oo i emcpiting
— — — — Action o
; : M Bulero 16 | Skipped
: DIPO_ DIP1 DIP2 || DIP3 DIP4 _ 18 Datapoint
Client Edge Router VNF """ - i] Action L
Bu'erl 19 | ‘ € ‘
Fig. 8: Cloud service topology. UFEST ™ Acion
Cache h

2)

3)

4)

Fig. 9: Aquariusshm layout and data ow pipeline.
ues are updated on receipt of new ACK packets, after

3-way handshakes.
Flow completion time (fct and ow byte size

(byte_f ), which are collected when ows terminate.high traf c rates and their environments and topologies change
Their values indicate the characteristics of the managggnamically. This requires torganise collected features in a

services. _ _ generic yet scalable formaand make features available for
SYNto rst ACKlatency(lat_sa ), which estimates the ML algorithms without disrupting the data plane

3-way handshakes latency for TCP trafc. WherB&N  Different cloud services should be separated to (i) avoid
packet is received on one ho&tYNcookies statelessly multimodal distributions in collected features and (i) allow
generate a immediat8YNACKresponse. Their values dynamically adding or removing services. Based on use cases,
help estimate and calibrate the baseline RTT betwegshtures collected of a given service should be further parti-
two end hosts of the connections. tioned — by ingress or egress equipment, links, servers —
Data packet processing timgt_1st andpt_gen ), to have higher granularity for learning algorithms. Even under
which can be derived from TCP timestamp optionfeavy traf c and high access rates, features should be reliable
tsecr . Intuitively, the time difference between theand easy to access.

reception and the response of a data packet indicate\quarius organises observations of each VIP in independent
the processing time and resource usage on the egrpgss|X shared memoryskim) les, to provide scalable and
network equipment. However, given the constraint Gfynamic service management. In eashm le, collected

observing onlyl-way trafc on VNFs (.9, DSR mode features are further partitioned by egress equipfhefig. [¢
for layer4 LBs), this information is hard to obtain. exempli es theshm layout and work ow.

Using the TCP option elds, the timestamp of the egress 1) Bit-Index and Masking:The rst byte in theshm le
equipments responsesfal ) is recovered from the of a VIP de nes the max number of egress equipmaht
ACKpackets sent by the clientsecr ). The procedure \which determines the number of “columns” to be reserved for
of rebuilding the processing time on the egress sidgature collection. It is determineaipriori by the scale of the

is illustrated in gure[T. With respect to Web appli-cloud service, so thatl equipment suf ce the requirement in
cations, the processing time is further distinguished kyj| circumstances. Thél -bit bit-index headethelps quickly
the rst data packetft_1st ) and the subsequent onesdentify activated egress and its corresponding “column” —
(pt_gen ). the i-th bit is set tol if the i-th egress is active an@

In-Network Telemetry (INT) features can also be collectedtherwise. With minimal memory space, this design informs
as samples and stored in reservoir buffers| [31],| [79]. F&ML algorithms to skip features of inactive equipment, gather
simplicity, these features are omitted in this paper. features €.g, also in separateshm les) and update policies

only for active equipment, reducing processing latency.

B. Partitioner Layer 2) Multi-Buffering and Asynchronous I/Ot/hile quantita-

Cloud services have different characteristics and they épée fgatures_ are collected using reservoir sgmpling, counters
identi ed by virtual IPs (VIPs) (Fig[B), which correspond todre directly incremented by the data plane in the cache, and

clusters of provisioned resource®-g, servers, identi ed by a

8Depending on different applications, observations for each VIP can also

unique direct IP (DIP). In production, cloud DCs are subject t& organised in different ways,g, by ingress ports.



Clients i [VIPO] H [VIP1] H [VIP2] H [VIP3] ! Lo —-— OFeature —— 11Features —— 73features —— PCAP Log
Trace IPHP forloop! | PHPPle |1 Wiki |iWiki (DoS): = | SR, %
Queries/s i [350, 500] ; ! [400, 1000] } ! [369, 518] | ! [369, 518] | WS LS
””” | I E S R Q& o5 128F
v St Og
" —
VNF Router - L, - I 5, A [
%00 500 1000 2000 4000 300 500 1000 2000 _ 4000
| Number of CPU Cycles Per Packet
S PSS — S S —
Server Cluster i vIPo] ! viP1l i vip2] i (viPs] (a) Per-packet processing latency comparison.
Group 136 x 2-CPU } 136 x 2-CPU 114 x 2-CPU | 14 x 2-CPU |
Group 2124 x 4-CPU | 124 x 4-CPU | 13x 4-CPU | 13 x 4-CPU | —:— OFeature —— 11 Features —>— 73features —+— PCAP Log
1.0 T T T T T
Fig. 10: Network topology for traf c classi cation. é o5 L //r_ é | 4
0.0 1 1 - 1 1 1 1
20 30 40 50 60 275 3.00 325 350 3.75
CPU Usage (%) Used RAM (GiB)

then periodically drawn from cache to buffers with incremental
sequence ID. The bit-index binary header is copied with (b) System resource consumption.
the counters, to ef ciently identify active equipment. When

copying data between cache and buffer, the sequence ID is Fig. 11: Aquarius feature collection overhead.

set t00 to avoid I/O conicts. ML algorithms can pull the cgqguration 0 Feature| 11 Features| 73 Features| _ PCAP
latest observations from the buffers with no disruption in the' ;g T CPU Cycles| 938232 | 1635:838 | 2609.019 | 1295284
[ [ : =S [ Delay (s) 0:361 0:629 1:003 0:498
data plane. Similarly, new netv_vork pohmee.@,_forwa_rdlng L Diferencs 1000 7 = 75T 1361
rules) can be updated via action buffers. This design offefS; g | CPU Cycles| 576:357 | 1583798 | 2602684 | 885041
an asynchronoug-way communication interface to exchangg § & | Dy () 0.222 0-609 1.001 0:340
. o Difference 1:000 2:748 4:516 1:536
ne-grained features extracted from data planes and datacpy Usage (96) 26.687 40:858 49716 | 31480
driven decisions made by control planes with low latency. | CPU Difference 1:000 1:376 1:675 1:060
RAM Usage (GiB) 2:652 2719 2744 3:305
RAM Difference 1:000 1:025 1:034 1:246
C. Implementation TABLE II: Per-packet processing overhead @6GHz CPU)

Aquarius is implemented as a plugin to the Vector Pack@?d system resource consumptions (avg.) comparison.

Processor (VPP) [80], a programmable network stack for
commodity hardware. This paper séts= 64 since it suf ces
for the typical con guration in productior [81] and t&4-bit
bit-index header ts in the cache line for modern comput
processors. The ow table size is con gured &k = 65536.
The level of multi-buffering is set t8 (same as in Fig.]9). The
buffers draw the latest counters from the cache ewa&i§ms

1) Task Description and Testbed Con guratioithis sec-
tion shows the capability of Aquarius to collect reliable
%atures and conduct traf ¢ classi cation with unsupervised
ML algorithms. A testbed is implemented using Kernel-based
Virtual Machine (KVM), where a virtual router embedded with

. . - uarius forwards different types of traf ¢ t VIPs (Fig[10).
(same as the active probing frequency/in|[12]). Each Samp'ﬁlgvmo, a simple PHHFor -loop script on each server takes

network feature is 2-tuple of a32-bit oat timestamp and a requests for given number of iterationéitér ) and replies

32-bit value — t in a single cache line. The reservoir buffer ith proportional sizes. The ow duratior200ms on aver-
size is set tck = 128 for each feature per egress equipmen\{\.' prop ) . .
e) and number of transmitted bytes follow an exponential

. : : a

In these conditions, to collect all features listed in fFig. 6, the® 7. ° : ; . .
1 ! ‘)

ow table takes10:24MB of memory space. Thehm le of (ﬁgstrlbutlon as in[[2]. In VIP1, static les of different sizes

each VIP consists @KB 3-level multi-buffering counters and are _ser\(ed on each sefffas in [17], to represent IO—bound.
. . applications. In VIP2 and VIP3, each application server is
832KB reservoir sampling buffers.

an independent replica of an Apache HTTP serjei [82] that
serves Wikipedia databases. Two sample8Gfk duration are
IV. APPLICATIONS extracted and replayed from a real-wo#d-hour replay [88].
In VIP3, an additionab000queries per second SYN ooding
traf ¢ is applied to simulate a DoS attack. Server clusters are
scaled to be able to serve all the queries under heavy trafc
rates — when no attack happens — with reasonable FCT (under
400ms) as in[[18].

