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Abstract

In this thesis, we present new results on the complexity of classical linear programming
on the one hand, and of tropical linear programming and mean payo� games on the other
hand. Our contributions lie in the study of the interplay between these two problems
provided by the dequantization process. This process tranforms classical linear programs
into linear programs over tropical semirings, such as theR [ f�1g endowed with max
as addition and + as muliplication.

Concerning classical linear programming, our �rst contribution is a tropicalization
of the simplex method. More precisely, we describe an implementation of the simplex
method that, under genericity conditions, solves a linear program over an ordered �eld.
Our implementation uses only the restricted information provided by the valuation map,
which corresponds to the \orders of magnitude" of the input. Using this approach, we
exhibit a class of classical linear programs over the real numbers on which the simplex
method, with any pivoting rule, performs a number of iterations which is polynomial
in the input size of the problem. In particular, this implies that the corresponding
polyhedra have a diameter which is polynomial in the input size.

Our second contribution concerns interior point methods for classical linear program-
ming. We disprove the continuous analog of the Hirsch conjecture proposed by Deza,
Terlaky and Zinchenko, by constructing a family of linear programs with 3r +4 inequali-
ties in dimension 2r +2 where the central path has a total curvature which is exponential
in r . We also point out suprising features of the tropicalization of the central path. For
example it has a purely geometric description, while the classical central path depends
on the algebraic representation of a linear program. Moreover, the tropical central path
may lie on the boundary of the tropicalization of the feasible set, and may even coincide
with a path of the tropical simplex method.

Concerning tropical linear programming and mean payo� games, our main result is
a new procedure to solve these problems based on the tropicalization of the simplex
method. The latter readily applies to tropical linear programs satisfying genericity
conditions. In order to solve arbitrary problems, we devise a new perturbation scheme.
Our key tool is to use tropical semirings based on additive groups of vectors ordered
lexicographically.

Then, we transfer complexity results from classical to tropical linear programming.
We show that the existence of a polynomial-time pivoting rule for the classical simplex
method, satisfying additional assumptions, would provide a polynomial algorithm for
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tropical linear programming and thus for mean payo� games. By transferring the analysis
of the shadow-vertex rule of Adler, Karp and Shamir, we also obtain the �rst algorithm
that solves mean payo� games in polynomial time on average, assuming the distribution
of the games satis�es a symmetry property.

We establish tropical counterparts of the notions of basic points and edges of a
polyhedron. This yields a geometric interpretation of the tropicalization of the simplex
method. As in the classical case, the tropical algorithm pivots on the graph of an
arrangement of hyperplanes associated to a tropical polyhedron. This interpretation
is based on a geometric connection between the cells of an arrangement of classical
hyperplanes and their tropicalization. Building up on this geometric interpretation, we
present algorithmic re�nements of the tropical pivoting operation. We show that pivoting
along an edge of a tropical polyhedron de�ned bym inequalities in dimension n can be
done in time O(n(m + n)), a complexity similar to the classical pivoting operation.
We also show that the computation of reduced costs can be done tropically in time
O(n(m + n)).



R�esum�e

Cette th�ese pr�esente de nouveaux r�esultats de complexit�e concernant d'un côt�e la pro-
grammation lin�eaire classique, et de l'autre la programmation lin�eaire tropicale, cette
derni�ere �etant reli�ee aux jeux r�ep�et�es. Les contributions proviennent de l'�etude du pro-
cessus de d�equantisation qui relie ces deux probl�emes. La d�equantisation transforme
les programmes lin�eaires classiques en programmes lin�eaires sur des semi-anneaux trop-
icaux, comme l'ensembleR [ f�1g muni de max en tant qu'addition, et de + en tant
que multiplication.

