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Abstract: This paper deals with the design of observers for linear systems with
unknown, time-varying, but bounded delays (on the state and on the input). In this
work, the problem is solved for a class of systems by combining the unknown input
observer approach with an adequate choice of a Lyapunov-Krasovskii functional
for non small delay systems. This result provides workable conditions in terms of
rank assumptions and LMI conditions. The dynamic properties of the observer are
also analyzed. A 4th-order example is used to demonstrate the feasibility of the
proposed solution.

Keywords: Sliding Mode Observer, Time-Delay Systems, Unknown Delay, Non
Small Delay, Linear Matrix Inequalities.

1. INTRODUCTION

State observation is an important issue for both
linear and nonlinear systems. This work considers
the observation problem for the case of linear
systems with non small and unknown delay. Sev-
eral authors proposed observers for delay systems
(see, e.g., (Sename, 2001; Richard, 2003)). Most of
the literature, as pointed out in (Richard, 2003),
considers that the value of the mainly constant
delay can be used in the observer realization.
This means that the delay is known or measured.
Likewise, what is defined as “observers without
internal delay” (Darouach, 2001; Darouach et

1 Partially supported by EPSRC Platform reference ,
EP/D029937/1 : entitled “Control of Complex Systems”

al., 1999; Fairmar et al., 1999) involves the output
knowledge at the present and delayed instants.

There are presently very few results in which the
observer does not assume knowledge of the delay
(Choi and Chung, 1997; de Souza et al., 1999;
Fridman et al., 2003b; Seuret et al., 2007; Wang et
al., 1999). These interesting approaches consider
linear systems and guarantee an H,, performance.
They are based on stability techniques indepen-
dent of the delay and lead to the minimization
of the state observation error. It is interesting to
reduce the probable conservatism of such results
by taking into account information on a delay
upper-bound and derive an asymptotically stable
observer.



n (Seuret et al., 2007), the authors design an
observer using a computational delay which can
be assimilated to an estimation of the delay h. The
conditions which guarantee the convergence of the
error dynamics developed for this observer do not
take into account the value of A. This means that
the estimation of the state is guaranteed whatever
the delay estimation h is. The property is not
related to the conservatism of the conditions.
The errors between the real and computational
delays are controlled by the discontinuous sliding
function. The greater the error between the real
and computational delays, the greater the gain
of the discontinuous function will be. It is thus
straightforward to conclude that a worse estimate
of the delay can lead to a high gain in the sliding
injection.

In this paper, another method is proposed to solve
the problem of the observation of linear systems
with unknown time-varying delays which are as-
sumed to be “non small” i.e. the delay function
lies in an interval excluding 0. The result is based
on a combination of some results on sliding mode
observers (see, e.g., (Barbot et al., 1996; Edwards
and Spurgeon, 1998; Floquet et al., 2004; Perru-
quetti and Barbot, 2002)) with an appropriate
choice of a Lyapunov-Krasovskii functional. The
dynamical properties of the observer will also be
discussed. For the sake of simplicity, the unknown
time delay 7(t) is assumed to be the same for the
state and the input. In order to reduce the conser-
vatism of the developed conditions, the existence
of known real numbers d, 7, and 75 is assumed
such that V¢t € R 4:

) <d<l. (1)

Here the delay used in the observer is the average
of the delay (72 + 71)/2. Then the design of the
observer does not require the definition or the
computation of a delay estimate and the stability
conditions only depend on the parameters of the
studied system.

Throughout the article, the notation P > 0 for
P € R™"™ means that P is a symmetric and
positive definite matrix. [A;]|As]...|4,] is the con-
catenated matrix with matrices A;. I,, represents
the n x n identity matrix.

2. PROBLEM STATEMENT

Consider the linear time-invariant system with
state and input delay:

z(t) = Ax(t) + Arx(t — 7(¢))

+Bu(t) + Bru(t — 7(t)) + D((t) @)
y(t) = Cx(t)
z(s) = ¢(s), Vs€[-72,0]

wherez € R", u € R™ and y € R 7 are the state
vector, the input vector and the measurement
vector, respectively. ¢ € IR" is an unknown and
bounded perturbation that satisfies:

[CON < et y, u), 3)

where «; is a known scalar function. ¢ €
C%([~72,0],IR"™) is the vector of initial conditions.
It is assumed that A, A,, B, B,, C and D are
constant known matrices of appropriate dimen-
sions. The following structural assumptions are
required for the design of the observer:

Al. rank(C[A,|B,|D]) = rank([A,|B,|D]) £ p

A2. p<qg<mn,

A3. The invariant zeros of (
in C™.