2) Feature Engineering:The features are fetched every
A. Traf c Classi cation 250ms from counter buffers and reservoir buffers. This paper
demonstrates the exibility of feature engineering offered by

"AS oggt_of th.ehlfey (\j/.f'\f":S |rt1tthe CIO;Jtd’ ftr':;‘f,;c'a,?;' Cf‘_téon samples collected in reservoir buffers, by reducing each feature
aflows distinguishing di efe” ypes of traf ¢ [34], [‘. 1. [55]- channel to5 scalars,i.e,, average, standard deviatioA0-
[57], to allocate appropriate resources and achieve service

level agreements [34], [56]. It also helps detect anomalies andye gizes of les arel00KB, 200KB, 500KB, 750KB, 1MB, 2MB, and
security threats to prevent potential damages or losses [555MB. 50 les are generated for each size.

This section show8 applications of Aquarius in cloud DCs
in the context of3 key VNFs — traf ¢ classi cation, resource
prediction, and auto-scaling, and Layklead balancing, along
with 3 different ML paradigms.



Fig. 12: Variance contribution of each feature in ®principal components (PCs).

TABLE Ill: Comparison of (unsupervised) clustering algorithms for traf ¢ classi cation.

. . Spectral Agglomerative Gaussian
Algorithm KMeans | MeanShift Clustering Ward Clustering DBSCAN OPTICS | BIRCH Mixture
Adjusted Rand Index 0:674 0:863 0:715 0:689 0:002 0:696 0:757 | 0:742 0:687
Mutual Info Score 0:941 1:160 0:948 0:992 0:031 0:914 0:968 0:953 0:965
Adjusted Mutual Info Score 0:709 0:820 0:718 0:731 0:023 0:692 0:733 0:721 0:731
Homogeneity 0:713 0:878 0:718 0:752 0:024 0:692 0:733 | 0:722 0:731
Completeness 0:709 0:820 0:811 0:732 0:241 0:736 0:914 0:811 0:798
Fowlkes-Mallows Score 0:765 0:901 0:805 0:774 0:513 0:785 0:840 0:824 0:786
Fit Time (ms) 75:689 | 541:594 | 991:382 | 4806:554 2785787 45249 | 2769734 | 52:959 | 18:505
Require Cluster Number 3 3 3 3 3 7 7 3 3

percentile, and exponential moving average (decay) of average 100 ; ; ; ; : —
and90-percentile. The moving average is aosequential feature  sof : : » 1
calculated, whose weight is computed 8$!° !, wheret is o or T Samulalue Explained Varance
the timestamp of each sample atfds the moment when the aor e Explained Variance i
reduced sample is calculated. This yields in tdabrdinal or ]

0

features (counters) ant3 5 quantitative featurE]s
3) Overhead Analysis:To study the feature collection
overhead, Aquarius is compared with a vanilla router which (a) Percentage of explained variance.

Principal Component

collects O features and a router logging packet information - - L E— 15—
. . . s e  PHP For-Loop . e  PHP For-Loop
in the memory usingcap . Under500 queries/s PHRor -  § + PHPFile S ol + PHPFie i
loop traf ¢ towards al76-CPU server cluster, when collecting = :f * mm S 1 2 ¢ Wi

. . . > 1ki (Do g Wiki (DoS)
11 featurel§ or collecting all 73 feature® Aquarius incurs 3 3 °sf 1
different overhead (Tablg]ll and Fig. 11a). On2:6GHz £ °f g ol ]
CPU, the additional per-packet processing delays are trivie ,| _ §
compared with the typical round trip time (higher th200 s) ¢ fit ime: 30 90ms A fit ime: 5.56ms

between network equipmert [85]. The mean CPU usage of %, coanedvar arsgy I o

Aquarius is1:376 and1:675 higher than the vanilla router e Grpned e 0
when collectingl1 and73 features respectively (Fif. Z11b). As (0) PCA clusters (all features). (c) PCA clusters 25 features).
expected, the log-based feature collection mechanism does not Fig. 13: PCA analysis angD visualisation.
scale in terms of memory consump@n

4) Feature Selection with PCAMore features give multi-

dimensional observations, yet at the cost of higher computatigdpresentation. As depicted in Fif. 1380% of the data

and memory overhead. Principal Component Analysis (PCAdriance can be explained withprincipal components (PCs).

is thus conducted to understand the relative importance mf.[T2 shows that multiple features share similar contributions

the feature and reduce dimensionality while preserving datbsine similarity) to tof8 PCs, especially features reduced
$The collected dataset i dand edtoh from the same reservoir buffer. Therefore, the number of

e collecte ataset Is preprocessed ana convertea to have zero meal . P

unit standard deviation. Outlier data-points (value bey@@ith-percentile) are rfga?ures can be decreased by using ¢h(gtandard deviation

dropped. The data preparation procedure is done tssiitif-learn (841 anddecay -ed average) out of thé reduced scalars. Also by

and it is the same throughout the whole paper. removing sampled data that has low contribution to the4op-

9 ; .
L counter f_flow _on) and2 5 sampled features (ow duration, FCT). pcg (e, iat_synack ), 25 features are selected out of all
8 counters and3 5 quantitative features. feat -
11The results can be machine-dependent. This paper aims at showing zh?é ea ure_s. ) )
order of magnitudes, rather than providing a precise quanti cation. As depicted in Fig[ I3b4 clusters for the4 traces are

0.25



KMeans Gaussian Mixture DBSCAN 1.0 T
T ! train time! 84.48ms —e— Train Set

0.5 | —¢— Validation Set -

Lor 1r 1r b —A— Test Set
L4 0.0 i I I I
o5 - 1L 1L ] o 20 40 60 80 100

CPU Usage (%)

15

train time! 49.70ms train time! 32.35ms

CDF

T e o & @® 1 Fig. 16: Comparison of ground truth distributions.
g

05| 4 F 4 F .

1 1 1 1 1 1
0.5 0.0 0.5 0.0 0.5 0.0

Fig. 14: Unsupervised clustering usia§ features. B. Resource Prediction and Auto-Scaling

To minimize operational costs while guaranteeing QoS,
cloud operators need to elastically provision server capacities.

l (Auto-scaling) [T Lo | . . . . . . .
| [VIP2] | With growing interests in intelligent server capacity con g-
- - — E E § urations [11], [50]4[52], this section shows the capability of
 Eixed Server Cluster  Elastic Servers | Aquarius as a platform to systematically develop and adapt

Client Edge Router VNFE iDIPO DIP1 DIP7 DIP8 DIP13! _ i . T .
geRouter VNF - bommmemmmmmmmm o m oo supervised ML algorithms to infer resource utilisation and