Concernant la complexit�e de la programmation lin�eaire, notre premi�ere contribu-
tion est la tropicalisation de la m�ethode du simplexe. Plus pr�ecis�ement, nous d�ecrivons
une impl�ementation de la m�ethode du simplexe qui, sous des conditions de g�en�ericit�e,
r�esoud un programme lin�eaire sur un corps ordonn�e. Cette impl�ementation utilise seule-
ment l'information partielle donn�ee par la valuation, ce qui correspond aux \ordres de
grandeur" des coe�cients du probl�eme. Cette approche permet de construire une classe
de programmes lin�eaires r�eels sur lesquels la m�ethode du simplexe termine en un nom-
bre d'it�erations qui est polynomial en la taille de l'encodage binaire du probl�eme, et ce
ind�ependamment du choix de la r�egle de pivotage.

Notre deuxi�eme contribution concerne les m�ethodes de points int�erieurs pour la pro-
grammation lin�eaire classique. Nous r�efutons l'analogue continu de la conjecture de
Hirsch propos�e par Deza, Terlaky et Zinchenko, en construisant une famille de pro-
grammes lin�eaires d�ecrits par 3r + 4 in�egalit�es sur 2 r + 2 variables pour lesquels le
chemin central a une courbure totale qui est exponentielle enr . La tropicalisation du
chemin central pr�esente des propri�et�es inattendues. Par exemple, le chemin central trop-
ical peut être d�ecrit de mani�ere purement g�eom�etrique, alors que de mani�ere classique le
chemin central d�epend de la repr�esentation des contraintes. De plus, le chemin central
tropical peut rencontrer la fronti�ere de la tropicalisation de l'ensemble r�ealisable, et peut
même co•�ncider avec un chemin suivi par la m�ethode du simplexe tropical.

Concernant la programmation lin�eaire tropicale et les jeux r�ep�et�es, notre r�esultat
principal est une nouvelle m�ethode pour r�esoudre ces probl�emes, bas�ee sur la trop-
icalisation de la m�ethode du simplexe. Cette derni�ere r�esoud directement les pro-
grammes lin�eaires tropicaux satisfaisant des conditions de g�en�ericit�es. A�n de r�esoudre
les probl�emes ne satisfaisant pas ces conditions, une technique de perturbation est
utilis�ee. L'id�ee principale est d'utiliser des semi-anneaux tropicaux bas�es sur des groupes
de vecteurs ordonn�ees lexicographiquement.
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Nous transf�erons des r�esultats de complexit�e de la programmation lin�eaire classique
vers la programmation lin�eaire tropicale. Nous montrons que l'existence d'une r�egle de
pivotage polynomiale pour la m�ethode du simplexe classique fournirai un algorithme
polynomial pour la programmation lin�eaire tropicale, et donc pour les jeux r�ep�et�es. En
transf�erant l'analyse de Adler, Karp et Shamir de la r�egle de pivotage dite du \shadow-
vertex", nous obtenons le premier algorithme qui r�esoud les jeux r�ep�et�es en temps poly-
nomial en moyenne, en supposant que la distribution des jeux satisfait une propri�et�e
d'invariance.

Nous �etablissons une correspondance g�eom�etrique entre les cellules d'un arrange-
ment d'hyperplans classiques et leur tropicalisation. Ceci donne une interpr�etation
g�eom�etrique �a la tropicalisation de la m�ethode du simplexe. Comme dans le cas clas-
sique, l'algorithme tropical pivote sur le graphe d'un arrangement d'hyperplans associ�e
au poly�edre. Ce point de vue g�eom�etrique nous permet d'�etablir des ra�nements al-
gorithmiques de l'op�eration de pivotage tropical. Nous pr�esentons un algorithme qui
pivote le long d'une arête d'un poly�edre tropical d�e�ni par m in�egalit�es en dimension n
en temps O(n(m + n)). Nous montrons aussi que le calcul des signes des coûts r�eduits
peut se faire tropicalement en tempsO(n(m + n))
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Chapter 1

Introduction

1.1 Context

1.1.1 Linear programming and its complexity

Linear programming is a foundation of mathematical optimization, in both its theoretical
and practical aspects. A linear program seeks a minimizer of a linear form satisfying
linear constraints (see Figure 1.1, left for an illustration). Several kinds of problems
in operations research can be modelled within this framework. The ability to solve
linear programs also serves as a building block for more general optimization problems,
such as convex programming, integer programming or non-linear programming. From
a more theoretical point of view, linear programming is related to the geometry and
combinatorics of polyhedra.

