D. S. Graça, Some recent developments on Shannon's General Purpose Analog Computer, Math. Log. Quart, vol.50, pp.4-5, 2004.

L. Blum, M. Shub, and S. Smale, On a theory of computation and complexity over the real numbers: $NP$- completeness, recursive functions and universal machines, Bulletin of the American Mathematical Society, vol.21, issue.1, pp.1-46, 1989.
DOI : 10.1090/S0273-0979-1989-15750-9

C. Moore, Recursion theory on the reals and continuous-time computation, Theoretical Computer Science, vol.162, issue.1, pp.23-44, 1996.
DOI : 10.1016/0304-3975(95)00248-0

K. Weihrauch, Computable Analysis: an Introduction, 2000.

C. E. Shannon, Mathematical Theory of the Differential Analyzer, Journal of Mathematics and Physics, vol.XXII, issue.1-4, pp.337-354, 1941.
DOI : 10.1002/sapm1941201337

V. Bush, The differential analyzer. A new machine for solving differential equations, Journal of the Franklin Institute, vol.212, issue.4, pp.447-488, 1931.
DOI : 10.1016/S0016-0032(31)90616-9

J. Mycka and J. F. Costa, Real recursive functions and their hierarchy, Journal of Complexity, vol.20, issue.6, pp.835-857, 2004.
DOI : 10.1016/j.jco.2004.06.001

URL : http://doi.org/10.1016/j.jco.2004.06.001

O. Bournez and E. Hainry, Recursive analysis characterized as a class of real recursive functions, to appear in Fund, Inform

D. S. Graça, M. L. Campagnolo, and J. Buescu, Robust simulations of Turing machines with analytic maps and flows, CiE 2005: New Computational Paradigms, pp.169-179, 2005.

L. Lipshitz and L. A. , A differentially algebraic replacement theorem, and analog computability, Proc. Amer, pp.367-372, 1987.

D. S. Graça and J. F. Costa, Analog computers and recursive functions over the reals, Journal of Complexity, vol.19, issue.5, pp.644-664, 2003.
DOI : 10.1016/S0885-064X(03)00034-7

D. S. Graça, M. L. Campagnolo, and J. Buescu, Computability with polynomial differential equations

V. I. Arnold, Ordinary Differential Equations, 1978.

A. M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. London Math. Soc, pp.230-265, 1936.

A. Grzegorczyk, On the definitions of computable real continuous functions, Fund, Math, vol.44, pp.61-71, 1957.

D. Lacombe, Extension de la notion de fonction récursive aux fonctions d'une ou plusieurs variables réelles III, Comptes Rendus de l'Académie des, Sciences Paris, vol.241, pp.151-153, 1955.

D. Graça, N. Zhong, and J. Buescu, Maximal intervals of computable IVPs are not necessarily computable, trans. Amer, Math. Soc