Fig. 15: Network topology for autoscaling system. performance with no actively signaling.
1) Task Description and Testbed Con guratioithis sec-
tion studies networking features and system utilisation under
different levels of workloads, to avoid additional control mes-
visualised in a2D representation. Among thé traces, PHP sages in existing auto-scaling mechanisms [62Ds samples
for -loop is pure CPU-bound and PHP le is pure IO-boundextracted from each hour of the real-wo8d-hour Wikipedia
The Wiki trace consists of both queries for SQL databaseace are replayed on the network topology depicted in[Fig. 15.
(CPU-bound) and static les (IO0-bound), thus its cluster i8Vorkloads are randomly distributed among running servers
located between the formé traces. Thewiki trace under (2-CPU each) by way of Equal-Cost Multi-Path (ECMP). The
DoS attack, however, can be clearly noticed as an independsentver cluster require8 14 servers to provide reasonable
cluster. As depicted in Fif. IBc, using tBB selected features QoS (median FCT 400ms [18]). A learning task can be
E] still gives clear clustering results, yet it reduces dafaamed as predicting server load states (CPU L@@rﬂ each
processing time fron30:90ms to 5:56ms. server with the same set of features as in sedfionllV-A. The
5) Unsupervised Learning9 clustering algorithms are ap-predicted utilisation can be then used to plan and re-scale
plied and compared over the obtained dataset. As in Talle Berver clusters to guarantee QoS with reduced operational cost.
mean shift has the best overall performance, yet at the cdstis task consists df steps — of ine model training and online
of relatively high t time. As depicted in Fig[ 34, when prediction. The rst23-hour samples are applied dD 2
applying unsupervised learning algorithms, K-Means [86] ar@PU servers to gather datasets for of ine model training. The
Gaussian Mixture [87] are able to generate clusters similar last-hour sample, which is not seen by any trained model, is
the ground truth, while they require the number of expecteynthesized to havé different levels of traf ¢ rates for online
clusters §) as input. Gaussian Mixture model has the shortegtediction and real-time auto-scaling.
t time and can be an interesting candidate for online trafc 2) Ofine Model Training: To predict the resource utilisa-
classi cation. In case where the number of clusters is n@ibn of server clusters using networking featur&g, widely
known a priori, DBSCAN [88] can distinguish the potentialused ML algorithms are selected to cover different families of
security threat, based only on a prede ned distan@d)( ML algorithms,e.g, sequential and non-sequential, parametric
With a training latency lower thad00ms, these algorithms and non-parametric, linear and non-lingar|[19]. The dataset is
can be interesting candidates for online traf ¢ classi catiopre-processed in the same way as described in sdction |IV-A2.
and anomaly detection systems. OPTICS] [89] also achievRsadapt the dataset for sequential models, the sequence length
the highest completeness — all members of a given trace tyfime steps) of input features is set a2 and the stride as
are assigned to the same cluster, though with a much high€r which gives50k data-points in total. These data-points
processing latency than DBSCAN. are sequentially spli70 : 20 : 10into training, validation,
Take-Away: Aquarius gathers ne-grained and reliableand testing sets. The distribution of the ground truth CPU
datasets, which allow feature engineering and conducting usages in the training set covers the other two datasets so
depth data analysis. Its fast and con gurable design helpat the prediction task is feasible, yet the ML models have
achieve the right balance between visibility and performanasot seen the datasets for evaluations (ffig. 16). Sequential
models are created and trained using Keras with TensorFlow as

"*The input 25 networking features are: byte std, bytef_avg decay, packend|[[90]. Non-sequential models (built using scikit-learn)
byte p_std, bytep_avg decay, winstd, win avg decay, dwin_std,
d_win_avg decay, fctstd, fct avg decay, ow_duration std,
ow _duration avg decay, iatf_std, iat f_avg decay, iatp_std, 13This paper uses CPU usage as the metric to evaluate and plan server
iat_p_avg decay, iatppf_std, iatppf_avgdecay, now_on, n ow, cluster capacity for demonstration. The same methodology can be applied to
n_fct, n_packet, nrtr, n_dpk, n_ooo. problems using multi-variate metrics.



10

TABLE IV: Comparison of supervised ML algorithms for resource prediction (using selectegequentialeatures to predict
8 steps ahead).

. Linear Ridge | Decision | Random SVR SVR GRU+ Active
Algorithm ‘ Regression‘ Regression‘ Tree ‘ Forest | (Linear) ‘ (RBF) ‘ XGBoost ‘ RNN ‘ LST™ ‘ GRU ‘ 1dConv ‘ WaveNet ‘ Probing
First Step MAE 9:216 9:232 12:135 8:717 9:255 9:040 8:544 7:629 7:433 7:488 7:492 7:830 3:504
First Step RMSE 11:779 11:763 15:558 11:125 11:876 11:395 10:871 9:591 9:403 9:478 9:481 9:770 4:593
Last Step MAE 10:640 10:638 15:043 11:009 10:683 11:206 10:797 9:774 9:855 9:798 | 10:001 9:652 11:892
Last Step RMSE 13:266 13:261 18:965 13:794 13:327 13:994 13:557 12:285 12:496 12:427 | 12:653 | 12:194 14:935
All Step Avg. MAE 10:038 10:044 14:109 10:090 10:063 10:335 9:891 8:986 9:046 9:022 9:123 9:010 8:334
All Step Avg. RMSE 12:575 12:575 17:866 12:742 12:616 12:963 12:512 11:331 11:505 11:464 | 11:594 11:390 | 11:057
Avg. Predict Time (ms) 1:429 1:375 1:765 | 152:558 | 629:212 | 1462446 5:315 | 115:179 | 117:146 | 113:117 | 87:831 | 106:475 0:026
Predict Time Stdev. (ms) 0:380 0:294 0:013 0:305 0:093 2:015 0:288 1:961 4:100 3:592 1:680 1:968 0:001

TABLE V: Comparison of supervised ML algorithms for resource prediction (using selectedequentiateatures to predict
16 steps ahead).

. Linear Ridge | Decision | Random SVR SVR GRU+ Active
Algorithm ‘ Regression| Regression Tree Forest (Linear) (RBF) XGBoost RNN ‘ LST™ ‘ GRU ‘ 1dConv WaveNet Probing
First Step MAE 9:186 9:206 12:134 8:697 9:232 8:999 8:486 7:577 7:379 7:458 7:496 7:527 | 3:505
First Step RMSE 11:715 11:723 15:538 10:991 11:838 11:302 10:716 9:515 9:414 9:559 9:578 9:595 | 4:593
Last Step MAE 10:858 10:861 14:976 11:129 10:897 11:322 10:964 9:794 9:935 9:579 9:786 9:504 | 12:238
Last Step RMSE 13:666 13:673 19:000 13:995 13:716 14:266 13:810 | 12:476 12:657 12:231 | 12:435 | 12:130 15:470
All Step Avg. MAE 10:399 10:404 14:587 10:555 10:424 10:776 10:362 9:342 9:478 9:165 9:374 9:146 10:216
All Step Avg. RMSE 13:039 13:046 18:393 13:262 13:077 13:525 13:035 | 11:852 12:069 11:700 | 11:933 | 11:625 13:335
Avg. Predict Time (ms) 2:689 2:659 3:557 | 304:490 | 1281:118 | 3026:451 10:445 | 96:102 | 120:756 | 111:489 | 89:297 | 105:831 0:033
Predict Time Stdev. (ms) 0:285 0:292 0:016 0:458 1:617 0:871 0:093 1:882 5:700 5:829 3:774 3:756 0:014

TABLE VI: Comparison of supervised ML algorithms for resource prediction (using selsegdentialfeatures to predic8
steps ahead).

. Linear Ridge | Decision | Random SVR SVR GRU+ Active
Algorithm ‘ Regression Regress?on Tree Forest| (Linear) (RBF) ‘ XGBoost RNN ‘ LSTM ‘ GRU ‘ 1dConv ‘ WaveNet Probing
First Step MAE 9:219 9:223 12:419 8:892 9:241 8:953 8:758 8:205 7:842 7:622 7:785 8:040 3:504
First Step RMSE 11:543 11:553 15:745 11:328 11:582 11:288 11:141 10:370 10:012 9:716 | 10:005 10:207 4:593
Last Step MAE 10:658 10:662 15:023 10:840 10:689 10:855 10:704 9:787 9:627 9:442 9:566 9:550 | 11:892
Last Step RMSE 13:240 13:244 18:829 13:639 13:277 13:600 13:449 12:253 12:239 | 11:933 12:110 12:061 14:935
All Step Avg. MAE 10:059 10:063 14:077 10:073 10:074 10:056 9:950 9:272 9:091 8:855 8:949 9:027 8:334
All Step Avg. RMSE 12:528 12:534 17:772 12:743 12:552 12:647 12:585 11:646 11:564 11:225 | 11:379 11:433 | 11:057
Avg. Predict Time (ms) 1:394 1:390 1:727 | 150:036 | 604:762 | 1377:609 5:579 | 115:887 | 118:995 | 109:009 | 89:465 | 104:772 0:022
Predict Time Stdev. (ms) 0:301 0:316 0:009 0:186 0:023 0:056 0:243 3:537 2:673 4:954 3:413 2:584 0:008

TABLE VII: Comparison of supervised ML algorithms for resource prediction (using selesstgqdentialfeatures to predict
16 steps ahead).