One of the main open questions concerns the precise complexity of linear program-
ming. The well-known simplex method, introduced by Dantzig [Dan98], moves on the
vertex/edge graph (Figure 1.1, middle) of the feasible set until an optimal solution is
reached. At each iteration, the next vertex is chosen by apivoting rule. The number of
iterations depends on the choice of the pivoting rule. The method is extremely e�ective
in practice. However, pathological examples show that, for most known pivoting rules,
the method can be compelled to visit exponentially many vertices.

The ellipsoid method of Khachiyan [Kha80] was a theoretical breakthrough. It proved
that linear programs can be solved in polynomial-time. More precisely, the ellipsoid
method solves a linear program within a time bounded by a polynomial inL , where
L is the number of bits required to describe the problem. In a nutshell, the method
determines the emptyness of a polyhedron using a sequence of ellipsoids, whose volumes
shrink exponentially fast. The ellipsoid method extends to arbitrary convex problems,
provided that a separation oracle is known [GLS88]. Despite its theoretical appeal, the
ellipsoid method is not e�cient in practice.

The interior-point methods, initiated by Karmakar [Kar84], combine good practical
performances with a polynomial-time worst-case complexity. These methods are driven
to an optimal solution by a trajectory, called the central path, that goes through the

1



2 Chapter 1. Introduction

Figure 1.1: Left: a linear program; the feasible set (the gray shaded area) is a polyhedron
de�ned by the halfspaces represented by hashed lines; the objective function is displayed
by the dotted arrow; three level sets are depicted in blue; the red dot is the unique
optimal solution. Middle: the vertex/edge graph of this polyhedron. Right: the central
path for this linear program.

interior of the feasible set (see Figure 1.1, right).
Yet, it is unknown whether linear programs can be solved instrongly polynomial

time. An algorithm is strongly polynomial if, given a problem described by n rational
numbers, it peforms a number of arithmetic operations which is polynomial inn, and the
space used by the algorithm is polynomial in the bit length of the input. The existence of
a strongly polynomial algorithm for linear programming has been recognized by Smale
as one of the mathematical problems of the 21st century [Sma98].

Since the invention of the simplex method, linear programming has been an active
�eld of research. We mention a few signi�cant results, and we refer to [DL11] for an
overview of recent advances.

The simplex method and the diameter of polyhedra

Klee and Minty [KM72] showed that the simplex method with the pivoting rule originally
proposed by Dantzig visits all vertices of a \tilted" cube, and thus performs a number
of iterations which is exponential in the dimension. The same behavior occurs with the
\steepest" edge rule [GS79], the \best improvement" rule [Jer73b] or Bland's rule [AC78].
These worst-case examples are subsumed by the deformed products of Amenta and
Ziegler [AZ96]. More recently, superpolynomial behavior was also proved for randomized
pivoting rule [FHZ11], or \history-based" rules that take into account the previously
visited vertices [AF13, Fri11].

On the other hand, for linear programs with special properties, several positive results
are known. The simplex method is strongly polynomial for linear programs that arise
from network 
ow problems [Orl97], from Markov Decision Problems (MDP) with a
�xed discount rate [Ye11], or from deterministic MDP with any discount rate [HKZ14].
Kitahara and Mizuno showed that, with any pivoting rule that selects improving pivots,
the number of iterations is bounded by a polynomial in the value of entries of the vertices
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of the problem [KM13a, KM13b]. In particular, this proves strong polynomiality for
linear programs on polyhedra with 0=1 vertices.