A, [A;|B,|D],C) lie

Under these assumptions and using the same
linear change of coordinates as in (Edwards and
Spurgeon, 1998), Chapter 6, the system can be
transformed into:

i‘l(t) = A11£131(t) + Algl‘g( ) + Blu(t),
) + Agowa(t) + Bau(t)
t—

Bo(t) = Agrq(t
+Gyx1(t — 7()) + Gaxa(t — 7(t))
+Gu(t — 7(t)) + DiC(t),

y(t) = T.’I}g( )7

(4)
where z; € IR" 79, o € R? and where Gy, G,
Gy, D1 and Ao are defined by:

with G; € RP*"™9, Gy € R, G, € RP*™,
D, € IRPXT Aoy € R P)X(n <1) . Aspn €
RP*(™=9 and T an orthogonal matrlx involved
in the change of coordinates given in (Edwards
and Spurgeon, 1998).

Under these conditions, the system can be de-
composed into two subsystems. Al implies that
the unmeasurable state x; is not affected by the
delayed terms and the perturbations. A3 ensures
that the pair (A11, A211) is at least detectable.

In this article, the following lemma will be used:
Lemma 1. (Hu et al., 2004) For any matrices A,
Py > 0 and P; > 0, the inequality

ATPA— Py <O,

is equivalent to the existence of a matrix Y such
that:
—Py ATy T

YA -y —yT4p | <Y

3. OBSERVER DESIGN

Define the following sliding mode observer:



if?l(t) = All.’i'l(t) + Algitz(t) —+ Blu(t)
+(LTTGIT — A1 L) (z2(t) — (1))
+LT v (1),
.1112(2?) = Aglfil(t) + A22$2(t) + Bzu(t)
+G1i‘1(t - h) + GQI’Q(t - h)
+Gou(t —h) — TTu(t),
—(Ag1 L+ TTGT) (2o (t) — #5(t))
§(t) = Ts(t),
(5)

where the linear gain GG is a Hurwitz matrix and L
has the form [L 0] with L € R ("~ 0*@=P) The
computed delay h = (12 +71)/2 is an implemented
value that is chosen according to the delay defi-
nition. It corresponds to the delay average. The
discontinuous injection term v is given by:

B y P, (y(t) —4(t))
p(t,y,u) Py (y(t) — g(t)) ||

0
otherwise.

where P, > 0, P, € R”*? and where p is a
nonlinear positive gain yet to be defined. Note
that the non delayed terms depending on x5 are
known because xo(t) = TTy(t). Define u = (15 —

’7'1)/2.

Remark 1. Compared to (Seuret et al., 2007), this
observer does not required an artificial delay h. It
only needs to have an average value of the delay.
Contrary to the observer proposed in (Seuret et
al., 2007), the implemented delay will appear in
the conditions which guarantee stability.

Defining the state estimation errors as e; =
x1(t) — 21(t) and es = z2(t) — £2(t), one obtains:

él(t) = Auel(t) — LTT (GlTeg(t) + V(t))
+A11L€2(t)a

éz(t) = Aglel(t) + Glel(t - T(t))
+HTTGT + Ag1L)es(t)
+T7v + £(t) + Di((2),

where & : R — R? is given by:

§(t) = G1(@1(t —7(t) — 21(t — h))
+Ga(z2(t — 7(t)) — 22(t — h))
+Gu(u(t = 7(t)) — u(t — h)).

which can be rewritten as:

t—7(t) él(s)
f(t) = [Gl Ga Gu]/ |:m2(s):| ds.
t

—h u(s)

The function £ only depends on the known vari-
ables &1, 2 and u and on the unknown delay 7(¢).
One can then assume that there exists a known
scalar function as such that:

[ED < aa(t, 21,22, u). (8)

Let us define an expression for p in (6) by using
results introduced in the case of control law design
(Fridman et al., 2003a). Define ~, a real positive
number and p such that:

p(t,y,u) = (| Dilloa(t, y, u) + aa(t, Z1, 22, u) + 7,
(9)

Introduce the change of coordinates [el} =

€2
€1 . o In_q L .
T, [62 with T, = 0o Tl Using the fact
that LGy = LGy = LG, = LD, = 0, one obtains:

ei(t) = (A1 + LAy )é(t),

éQ(t) = TAQlél (t) + TGlél (t - T(t))
—‘rGlég(t) — TGlLéQ(t — T(t))
+T€(t) + TDlg(f,) +v

(10)