. Linear Ridge | Decision | Random SVR SVR GRU+ Active
Algorithm ‘ Regression Regression‘ Tree Forest ‘ (Linear) ‘ (RBF) XGBoost ‘ RNN ‘ LST™ ‘ GRU ‘ 1dConv ‘ WaveNet‘ Probing
First Step MAE 9:205 9:210 12:514 8:841 9:229 8:911 8:712 8:339 7:889 7:863 7:855 8:149 3:505
First Step RMSE 11:527 11:537 15:799 11:158 11:567 11:162 10:964 | 10:375 9:990 10:115 | 10:014 10:353 4:593
Last Step MAE 10:823 10:828 15:019 11:064 10:856 11:054 10:895 9:993 9:699 9:394 9:564 9:447 | 12:238
Last Step RMSE 13:605 13:612 18:834 13:884 13:645 13:916 13:706 | 12:634 12:303 12:020 | 12:200 | 12:002 15:470
All Step Avg. MAE 10:412 10:417 14:576 10:478 10:431 10:444 10:337 9:711 9:220 9:143 9:316 9:148 | 10:216
All Step Avg. RMSE 13:003 13:.010 18:328 13:177 13:029 13:103 12:998 | 12:181 11:661 11:668 | 11:852 11:576 13:335
Avg. Predict Time (ms) 2:547 2:522 3:464 | 298:758 | 1228016 | 2832:406 10:699 | 95:248 | 114952 | 111:944 | 89:810 | 105:492 0:028
Predict Time Stdev. (ms) 0:310 0:164 0:011 0:319 0:051 70:800 0:419 1:787 4:793 2:463 3:843 3:036 | 0:007

use the last time step features as input data. Each modestmcked dilated 1D convolutional layers withlayer of 20-
trained to predict the CPU usage multiple steps ahead. hidden-unit GRU and fully connected layers (output layer).
As a benchmark, a naive model is implemented to simulate

~ ML Models: 6 non-sequential models are implemented e probing by using the last observed CPU usage as
using scikit-learn with their default hyperparameters, lin- predictions.

ear regression, ridge regression, decision tree, random forest,

SVM regression (SVR) with both linear and RBF kernel,

and XGBoost.5 sequential models are implemented using

Keras,i.e, RNN, LSTM, GRU, GRU with al-dimensional

convolutional layer, and WaveNet. RNN ha20-hidden-unit

SimpleRNN layers ( rst layer with returrsequence=True) and Feature Selection:To reduce input size, features are
1 output layer. LSTM replaces the SimpleRNN in the RNNMNelected using sklearn.featuselection.fregression, in two
model with LSTM layers and GRU replaces with GRU layerglifferent procedures, namely in a non-sequential and a se-
GRU with 1d convolutional layer adds 1-dimentional CNN quential manner. In the non-sequential manner, the 20p

(as in textCNN) before the GRU model. Wavenet stadks percentile features with the highest correlation with the CPU



11

CPU Usage
CPU Usage
CPU Usage

cousase
¥

(a) Active Probing (b) Linear Reg. (c) Decision Tree (d) Random Forest  (e) LSTM () GRU (g) WaveNet

Fig. 17: Prediction results of selected models using sequential features to pré&dgteps ahead.

Algorithm 2 Auto-scaling Rule

1: n_servers_min;n _servers_max 8;14 . Server number range
2:'S Initial set of running servers

3: cpu_lo; cpu_hi 0:7;0:8 . Desired CPU usage range
4: for each time steglo .t =250ms
5: 0 . Initialize server state counter
6: y(S) CPU usage prediction df6 steps ahead

7 threshold d %e . Threshold that triggers scaling actions
8: for s2 Sdo

9: if y(s) <cpu_lo then

10: ++ . Increment if s is under-loaded
11: else ify(s) > cpu _hi then

12: . Decrement if s is over-loaded
13: if >threshold andjS >n _servers_min then

14: S downscale(S)

15: skip 8 time steps . Cool-down period
16: else if < threshold andjS < n _servers_max then

17: S upscale(S)

18: skip 8 time steps . Cool-down period

usage are selec@i In the sequential manner, networking=ig. 18: Comparison of online auto-scaling performance using
features are rst re-arranged 132 time steps, then the featuredifferent algorithms. The (discrete) numbers of running servers
that appear more tha time steps in the to20-percentile are plotted for each run in dashed lines, while CPU usage is
features with the highest correlation with the CPU usage, éfémmarised as avg. stddev acros80 runs.
selectedf]

Different Prediction Steps AheadThe further in the
future that one can predict, the better con guration plans can

be made. Therefore, tasks are created to predict the differgRline. Linear regression, on the other hand, is the simplest
number of time steps ahead, namélyr 16 steps, to study ML model and has the shortest processing latency overhead
the capabilities of predicting the future among different Miwhen making prediction, therefore it is chosen to be applied
models. online as well.

Results: Instances of the prediction results from a subset 3) Online Auto-Scaling:To test the online performance
of ML models are visualised as in Fig. [17. The scoreg ofine-trained ML models, a300s Wikipedia replay trace
achieved by each pret'dlc.tlng.model using test sqt is shownégmme of the last hour (unseen by the ML models) is
Table[TV{VIT} The prediction time for each model is _EVa_|Uate§ynthesized to have scheduled changing trafc rates every
using 256 datapoints (as predicting resource utilisation OB0s. Based on thel6-step-ahead CPU usage predictions of
256 servers). The results show that sequential models aCh"?Mﬁning serverg/(S), a simple heuristic is proposed (Algo-
better performance when using sequential features as ingyt, @) to keep the CPU usage (if servers within the
data thqn using non-sequential features. Simplq and NQRsired range70  80%). Using the same counter for
sequential ML models perform worse that sequential modeli,er. ang under-loaded servers reduce the variance induced by
especially when predicting6 steps ahead as sequential mode{§,najanced workload distributions. As a reference, an active

has more visibility on the history. WaveNet has the best OVer?Jlllobing mechanism is implemented, whose predicted CPU
performance and robustness acrosgalifferent tasks among usage for running servergS) comes from periodic polling

all ML models, therefore it is chosen in this paper to be applie(@veryZSOms, same as the prediction interval of ML methods).

14The21 “non-sequential features” consist of: f80_decay, fctavg decay, An “oracle” benchmark is !mplemented to over-provision the
fct_std, ow_duration90, ow_duration90_decay, ow durationavg, Nhumber of servers proportional to the scheduled traf c rates.

ow _duration avg decay, ow_durationstd, iatf_avg, iatf_avg decay, . ; : : : :
iat_p_std, iat ppf_90_decay, iatppf_avg, iat ppf_avg decay, iatppf_std, 4) Results: As depicted !n .F|g@8, a:Ctlve probing keeps .
n_ow_on, ptist90, ptlst90 decay, ptlstavgdecay, ptiststd, the average CPU usage within the desired range, however, it

pt_gen 90 _decay. requires frequent scaling events and leads to oscillating CPU

_ 'The 15 ‘“sequential features” consist of: _mw, n_packet, ysage with high variance. Linear regression is simple yet not
lat f_avg, iaLf90, iaLf std, iaLf avg decay, ialf_90_decay, iatp_avg, robust when applied for an online auto-scaling system. Its
iat_p_std, iatp_avg decay, ptlststd, latsynackavg, latsynack90, pp g sy :

lat_synack 90_decay, ow_duration std. under-estimated server load states lead to over-loaded servers.



12

Fig. 21: Feature collection latency comparison between Aquar-
(@) QoS. ius and active probing techniques.