The shadow-vertex pivoting rule, introduced by Gass and Saaty [GS55], was used in
several noteworthy results. First, it proved that the simplex method is polynomial on
average, for certain distributions of instances [Sma83, Bor87, AKS87]. Second, Spielman
and Teng [ST04] proved that the simplex method has polynomialsmoothedcomplexity
when the shadow vertex rule is used. Third, it was used by Kelner and Spielman [KS06]
to obtain a randomized algorithm with polynomial expected running time. Note however
that superpolynomial worst-case examples are known for this rule [Gol94, Mur80].

The complexity of the simplex method is tightly linked to the combinatorics of poly-
hedra, in particular, to the diameter of their vertex/edge graph. Hirsch conjectured
that the diameter of a polytope described by m inequalities in dimension n does not
exceedm � n. In a recent breakthrough, Santos disproved this conjecture [San12]. Yet,
whether the diameter is bounded by a polynomial inm and n remains an open question.
Kalai and Kleitman obtained a general bound of mlog(n)+2 [KK92], that was improved
recently by Todd [Tod14] to (m � n) log(n) . Bonifas et al. obtained a bound that depends
on the value of the subdeterminants of the input matrix [BDSE+ 12] (see also [BR14]
for a constructive version). The Hirsch conjecture holds in special cases, such as 0=1
polytopes [Nad89] or transportation polytopes [DLKOS09]. For a thorough survey on
the diameter of polyhedra, we refer to [KS10].

Interior point methods, and the curvature of the central path

Interior point methods performs a piece-wise linear approximation of the central path
to reach an optimal solution. The curvature measures how far a path di�ers from
a straight line. Intuitively, a central path with high curvature should be harder to
approximate with line segments, and thus this suggests more iterations of the interior
point methods. Dedieu and Shub [DS05] conjectured that the total curvature of a linear
program in dimension n is bounded byO(n). This conjecture holds when averaged over
all regions of an arrangement of hyperplanes. It was proved by Dedieu, Malajovich and
Shub [DMS05] via the multihomogeneous B�ezout Theorem and by De Loera, Sturmfels
and Vinzant [DLSV10] using matroid theory. However, the redundant Klee-Minty cube
of [DTZ09] and the \snake" in [DTZ08] are instances which show that the total curvature
can be in 
 (m) for a linear program described bym inequalities. By analogy with the
classical Hirsch conjecture, Deza, Terlaky and Zichencko made the following conjecture.

Conjecture 1.1 (Continuous Hirsch conjecture [DTZ08]). The total curvature of the
central path of a linear program de�ned by m inequalites is bounded byO(m).

Besides the redundant Klee-Minty cube [DTZ09] and the \snake" [DTZ08], Gilbert,
Gonzaga and Karas [GGK04] also exhibited ill-behaved central paths. They showed that
the central path can have a \zig-zag" shape with in�nitely many turns, on a problem
de�ned in R2 by non-linear but convex functions. In terms of iteration-complexity of
interior-point methods, several worst-case results have been proposed [Ans91, KY91,
JY94, Pow93, TY96, BL97]. In particular, Stoer and Zhao [ZS93] showed that the
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iteration-complexity of a certain class of path-following methods is governed by an inte-
gral along the central path. This quantity, called the Sonnevend's curvaturewas intro-
duced in [SSZ91]. The tight relationship between the total Sonnevend's curvature and
the iteration-complexity of interior-points methods have been extended to semi-de�nite
and symmetric cone programs [KOT13]. Monteiro and Tsuchiya [MT08] proved that
a central path in dimension n consists of O(n2) \long" parts where the Sonnevend's
curvature is small, while the remaining part of the path is relatively small. This was
also observed by Vavasis and Ye [VY96] using a notion ofcrossover events.