Theorem 1. Under assumptions A1 — A3 and (8)
and for all Hurwitz matrices Gj, system (10)
is asymptotically stable for any delay 7(¢) in
[r1 72] if there exist symmetric definite positive
matrices P, and R, € R ("~9*("=9) p, ¢ R 1%,
a symmetric matrix Z, € R?*? and a matrix
W e R 9X(@=P) gych that the following linear
matrix inequalities hold:

Yo vy 21 Wy 0
* —2P; + hRq 0 0 0
* * —2P; + hRiqs O 0 < 0.
* * * Uy —PTG
* * * * —P;
(11)
where

A11P1 + P1A11 + A211WT + WA2117
= AL\ P+ A5\ W
— (A +G))' TR,
\1;3 = G{ Py + PG| + hZs + 21Z>q + Ro,
and

~(1—d)Rs W 07
(W 0]

" <o,

R TG
p (TE)TR ] >, (12)

Ria (TG1)" Py
PTGy Z2a 2 0.

The gain L is given by L = Ple.

Proof. Consider the Lyapunov-Krasovskii func-

tional:
/ / s)R1&1(s)dsdf
t+6

R1a€1( )d3d9

V(t) = 61 P1€1

of e

t
+52 (t)PQéQ(t) + / ég(s)RQEQ(s)ds
t—7(t)
(13)
The functional V' can be divided into three parts.
The first line of (13) is designed to control the

errors e1(t) subject to the constant delay h. The
second line presents a functional which takes into



account the delay variation around the average
delay h. The last part which appears in the last
line of (13) controls the error es(t).

Using the following transformation é;(t — 7(t)) =
_ t ~
t) = Ji_n€i(s)

V(t) =

el ()[(A11 + LA2)T Py 4 Pi (A + LAgy) e (t)
1263 (1) PyT(Azy + G)ey (t) + és (1) [GF Py

+ PGy + Ryléa(t) — 28X (1) PyTGy Ley(t — 7(t))
—(1—7(t)e; (t — T(i))Rzéz(t —7(t))

e eq1(t) — el (s)Ryé1(s)ds
T (1) Reéa (1) L%1MR (s)d

20T (1) Ruaén (£) — /t __72 &7 (5) Ruaés (s)ds
1 (1) + 12 (t) + m5(8) — 20(t, ) | Paga(t)])

where
t
771(15) = —QEg(t)PQTGl/ él(s)ds,
t—h

t—h

m(t) = —28T (1) PTGy / é1(s)ds,
t—7(t)

n3(t) =

L (t)Py [TD1¢(t) + TE(L)] .

The LMI condition (12) implies that for any
vector X:

T R T7G,)T P,
XT [, o) 2] x 0.

ds — ftt:Th(t) €i(s)ds, one has:

Developing this relation for X = [il (85 ], the
following inequality holds:
—2éz(t)P2G1é1 (S) < .éQ(t)TZQ.éQ(t)
+él (s)Ryé1(s).

Then, an integration with respect to s of the
previous inequality leads to an upper bound of

771(t):
t e, (t)Zsea(t)ds
771(1)<‘/th2()22()

+ /tih el'(s)R1é,(s)ds, (14)
m(t) < hez( )Za2es(t)

+ /t_h el (s)Ryé1(s)ds.

By using the same techniques, an upper bound of
72 is found:
1a(t) < 2pe3 (t) Zoa@a(t)

t—h+p
n / () Runer(s)ds. )
t—h—p

From (9) and from the orthogonality of the matrix
T, the following inequality holds:
13(t)=2p(t, y, u) [ P2ea(t)|| < =27 Peea()]]. (16)

Taking into account (14), (15), (16) and the fact
that &, (t) = (A1 + LAsi1)e1(t), V can be upper-
bounded as follows:

V(t) < él (t )(P1A11 + A 1P+ hAHRlAH
+2pA]| Rig A11)és (t) — 27| Prea(t)]|
+el (1) (PG + GlTPg + Ry + hZs
+217Z5,)E2(t) + 285 (t) P2(A21 + G1)&r
—(1 = 7(t)ez (t — 7(t))Raea(t — (1))
—QEg(t)PQTGlLég(t — T(t))

(t)

where 12111 = (A11 + I;Agll).

Then, the last term of this inequality can be
upperbounded by noting that:

—252 ( )PQTGlLég(t - T(t))
<e ( VPTG, Py (TG1)T Pyés(t)
+62 (t—7(t ))L Py Ley(t — 7(t))
<e ()PgTGlel(TGl)TPgég(t)
ted(t — () (PLL)T P (P L)es(t — 7(1)),

which leads to the following upperbound:

3 e1 T €1 —
vin < |a0] v al] - 21Re0l o
+é5 (t —7(t))¥sea(t — (1)),
_ | Y10 V2 .
where ¥ = [ . wm} and :

Y10 = (A1 + EAg11)TP1 + Pi(An + LAsy)
+h(An + Lﬂzll)TR1 (A11 + LAs11)
+2u(A11 + LAs11) T Ria(Ar1 + LAsyy),

oo = GT Py + P>Gy + Ry + hZy + 21254
+PTG Py (TG Py, )

Yso = (1— )R+ (P [L 0)" PP [E 0]).

(18)

This matrix inequality is not an LMI because
of the multiplication of matrix variables. Con-
sidering 190 and 39, the Schur complement can
remove these nonlinearities but for ¢y Lemma 1
is required. As 119 must be negative definite to
have a solution to the problem (17), the use of
Lemma 1 is possible. Applying it twice to 1,
the nonlinear condition can be expressed as:

vy ALYT AT YT w, 0

T 0 0 0
* * YP3 0 0 < 0. (19)
* * * Uy —P,TGy
* * * * — P
L' Py
[ a d>R2[ 0 H<o (20)
* 7P1

where ~

A= A+ LAs
Yo=Y —YT 4 hR,
Yy = =Y, =Y, +hRy,

Choosing Y = P, Y, = P; and defining W =
P, L, the LMI condition from the Theorem ap-
pears. Then, if (11) and (12) are satisfied, (19)
and (20) are also satisfied. Finally the error dy-
namics are asymptotically stable and converge to
the solution e(t) = 0. m



4. DYNAMIC PROPERTIES OF THE
OBSERVER

Corollary 1. With the observer design in Theo-
rem 1, an ideal sliding motion takes place on
So = {€é2 = 0} in finite time.

Proof. Consider the Lyapunov function:

Va(t) = & (t) Pata(t) (21)
Differentiating (21) along the trajectories of (10)
yields:

Va(t) = el (t)(GF Py 4+ PoGy)éa(t)
+265 (1) PT [TTv + Asé ()
+Ghe(t —7(t)) + G1Lex(t — 7(t))
+D1¢(t) +&(1)] -

Noting that G; is Hurwitz and (6), the following
inequality holds:

Va(t) < 2| Paea(t)|| [| Azier(t) + Grer (t — 7(t))
+GrLéa(t —7(t))[| =]

From Theorem 1, the errors e; and éy are
asymptotically stable. There thus exists an in-
stant ¢ty and a real positive number § such that
Yt > to, ||A21(§1(t)—‘y—Glél(t—T(t))—‘y-GlLéz(t—
7(t))]| <~ — 4. This leads to:

Vit > to, Va(t) < —26]|Paéa(t)||
< =26/ Amin (P2)\/Va(t).

where A (P2) is the lowest eigenvalue of Ps.
Integrating the previous inequality shows that a
sliding motion takes place on the manifold Sy in
finite time. m

(22)

5. EXAMPLE

Consider the system with time-varying delay (4)
and:

An = g | A _01 0?1 ’
A1 = ; _31 , Aag = ?)1 _01 )
& { 091 0%1 » G2 0(.)2 (1) '
T = é(l)]’G“_|:(l) , D1 =DB1 =By = 8},

The delay is chosen as 7(t) = 19 + T1sin(wit)),
with 79 = 0.225s, 71 = 0.075 and w; = 0.557 L.
The control law is

u(t) = ugsin(wat)

with ug = 2 and ws = 3 and the Hurwitz matrix

. |—=5 0
Glls[o _3

Using Theorem 1, the following observer gain is

obtained:
7 [-01144
| 0.0280

Since the system (4) is open loop stable, its
dynamics are bounded. Thus the function as (¢, 1,
Z9,u) can be chosen as a constant K = 4.

The simulation results are given in the following
figures. Figure 1 shows the observation errors.
Figures 2 and 3 show the comparison between the
real and observed states.
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Fig. 2. 1 and 1,

Figure 1 shows the system enters a sliding motion
at time t = 2.8s. The unmeasured variables
converge asymptotically to 0.

6. CONCLUSION

The problem of designing observers for linear sys-
tems with non small and unknown variable delay
on both the input and the state has been solved in
this article. Delay-dependent LMI conditions have
been found to guarantee asymptotic stability of
the dynamical error system. The conditions only
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depend on the real delay definition and do not
require any estimated or computational delay. In
addition, the dynamic properties of the proposed
observer can be characterized.
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