(b) Operational cost and complexity.

Fig. 19: Trade-off between QoS and cost using different Fig. 22: Overview of the RLB algorithn} [10].
autoscaling mechanisms.

accessible while saving management bandwidth for data trans-
mission.

C. Traf ¢ Optimisation and Load Balancing

As a key component in cloud DCs, Layéitoad balancers
(LBs) distribute workloads across servers to provide scalable
Fig. 20: Comparison of system overhead using different agervices. This section shows that Aquarius can apply RL
toscaling mechanisms. algorithms to optimise load balancing performance.
1) Task Description and Testbed Con guratiomn cloud
DCs, servers can be virtualised on infrastructures with dif-
ferent processing speeds [91]. This section inherits the con-
WaveNet takes sequential features as input and is more robgstation of VIP2 (Fig.[10) — replaying th&viki trace and
when applied online. It keeps the average CPU usage closédad balancing or2 groups of servers of different processing
the desired range with less oscillations. capacities. The task is to extract and infer server processing
As depicted in Fig[ 19, WaveNet is able to provide betterapacity information from networking features and make in-
QoS than active probing /837ms less page load timeformed load balancing decision3benchmark LB algorithms
(26:.04%) at 90th percentile and35:70ms less 80:45%) on are implemented — (i) ECMP [27] randomly distributes work-
average — with3:99% additional server-second cost, andoads regardless of server processing speed differences; (ii)
42:44%less scaling events. When over-provisioning the serv/CMP [74], [92] statically assigns weights to servers based
cluster, the page load time is shorter than using WaveN®t their provisioned capacities; (iii) active WCMP [14], [16],
by 67:13ms at90th percentile and®8:55ms average, though [17] polls server job queue lengths and updates weights every
it requires11:86% more server-second operational cost tha200ms based on probed utilisation information.
WaveNet. 2) RL Algorithm: RLB [10] is an RL-based LB algorithm
5) Overhead AnalysisAs depicted in Figl 20, ML models implemented and evaluated in simulators, similar to many
incur additional memory usage and predicting delay. ActiieL algorithms for networking/ [15], [58]. In this paper, RLB
probing also incurs additional CPU usage. WaveNet, asisaimplemented and evaluated in a realistic testbed using
more sophisticated ML model, incuis844%additional CPU Aquarius. As depicted in Fid. 2, with Aquarius, RLB (i)
usage and32261MiB additional memory usage than activecounts ongoing owsl; on servers and (ii) asynchronously
probing. However, Aquarius parses features stored in the locgidates (even250ms) server weightsy; (actions) for each
shared memory with no control messages, achieving more tregpplication server as server load state estimations, derived
94:18 s less median latency than typical VM- and containefrom ow durations ; sampled in reservoir buffers as input
based probing mechanisms (Hig] 21). features. The same architecture with a Soft Actor-Critic model
Take-Away: Aguarius enables agile development, of ineas in [10] is implemented. However, the actor and critic
model selection, and online deployment of learning algorithrmetworks take the batch-normalised features only based on
to improve network performance. It makes features quicklgcally observed per-server states. On receipt of new requests,



13

(a) VIP2 (Wikipedia trace).

(b) VIPO (PHP for-loop).

Fig. 23: Correlation between networking features and server states.

RLB assigns servers based on scores that estimate the t{(Mi0 in Fig.[10) are applied on the testbed. The correlation
to nish all the workloads for each server using the shorbetween all the features and server states under different traf c
est expected delay algorithm [93]e., arg min; ”Wfil , which rates is depicted in Fif. 23.
prioritizes servers with higher processing speed and shorteAs expected, one intuitive feature among the counters that
gueue lengths. Different frorh T1LO], which uses actively probetklps infer server load state is the number of ongoing ows
ground truth information, this paper derives the re\i\éard from_flow _on). For VIP2, since the replayed trace is not 10-
features collected by Aquarius. The reward is choseBasl, intensive — SQL queries with small le sizes whose average
where~ is a list of discounted average of ow duration on eacnd standard deviation are bdKiB, throughput-related fea-
server, which is also collected by Aquarius. tures are indicative of the different provisioned server process-
3) Feature Validation: RLB uses the number of ongoing/Nd capacities (the number of CP@spu ). However, for both

connections to indicate server queue occupation and it usd§0 (requests are CPU-intensive) and VIP2, latency-related
ow duration as an input feature to infer server processirljg""tureS .9, FCT, ow duration) show a higher correlation

capacity. To verify the feature selection of RLB and study tHBan achieved using active probing (Fig. 2), since they capture

correlation of network features with server load states in redie fact that heavily loaded or less powerful servers have

world networking systems, moderate and heavy network traci@W Processing speeds. This effectively shows that networking
of both Wikipedia replay (VIP2 in Fi@and PHP for-loop features passwely gathered by Aquarius are r_ehable and the
selected input features of RLB are representative.
. . o _ 4) Results:RLB is trained using the rst hour ofViki
16Using ECMP, which does not distinguish the server processing capac

it . . .
difference, an average FCT 45ms and836ms is achieved respectively underﬂj‘[‘:lce sample foR0 runs (_eplspdes). As dep|Cted in F 24,
light and heavy traf c. RLB learns server capacity differences. The rewards of RLB




14

(a) RLB reward. (b) FCT. Fig. 26: Query distribution (number of busy Apache threads)

Fig. 24: Evaluation durin@0-episode training. on 2 groups of application servers.

(a) Per-packet processing latency comparison.

(a) Mean FCTs (top), the ratio between weights assigned tdthe

groups of servers by RLB (middle), and traf c rates (bottom). (b) System resource consumption

Fig. 27: Overhead comparisons.

ordinal features, which, collected in a distributed system, risk
re ecting only partial system states. For instance, when traf ¢
is split across multiple load balancers, the locally counted
number of ongoing ows does not re ect the actual queue
length on the application server. As is depicted in Fid. 29, in
Fig. 25: Wikipedia trace replayed using different LBs. presence of load balancers, the ratio of the locally observed
number of ows over actual queue length #thread has a
standard deviation 022:49% However, RLB relies also on
during training grow higher and less variant, and the FCatency-related features ( ow duration), which can be gainfully
becomes lower. The trained RLB model is then tested on uised to infer server load states and compensate for the impacts
seen traf c and compared with other LB algorithms (Fig-]25ajpf partially observed ordinal features.
During off-peak hours, servers are under-utilised and all algo- Take-Away: Aquarius enables closed-loop control (RL)
rithms show similar performances. As traf ¢ rates grow, RLBo dynamically adapt to networking systems and optimise per-
achieves lower FCT for both static pages and Wikipedia pagesmance. It empowers real-world deployment and evaluation
when compared with other LB algorithms (Fjg. 25b). RLB i®f learning algorithms developed in simulated environments.
trained to learn server processing speed differences and assigns
higher weights, thus more queries, to more powerful servers V. CONCLUSION

(Fig.[28). When using RLB4-CPU servers handle respectively Networking features and system state information help
1:258 and 1:523 more tasks thar?-CPU servers under yNFs make informed decisions, and intelligently manage and
67692 and 37201 queries/s traf c. update networking policies in cloud DCs. Actively collect-
5) Overhead AnalysisAs depicted in Figl 27a, throughouting features and system state information entails substantial
all test runs, RLB consumes on avera@289 more CPU control signaling and management overhead, in particular in
cycles 0:26 s on2:6GHz CPU) than ECMP, as it computeSarge-scale DC networks. This paper has proposed Aquarius, a
and compares the server scores when making load balandirgnework that collects, infers, and supplies accurate network-
decisions. Fig[ 27b depicts CPU and memory consumptioig state information with little additional processing latency,
of all LBs. RLB incurs 0:22 additional CPU usage andin a scalable buffer layout. By using multi-buffering and reser-
45:99MiB memory usage on average. voir sampling, Aquarius extracts representative features from
6) Partial Observation: Though RLB achieves better per-network traf c, and allows VNFs — in particular ML-based
formance than heuristic load balancing methods, it relies MNFs — to exploit these features. Aquarius can be deployed

(b) Peak-hour (query rate higher th&A0/s) FCT distribution.



15

Fig. 28: Methodology blueprint. The application of ML techniques starts from understanding the problem to solve, irectyding

the objectives and constraints. Aquarius provides high con gurability and programmability to conduct extensive and iterative
feature engineering and selection process to prune unrelated features (reduce additional feature processing overhead) and to pic
a minimally viable set of features that can be gainfully used for solving the target problem. The selected features can be passed
to both of ine application €.g, clustering algorithms + traf ¢ classi cation in Sectign IV}A) and online applicatieng( RL

+ load balancing in Sectidn TV]C). Of ine trained ML models can also be brought online to evaluate their performance in real-
time (e.g, supervised learning + autoscaling in Sedion V-B). As a platform that helps harness reliable networking features and
learning algorithms, Aquarius allows iteratively investigating networking features, developing models, and designing algorithms.

tuning, and algorithm design for various use cases. Both

open-loop €.g, supervised learning + autoscaling system)

and close-loop €.9, RL + load balancer) control can be

achieved based on Aquarius to improve resource orchestration

and utilisation. Extensive evaluations show that Aquarius helps

bring signi cant performance gains (reduced FCT, improved
Fig. 29: Partial observations happen when traf c is split acrosesource utilisation) in the three considered cases of data-
2 VNFs. driven VNFs.

REFERENCES

[1] J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, and L. Mao, “Who

. . . limits the resource ef ciency of my datacenter: An analysis of alibaba
in the network on commodity CPU, empowering real-world  jatacenter traces;” p. 10 2)619. Y Y

learning algorithm deployments and evaluations. Following2] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the

the methodology blueprint summarised in 28, this paper social network's (datacenter) network,” Rroceedings of the 2015 ACM

. . - Conference on Special Interest Group on Data Communicatsen.
has illustrated the use of Aquarius for various ML-based gccomm 5. ACM, 2015, p. 123137, event-place: London, United

VNFs: traf ¢ classi cation (of ine, unsupervised learning), Kingdom.
autoscaling (online Supervised |eaming) and Ioad-balancir{él Y. Li and M. Chen, “Software-de ned network function virtualization:

inf | . | . A survey,” IEEE Accessvol. 3, pp. 2542-2553, 2015.
(reinforcement learning) purposes, and evaluates expe“me[ﬂy N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,

tally the impact of Aquarius in the system performance. The R. Mustan, and L. Sa na, “Microservices: yesterday, today, and tomor-
application of ML techniques to networking problems starts 'ow," Present and ulterior software engineeringp. 195-216, 2017.

. . LS] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Jo-
from understanding the target problem to solve. Aquariu hari, “Plug-n-serve: Load-balancing web traf ¢ using open owACM

improves the visibility on the data plane and allows collecting  Sigcomm Demovol. 4, no. 5, p. 6, 2009.

a wide range of networking features for feature engineering®l R- Wang, D. Butnariu, J. Rexforet al, “Open ow-based server load
L - . balancing gone wild’Hot-ICE, vol. 11, pp. 12-12, 2011.
which iteratively prunes unrelated features to reduce additiong  ‘mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-

feature collection processing latencies and selects the minimal izadeh, “Learning scheduling algorithms for data processing clusters,”
set of viable features that can be gainfully used for the arXiv preprint arXiv:1810.019632018.

. 18] S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. Han, M. M. Igbal, and
task. The selected features can be passed to both of "{e] K. Han, “Enhanced network anomaly detection based on deep neural

and online applications for data analysis, model training, and networks,”|[EEE accessvol. 6, pp. 48 231-48 246, 2018.

benchmark evaluations. Aquarius provides a reliable featuf@l L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: Scaling deep rein-
llecti d . ti latf . | d t forcement learning for datacenter-scale automatic traf c optimization,

collection an_ ex_pe”men '”9_ platrorm in rea '_Wor systems  , Proceedings of the 2018 Conference of the ACM Special Interest

that allows iteratively studying model selection, parameter Group on Data Communication ACM, 2018, pp. 191-205.



[10]

[11]

[12]

[13]

[24]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

(31]

[32]

Z. Yao, Z. Ding, and T. H. Clausen, “Reinforced workload distributior33]
fairness,” in5th Workshop on Machine Learning for Systems at 35th
Conference on Neural Information Processing Systems (NeurlPS,20284]
2021.

P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and H. Haods,
“Smartsla: Cost-sensitive management of virtualized resources for cggs]
bound database servicelFEE Transactions on Parallel and Distributed
Systemsvol. 26, no. 5, pp. 1441-1451, 2015.

A. Aghdai, C.-Y. Chu, Y. Xu, D. H. Dai, J. Xu, and H. J. Chao,[36]
“Spotlight: Scalable transport layer load balancing for data center
networks,”arXiv preprint arXiv:1806.084552018.

M. Usama, J. Qadir, A. Raza, H. Arif, K.-L. A. Yau, Y. Elkhatib, [37]
A. Hussain, and A. Al-Fugaha, “Unsupervised machine learning for
networking: Techniques, applications and research challengeXi¥
preprint arXiv:1709.065992017. [38]
J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu, “A survey

of machine learning techniques applied to software de ned networking
(sdn): Research issues and challengdsZE Communications Surveys 39]
& Tutorials, vol. 21, no. 1, pp. 393-430, 2018.

V. Sivakumar, T. Rockschel, A. H. Miller, H. Kittler, N. Nardelli, [40]
M. Rabbat, J. Pineau, and S. Riedel, “Mvfst-rl: An asynchronous il
framework for congestion control with delayed actiorexXiv preprint
arXiv:1910.040542019.

A. Aghdai, M. I.-C. Wang, Y. Xu, C. H.-P. Wen, and H. J. Chao,
“In-network congestion-aware load balancing at transport layeXiv
preprint arXiv:1811.097312018. [44]
J. Zhang, S. Wen, J. Zhang, H. Chai, T. Pan, T. Huang, L. Zhang, Y. Liu,
and F. R. Yu, “Fast switch-based load balancer considering application
server statesJEEE/ACM Transactions on Networking. 1-14, 2020. [45]
Y. Desmouceaux, P. P ster, J. Tollet, M. Townsley, and T. Clausen, “6lb:
Scalable and application-aware load balancing with segment routing,”
IEEE/ACM Transactions on Networkingol. 26, no. 2, pp. 819-834,
2018. [46]
S. Fu, S. Gupta, R. Mittal, and S. Ratnasamy, “On the use of ml for
blackbox system performance prediction."Ni6D|, 2021, pp. 763-784.

T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miag47]
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” irProceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communicati@®18, pp. 561-575.  [48]
Z. Yao, Z. Ding, and T. Clausen, “Multi-agent reinforcement learning
for network load balancing in data center,” 2022. [Online]. Available:
https://arxiv.org/abs/2201.11727 [49]
E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,ACM Transactions on Computer Systems (TQCS)
vol. 18, no. 3, pp. 263-297, 2000. 50]
M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of network anomal)l
detection techniquesJournal of Network and Computer Applications

vol. 60, pp. 19-31, 2016.

T. Swamy, A. Rucker, M. Shahbaz, and K. Olukotun, “Taurus: ATSl]
intelligent data plane,arXiv preprint arXiv:2002.089872020.

“Amazon elastic compute cloud,” https://aws.amazon.com/ec2/.

D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hoseirtsz]
“Maglev: A fast and reliable software network load balancer.NigD|,
2016, pp. 523-535.

R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancmg fast and cheap using switching asw?S]
in Proceedings of the Conference of the ACM Special Interest Group
on Data Communicatigrser. SIGCOMM '17. ACM, 2017, p. 15-28,
event-place: Los Angeles, CA, USA.

V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless dati4!
center load-balancing with beamer,” ibth f USENIXy Symposium on
Networked Systems Design and ImplementaticdSPOIg 18), 2018, pp.
125-139.

J. T. Ardjo, L. Saino, L. Buytenhek, and R. Landa, “Balancing on thdd5]
edge: Transport af nity without network state,” 2018, p. 111-124.

M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,

A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav al, “Conga: [56]
Distributed congestion-aware load balancing for datacentersPrin
ceedings of the 2014 ACM conference on SIGCQNDML4, pp. 503—

514. [57]

Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,

M. Zhang, F. Kelly, M. Alizadelet al., “Hpcc: high precision congestion
control,” in Proceedings of the ACM Special Interest Group on Datd58]
Communication2019, pp. 44-58.

OPNFV, “Open Platform for NFV (OPNFV) Project Portal,” https://
www.opnfv.org/, 2019.

16

OpenStack, “OpenStack Project Portal,”
2019.

Y. Jie, Y. Lun, H. Yang, and L.-y. Chen, “Timely traf ¢ identi cation

on p2p streaming mediafThe Journal of China Universities of Posts
and Telecommunicationsol. 19, no. 2, pp. 67-73, 2012.

K. Lalitha and V. Josna, “Trafc veri cation for network anomaly
detection in sensor networks?rocedia Technologyol. 24, pp. 1400-
1405, 2016.

R. Cziva and D. P. Pezaros, “Container network functions: Bringing nfv
to the network edge JEEE Communications Magazingol. 55, no. 6,

pp. 24-31, 2017.

K. Sha and H. A. Abbass, “Evaluation of an adaptive genetic-based
signature extraction system for network intrusion detectidtgttern
Analysis and Applicationsvol. 16, no. 4, pp. 549-566, 2013.

G. Creech and J. Hu, “Generation of a new ids test dataset: Time to
retire the kdd collection,” ir2013 IEEE Wireless Communications and
Networking Conference (WCNC)IEEE, 2013, pp. 4487-4492.
“Predict,” https://www.predict.org/.

“NSL-KDD,” http://nsl.cs.unb.ca/NSL-KDD/.

“CAIDA,” https://www.caida.org/.

https://www.openstack.org/,

42] “Internet Traf c Archive,” |http://ita.ee.lbl.gov/.
] V. S. Pai,

P. Druschel, and W. Zwaenepoel, “lo-lite: a unied i/o
buffering and caching system®CM Transactions on Computer Systems
(TOCS) vol. 18, no. 1, pp. 37-66, 2000.

C. C. Aggarwal, “On biased reservoir sampling in the presence of stream
evolution,” in Proceedings of the 32nd international conference on Very
large data bases2006, pp. 607-618.

M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “Policycop:
An autonomic gos policy enforcement framework for software de ned
networks,” in 2013 IEEE SDN for Future Networks and Services
(SDN4FNS) IEEE, 2013, pp. 1-7.

N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
ACM Sigplan Noticesvol. 46, no. 9, pp. 279-291, 2011.

M. Hutter, A. Szekely, and J. Wolkerstorfer, “Embedded system man-
agement using wbem,” iR009 IFIP/IEEE International Symposium on
Integrated Network ManagementlEEE, 2009, pp. 390-397.

J. Yu, H. Lee, M.-S. Kim, and D. Park, “Traf ¢ ooding attack detection
with snmp mib using svm,Computer Communicationsol. 31, no. 17,

pp. 4212-4219, 2008.

P. Gongalves, J. L. Oliveira, and R. L. Aguiar, “An evaluation of network
management protocols,” 2009 IFIP/IEEE International Symposium on
Integrated Network ManagementlEEE, 2009, pp. 537-544.

D. Minarolli and B. Freisleben, “Distributed resource allocation to
virtual machines via arti cial neural networks,” 2014 22nd Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing |EEE, 2014, pp. 490-499.

S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta, “Modeling
virtualized applications using machine learning techniques?rateed-
ings of the 8th ACM SIGPLAN/SIGOPS conference on Virtual Execution
Environments2012, pp. 3-14.

T. Chen, R. Bahsoon, and X. Yao, “A survey and taxonomy of self-aware
and self-adaptive cloud autoscaling systend;M Computing Surveys
(CSUR) vol. 51, no. 3, pp. 1-40, 2018.

N. Katta, A. Ghag, M. Hira, |. Keslassy, A. Bergman, C. Kim, and
J. Rexford, “Clove: Congestion-aware load balancing at the virtual
edge,” inProceedings of the 13th International Conference on emerging
Networking EXperiments and Technologi817, pp. 323-335.

Z. Yao, Y. Desmouceaux, M. Townsley, and T. H. Clausen, “Towards
intelligent load balancing in data centers,” Machine Learning for
Systems at 35th Conference on Neural Information Processing Systems
(NeurlPS 2021)2021.

A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson,
“Deep learning for unsupervised insider threat detection in structured
cybersecurity data streamsiXiv preprint arXiv:1710.008112017.

A. Rizzi, A. lacovazzi, A. Baiocchi, and S. Colabrese, “A low com-
plexity real-time internet traf ¢ ows neuro-fuzzy classi er,Computer
Networks vol. 91, pp. 752-771, 2015.

Z. Xiong and N. Zilberman, “Do switches dream of machine learning?
toward in-network classi cation,” inProceedings of the 18th ACM
workshop on hot topics in network8019, pp. 25-33.

Y. Xu, W. Xu, Z. Wang, J. Lin, and S. Cui, “Load balancing for ultra-
dense networks: A deep reinforcement learning based apprd&tt
Internet of Things Journalol. 6, no. 6, p. 9399-9412, Dec 2019, arXiv:
1906.00767.



[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]
[79]

(80]

(81]

D. Zhou, Z. Yan, Y. Fu, and Z. Yao, “A survey on network datg[82]
collection,” Journal of Network and Computer Applicationsol. 116, [83]
pp. 9-23, 2018.

N. Schottelius, “High speed nat64 with p4,” Master's thesis, ETH Zurich,
2019. [84]
F. Ruffy, M. Przystupa, and |. Beschastnikh, “Iroko: A framework to
prototype reinforcement learning for data center traf c contrakXiv
preprint arXiv:1812.099752018.

N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A dee[85]
reinforcement learning perspective on internet congestion control,” in
International Conference on Machine Learning PMLR, 2019, pp.
3050-3059.

K. Winstein and H. Balakrishnan, “Tcp ex machina: Computer-generated
congestion control”ACM SIGCOMM Computer Communication Re-[86]
view, vol. 43, no. 4, pp. 123-134, 2013.

F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. Levis, an{B7]
K. Winstein, “Pantheon: the training ground for internet congestion-
control research,” in2018 f USENDg Annual Technical Conference [88]
(f USENDgf ATCg 18), 2018, pp. 731-743.

M. K. Putchala, “Deep learning approach for intrusion detection system
(ids) in the internet of things (iot) network using gated recurrent neural
networks (gru),” Ph.D. dissertation, Wright State University, 2017.  [89]
T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traf ¢ classi cation using machine learning,IEEE communications [90]
surveys & tutorials vol. 10, no. 4, pp. 56-76, 2008.

F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar, “To-
wards the deployment of machine learning solutions in network traf c
classi cation: A systematic surveyl[EEE Communications Surveys &
Tutorials vol. 21, no. 2, pp. 1988-2014, 2018.

M. A. Qadeer, A. Igbal, M. Zahid, and M. R. Siddiqui, “Network traf c
analysis and intrusion detection using packet sniffer, 2000 Second
International Conference on Communication Software and Networks
IEEE, 2010, pp. 313-317. [91]
A. Papadogiannakis, D. Antoniades, M. Polychronakis, and E. P.
Markatos, “Improving the performance of passive network monitor-
ing applications using locality buffering,” i007 15th International
Symposium on Modeling, Analysis, and Simulation of Computer af@R]
Telecommunication SystemdEEE, 2007, pp. 151-157. [93]
B. Pit-Claudel, Y. Desmouceaux, P. P ster, M. Townsley, and T. Clausen,
“Stateless load-aware load balancing in p4,2018 IEEE 26th Interna-
tional Conference on Network Protocols (ICNRep 2018, p. 418-423.

J. Papamichael, T. M. M. Liu, D. Haselman, L. A. M. Ghandi, S. Sapek,
and G. W. L. Woods, “A con gurable cloud-scale dnn processor for real-
time ai,” in Proceedings of the 45th Annual International Symposium on
Computer Architecture, ser. ISC&ol. 18, 2018.

A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Kr-
ishnamurthy, M. Moshref, D. R. Ports, and P. Rafik, “Scaling dis-
tributed machine learning with in-network aggregatioaXiv preprint
arXiv:1903.067012019.

R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine: A recon gurable
architecture for parallel patterns,” i8017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA)JEEE,

2017, pp. 389-402.

P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,

R. Kern, H. Kumar, M. Zikos, H. Wiet al, “Ananta: Cloud scale load
balancing,”ACM SIGCOMM Computer Communication Revigal. 43,

no. 4, pp. 207-218, 2013.

R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab: Combin-
ing Diverse Anomaly Detectors for Automated Anomaly Labeling and
Performance Benchmarking,” iIACM CoNEXT '10 Philadelphia, PA,
December 2010.

R. Cohen, M. Kadosh, A. Lo, and Q. Sayah, “Lb scalability: Achieving
the right balance between being stateful and statelaesiv:2010.13385

[cs], Oct 2020.

G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applicationsldurnal of Algorithms

vol. 55, no. 1, pp. 58-75, 2005.

J. E. Eckel, “Reservoir sampling,” Jan. 7 1958, uS Patent 2,819,038.

L. Tan, W. Su, W. Zhang, J. Lv, Z. Zhang, J. Miao, X. Liu, and N. Li,
“In-band network telemetry: A surveyComputer Networksvol. 186,

p. 107763, 2021.

The Fast Data Project (fd.io), “Vector Packet Processing (VPP),” https:
[lIwiki.fd.iolview/VPFE.

Facebook Engineering, “Reinventing Facebook's data center network,”
https://engineering.fb.com/2019/03/14/data-center-engineering/
f16-minipack/, Mar 2019.

17

“The Apache HTTP server projec:,” http://www.apache.org.

G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis
for decentralized hostingElsevier Computer Networksol. 53, no. 11,

pp. 1830-1845, July 2009.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Duboetgal,
“Scikit-learn: Machine learning in pythonthe Journal of machine
Learning researchvol. 12, pp. 2825-2830, 2011.

C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Cheaet al, “Pingmesh: A large-scale system for
data center network latency measurement and analysi®fdoeedings

of the 2015 ACM Conference on Special Interest Group on Data
Communication2015, pp. 139-152.

D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” Stanford, Tech. Rep., 2006.

D. A. Reynolds, “Gaussian mixture model€hcyclopedia of biomet-
rics, vol. 741, no. 659-663, 2009.

E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan
revisited, revisited: why and how you should (still) use dbsc&GM
Transactions on Database Systems (TQD®). 42, no. 3, pp. 1-21,
2017.

E. Schubert and M. Gertz, “Improving the cluster structure extracted
from optics plots,” inLWDA, 2018.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, |. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Ma® R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, |. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F.&gas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale ma-
chine learning on heterogeneous systems,” https://www.tensor ow.org/,
2015, software available from tensor ow.org.

A. Kumar, I. Narayanan, T. Zhu, and A. Sivasubramaniam, “The fast
and the frugal: Tail latency aware provisioning for coping with load
variations,” inProceedings of The Web Conference 202120, pp. 314—
326.

“Katran,” https://github.com/facebookincubator/kairan, Apr 2020.

W. Zhanget al, “Linux virtual server for scalable network services,” in
Ottawa Linux Symposiunvol. 2000, 2000.



Zhiyuan Yao received the M.Sc.T frorcole Poly-
technique, Palaiseau, France, in 2019. He is cur-
rently pursuing an industrial Ph.D. jointly between
Ecole Polytechnique's networking team and Cisco
Systems PIRL, under supervision of Mark Towns-
ley (Cisco Systems) and Thomas Clausétdle
Polytechnique). His research interests include high-
performance networking, load-balancing, data-center
optimization algorithms, and machine learning for
systems.

18

Thomas Clausenis a graduate of Aalborg Uni-
versity, Denmark (M.Sc., PhD - civilingenigr,
cand.polyt), and has, since 2004 been on faculty
at Ecole Polytechnique, France's premiere technical
and scienti ¢ university, where as a professor, he
holds the Cisco endowed “Internet of Everything”
academic chaire. At Ecole Polytechnique, Thomas
leads the computer networking research group. He
has developed, and coordinates, the computer net-
working curriculum, and coordinates the M.Sc.T
programme “loT: Innovation and Management”. He

Yoann Desmouceauxeceived the Dime d'Inge-

has published more than 100 peer-reviewed academic publications, and has
authored and edite@4 IETF Standards. Thomas has also consulted for the
development of IEEE 802.11s, and has contributed the routing portions of
the ITU-T G.9903 standard for G3-PLC networks — upon which, e.g., the
current SmartGrid & ConnectedEnergy initiatives are built. Thomas is a
senior member of the IEEE, and was named an “IEEE Computer Society

nieur from Ecole Polytechnique, Palaiseau, Francepjstinguished Contributor”, as part of the 2021 inaugural class.

in 2014, the M.Sc. degree in Advanced Computing
from Imperial College, London, U.K., in 2015, and
the Ph.D. degree in computer networking from Uni-
versié Paris-Saclay, France, in 2019. He is currently
working as a Software Engineer with Cisco Systems.
His research interests include high-performance net-
working, IPv6-centric protocols, load-balancing, re-
liable multicast, and data-center optimization algo-
rithms.

Juan-Antonio Cordero-Fuertesis an associate pro-
fessor atEcole polytechnique. He graduated in
Mathematics (“Licenciatura”, M.Sc) and Telecom-
munication Engineering (B.Sc+M.Sc, “Ingeriger
Superior”) at the Technical University of Catalonia
(UPC, Spain) in 2006 and 2007, respectively. He got
his Ph.D. atEcole polytechnique in 2011, with a
dissertation on the optimization of link-state routing
protocols for operation in MANETs and compound
(wired/wireless) Autonomous Systems. He was a
postdoctoral researcher at the Universiatholique
de Louvain (UCL, Belgium) and the Hong Kong Polytechnic University (Hong
Kong SAR, PRC), before joining faculty @&cole polytechnique, in 2016.
His research and scienti c interests include routing protocols and information
dissemination algorithms, and the modeling, analysis and optimization of
distributed, adaptive systems in dynamic, heterogeneous networking scenarios.

Mark Townsley is a Cisco Fellow, Professor Chérg
de Cours atEcole Polytechnique, and co-founder
of the Paris Innovation and Research Laboratory
(PIRL). Before Joining Cisco in 1997, he held
positions at IBM, the Institute for Systems Research
(ISR) and the Center for Satellite and Hybrid Com-
munications Networks (CSHCN) at the University of
Maryland. Mark served as IETF Internet Area Di-
rector from 2005-2009, IETF L2TP Working Group
Chair from 1999-2005, IESG Liaison to the Internet
Architecture Board (IAB), and IETF Pseudowire
WG Technical Advisor. Mark was the lead developer of the original imple-
mentation of L2TP in Cisco IOS as well as lead author of IETF L2TP protocol
speci cation (RFC 2661). One of the original architects of the World IPv6
Day and Launch, Mark contributed signi cantly to the deployment of IPv6
on the internet, including lead author of RFC 5969, IPv6 Rapid Deployment
(6RD). In 2011, Mark co-founded the IETF Homenet Working Group, and
served as chair until 2017. In addition to his Faculty appointmertcaie
Polytechnique, Mark lectures on Future Internet Architectures at Telecom
Paris Tech (TPT), and serves on the steering committee for the joint TPT-
Polytechnique Advanced Computer Networking master's degree. Mark holds
a Bachelor of Science (summa cum laude) degree in Electrical Engineering
from Auburn University and a Master's degree in Computer Science (magna
cum laude) from the Johns Hopkins University Applied Physics Laboratory.



	Introduction
	Contribution
	Paper Outline

	Background