Note that Sonnevend's curvature is a di�erent notion than the geometric curvature
we study in this manuscript. To the best of our knowledge, there is no explicit relation
between the geometric curvature and the iteration-complexity of interior-point methods.
However, these two notions of curvature share similar properties. In particular, the
total geometric curvature and the total Sonnevend's curvature are maximal when the
number of inequalities is twice the dimension [DTZ08, MT13b]. On the redundant
Klee-Minty cube, both the total geometric curvature and the Sonnevend's curvature are
large [MT13a, DTZ09].

Sonnevend's curvature relates to another iteration-complexity bound expressed in
terms of a condition number associated with the matrix describing a linear program,
see [MT08].

We also mention that Megiddo and Shub [MS89], as well as Powell [Pow93], showed
that interior point methods may exhibit a simplex-like behavior. For more litterature
on interior points methods, we refer to [Wri05, Gon12] and the references therein.

1.1.2 Tropical geometry

Tropical geometry is the (algebraic) geometry on themax-plus semiring (Rmax ; � ; � )
where the set Rmax = R [ f�1g is endowed with the operationsa � b = max( a; b)
and a � b = a + b. The max-plus, or min-plus semirings, are now dubbedtropical
semirings in honor of pioneering work of the mathematician and computer scientist
Imre Simon. Tropical semirings were studied under various names in relation with
optimization [CG79], graph algorithms [GM84], or discrete event systems [CMQV89,
BCOQ92, CGQ99, HOvdW06]. Tropical algebra has a strong combinatorial 
avor. For
example, determinants correspond to optimal assignments, and eigenvalues corresponds
to cycles of maximum mean in a graph [But03].

The set Rmax can be seen as the set of \orders of magnitude". If one think of tropical
numbers a; b 2 T as exponents of usual numbers,e.g., 10a and 10b, then, the tropical
operations max and + re
ect the usual addition and multiplication on the exponents,
i.e., 10a + 10b � 10max( a;b) and 10a � 10b = 10a+ b. More formally, we can identify
a 2 Rmax with a class � (ta) of real valued functions, wheref 2 � (ta) when f satisfy
cta � f (t) < c 0ta for some positive constantsc; c0 2 R, and for any t large enough. Then,
f 2 � (ta) and g 2 � (tb) satisfy f + g 2 � (tmax( a;b) ) and f � g 2 � (ta+ b). Thus, the
valuation map

val : f 7! lim
t !1

logt (f (t)) ;
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Figure 1.2: Illustration of the dequantization process on the family of polyhedra (P (t)) t

of Example 1.2. Left: a polyhedronP (t). Middle: its image under the logarithmic map
in baset. Right: the dequantization of the family ( P (t)) t .

where logt (x) = log( x)=log(t), is a semiring homomorphism from a certain set of pos-
itive real valued functions, equipped with addition and multiplication, to the max-plus
semiring. This logarithmic limit process is known as Maslov'sdequantization [Lit07], or
Viro's method [Vir01]. It can be traced back to the work of Bergman [Ber71]. More gen-
erally, the tropical semiring can also be thought of as the image of a non-Archimedean
�eld under its valuation map. The non-Archimedean �elds typically used are the �eld
of rational functions, formal Puiseux series [EKL06, DY07, RGST05] or the �eld of
generalized Puiseux series with real exponents [Mar10].

Example 1.2. Consider for example the �eld R(t) of rational functions in the variable
t. We can order R(t) by setting f 2 R(t) to be positive when f (t) > 0 for all t large
enough. Now consider the following polyhedronP over the ordered �eld R(t):

x 1 + x 2 � 1

x 1 � t � 1 + tx 2

x 2 � t � 1 + t2x 1

x 1 � t2x 2

x 1 � 0; x 2 � 0

x 1 2 R(t); x 2 2 R(t) :

When t is replaced by real numbers, we obtain a family of polyhedra (P (t)) t in R2.
One of these polyhedra is depicted in Figure 1.2 (left). Applying the mapx 7! logt (x)
point-wise to P (t) provides the set displayed in Figure 1.2 (middle). The dequantization
of the family (P (t)) t is the logarithmic limit illustrated in Figure 1.2 (right).

Through the dequantization process, tropical geometry provides a piece-wise linear
\shadow" of classical geometry. The tropicalization of an algebraic varietyV , that is,
the joint vanishing locus of �nitely many polynomials in d indeterminates over a �eld
with a non-archimedian valuation, is a polyhedral complex in Rd, the tropical variety
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T(V ), which is obtained by applying the valuation map coordinate-wise to all points in
V . For instance, if C is a planar algebraic curve over an algebraically closed �eld, then
T(C) is a planar graph. Key features ofV are visible in T(V ). For example, if V is
irreductible, then T(V ) is connected [EKL06].

Tropicalization has been succesfully applied in enumerative geometry. The Gromov-
Witten invariants count the number of planar complex algebraic curve passing through a
generic con�guration of points. Mikhalkin showed that these numbers coincide with their
tropical counterparts (counted with multiplicities), that are easier to compute [Mik05].
The same technique also applies to real algebraic curves [IKS03]. Given a tropical curve,
one can construct real algebraic curves whose topology coincides with the tropical one.
This method, known as Viro's patchworking, produced curves with a rich topology.
In particular, patchworking was used to disprove the Ragsdale conjecture [IV96]. For a
more detailed description of tropical varieties, we refer to [RGST05, EKL06, IMS07, MS].
Computational aspects are developped in [BJS+ 07], and complexity issues are studied
in [The06]. An enlightning introduction is given in [Bru12].

The dequantization of semi-algebraic sets is a more recent subject of research. Speyer
and Williams [SW05], studied the tropicalization of the positive part of the Grassman-
nian. Tabera explored the bases of real tropical varieties [Tab13], and Vinzant investi-
gated their real radical ideals [Vin12]. The tropicalization of polytopes, the most simple
class of semi-algebraic sets, was studied by Develin and Yu [DY07] and by Ardila and
Develin [AKW06]. Alessandrini [Ale13] devised a framework to study the logarithmic
limit of families of semi-algebraic sets.

1.1.3 Tropical linear programming

We are interested in the tropical counterpart of linear programming. A tropical linear
program asks for a minimizerx 2 Rn

max of a tropical linear form

x 7! max(c1 + x1; : : : ; cn + xn ) ;

for somec 2 Rn
max , that satisfy �nitely many constraints of the form:

max(� 1 + x1; : : : ; � n + xn ; � ) � max(� 1 + x1 : : : ; � n + xn ; 
 ) ;

where �; � 2 Rn
max and �; 
 2 Rmax . An example is depicted in Figure 1.3. The feasible

set of a tropical linear program forms a tropical polyhedra, the most basic example of
tropical convex sets.

The tropical analogues of convex sets have appeared in the work of several au-
thors. Motivated by discrete optimization problems, Zimmerman established a sepa-
ration result [Zim77]. Max-plus analogues of linear spaces were studied by Cuninghame-
Green [CG79]. They were also considered by Litvinov, Maslov, and Shpiz under the
name of idempotent spaces [LMS01]. Cohen, Gaubert, and Quadrat [CGQ01, CGQ04]
also studied them under the name of semimodules, for a geometric approach of discrete
event systems [CGQ99], further developed in [Kat07, DLGKL10]. They were also con-
sidered by Singer for abstract convex analysis [Sin97]. Tropical convexity is similar to
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Figure 1.3: A tropical linear program. The feasible set is the union of the gray shaded
area with the black hal
ine. Three level sets for the objective function (x1; x2) 7!
max(x1; x2) are depicted in blue. The red segment is the set of optima.

the B-convexity studied by Briec, Horvath, and Rubinov [BH04, BHR05]. Develin and
Sturmfels gave in [DS04] another approach of tropical convexity. They studied tropical
polyhedra as polyhedral complexes in the usual sense. Some more recent developments
include [Jos05, JSY07, BY06, BSS07, GK09, Jos09, GM10, AGG10].

1.1.4 From tropical linear programming to mean payo� games

Akian, Gaubert and Guterman [AGG12] proved that mean payo� games are equivalent
to tropical linear feasibility problems. We brie
y recall this equivalence, and we refer
the reader to [AGG12] for more information. We shall describe a mean payo� game
by a pair of payment matrices A; B 2 Rm� n

max . We also �x an initial state �| 2 [n]. The
corresponding game, with perfect information, is played by two players, called \Max"
and \Min". Their moves alternate as follows. We start from state j 0 := �| . Player Min
chooses a statei 1 2 [m] such that B i 1 j 0 6= �1 , and receives a payment ofB i 1 j 0 units
from Player Max. Then, Player Max chooses a statej 1 2 [n] such that A i 1 j 1 6= �1 ,
and receives a payment ofA i 1 j 1 from Player Min. Now Player Min again chooses a state
i 2 2 [m] such that B i 2 j 1 6= �1 , receives a payment ofB i 2 j 1 from Player Max, and so
on. If j 0; i 1; j 1; i 2; j 2; : : : is the in�nite sequence of states visited in this way, the mean
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payo� of Player Max is de�ned to be

lim inf
p!1

p� 1(� B i 1 j 0 + A i 1 j 1 � B i 2 j 1 + A i 2 j 2 + � � � � B i p j p� 1 + A i p j p ) : (1.1)

Conversely, themean payo� for Player Min is

lim sup
p!1

p� 1(� B i 1 j 0 + A i 1 j 1 � B i 2 j 1 + A i 2 j 2 + � � � � B i p j p� 1 + A i p j p ) : (1.2)

It is assumed that A has no identically �1 row, and that B has no identically �1
column, so that at each stage, Players Min and Max have at least one available action
with �nite payment. Note that payments are algebraic, i.e., a negative payment is a
positive payment in the reverse direction. A strategy is positional if the next state is
selected as a deterministic function of the current state. A fundamental result established
independently by Liggett and Lippman [LL69] and by Ehrenfeucht and Mycielski [EM79]
shows that this game has a value and that it has optimal positional strategies. That is,
there is a real number� = � �| , a positional strategy for Min, and a positional strategy
for Max, such that the following properties hold:

� The mean payo� for Min is at most � , if Min plays according to her positional
strategy. This is independent of Max's play.

� The mean payo� for Max is at least � , if Max plays according to his positional
strategy. This is independent of Min's play.

Hence, with optimal play of both players the mean payo� for both players is exactly � ,
and in this case the sequences in (1.1) and (1.2) converge to� . We say that the initial
state �| is winning for Player Max if � �| � 0. It should be noted that mean payo� games
can be thought of as limits of discounted zero-sum games as the discount rate tends to
0. To decide whether or not a given state is winning is the natural decision problem
MEAN-PAYOFF associated with a mean payo� game. Zwick and Paterson showed
that MEAN-PAYOFF is in NP \ co-NP. It is a major open question in computational
complexity whether there is a polynomial time algorithm for MEAN-PAYOFF. The
following theorem characterizes the set of winning states in terms of a tropical version
of a linear programming feasibility problem.

Theorem 1.3 ([AGG12, Theorem 3.2]). The initial state �| 2 [n] is winning for Player
Max, in the mean payo� game with payment matricesA and B , if and only if there exists
a solution x 2 Rn

max with x �| = 0 , to the system:

max
j 2 [n]

A ij + x j � max
j 2 [n]

B ij + x j for all i 2 [m] : (1.3)

We next give more insight on this result as it is fundamental in the sequel. It relies
on �xed point properties of the Shapley operator. The latter is a self-map F of Rn ,
preserving the standard partial order of Rn , which is such that [F k (0)] �| gives the value
of the zero-sum game in�nite horizon k with initial state � | , with the same instantaneous
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Figure 1.4: A mean payo� game. The states in which Max plays are depicted by squares,
while the states in which Min plays are depicted by circles. Edges represents valid moves,
and are weighted by payments. An edge with no weight indicate a 0 payment.

payments. (We denote byF k the k-th iterate of F .) The limit of [ F k (0)=k]�| as k ! 1 ,
i.e., the limit of the value per turn of the �nite horizon game, is known to coincide with
the value of the mean payo� game. The Shapley operatorF does extend to a self-map
of Rn

max . It is shown in [AGG12] that the value of the mean payo� game is nonnegative
if and only if there exists a vector x 2 Rn

max such that x �| 6= �1 and F (x) � x, the latter
inequality being equivalent to (1.3). Due to the homogeneity of the constraints in (1.3)
there is a solution with x | 6= �1 if and only if there is a solution with x | = 0. A feasible
point x serves as a certi�cate that all initial states j with x j 6= �1 are winning. Also,
if a feasible point x is known, a winning strategy for Player Max is obtained by moving
from every state i 2 [m] to a state j achieving the maximum in maxj 2 [n](A ij + x j ).

Example 1.4. The mean payo� game with the following payment matrices is depicted in
Figure 1.4 (for the sake of readability, �1 entries are represented by the symbol \�"):

A =

0

B
B
B
B
@

� � 1 � 2 � �
� 3 � 0 � �
0 � 4 � � �
� � � +1 �
0 � � � +2

1

C
C
C
C
A

; B =

0

B
B
B
B
@

0 � � � �
� 0 � � �
� � 0 � �
� � 0 0 0
� � � 0 �

1

C
C
C
C
A

:

In this game, the only winning initial states for Max are 4 and 5. Indeed, the point
(�1 ; �1 ; �1 ; 0; 0) is a solution of the system of tropical linear inequalities correspond-
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ing to the matrices A and B :

max(x2 � 1; x3 � 2) � x1

max(x1 � 3; x3) � x2

max(x1; x2 � 4) � x3

x4 + 1 � max(x3; x4; x5)

max(x1; x5 + 2) � x4 :

Each solution x 2 R5
max satis�es x1 = x2 = x3 = �1 .

1.1.5 Algorithms for tropical linear programming

Several algorithms have been proposed for tropical linear programming or related prob-
lems. The alternating projection method introduce by Cuninghame-Green and Butkovi�c
in [CGB03] determines the feasibility of a tropical polyhedra in pseudo-polynomial
time [BA08], see also [But10, Chapter 10]. This was extended in [GS07] to cyclic pro-
jections (allowing one to determine a point in the intersection of more than two tropical
convex sets), and applied in [AGNS11] to the situation in which a tropical convex set
is given as an intersection of halfspaces. The algorithm proposed in [BZ06] also solves
tropical linear feasibility problems, but exhibits an exponential behavior on a class of
examples found by Bezem, Nieuwenhuis and Rodr��guez-Carbonell [BNRC08]. Integers
points of tropical polyhedra can be found in strongly polynomial time under gener-
icity conditions [BM14a, BM14b]. The tropical double description method [AGG13]
computes an internal representation of a tropical polyhedron described by inequalities.
Hence, it provides an algorithm for tropical linear programming. However, the size of
an internal representation grows exponentially with the dimension and the number of
inequalities [AGK11].

Since, as we saw in Section 1.1.4, tropical linear feasibility problems are equivalent to
mean payo� games, every algorithm solving mean payo� games can be applied to tropical
linear programming. These include in particular value iteration algorithms [ZP96] and
policy iteration algorithms [Pur95, CTGG99, JPZ06, DG06, BV07, