Polynomial differential equations compute all real computable functions on computable compact intervals - École polytechnique Accéder directement au contenu
Article Dans Une Revue Journal of Complexity Année : 2007

Polynomial differential equations compute all real computable functions on computable compact intervals

Manuel L. Campagnolo
  • Fonction : Auteur
Daniel S. Graça
  • Fonction : Auteur

Résumé

In the last decade, there have been several attempts to understand the relations between the many models of analog computation. Unfortunately, most models are not equivalent. Euler's Gamma function, which is computable according to computable analysis, but that cannot be generated by Shannon's General Purpose Analog Computer (GPAC), has often been used to argue that the GPAC is less powerful than digital computation. However, when computability with GPACs is not restricted to real-time generation of functions, it has been shown recently that Gamma becomes computable by a GPAC. Here we extend this result by showing that, in an appropriate framework, the GPAC and computable analysis are actually equivalent from the computability point of view, at least in compact intervals. Since GPACs are equivalent to systems of polynomial differential equations then we show that all real computable functions over compact intervals can be defined by such models.

Dates et versions

inria-00102947 , version 1 (02-10-2006)
inria-00102947 , version 2 (04-12-2012)

Identifiants

Citer

Olivier Bournez, Manuel L. Campagnolo, Daniel S. Graça, Emmanuel Hainry. Polynomial differential equations compute all real computable functions on computable compact intervals. Journal of Complexity, 2007, 23 (3), pp.317-335. ⟨10.1016/j.jco.2006.12.005⟩. ⟨inria-00102947v1⟩
565 Consultations
590 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More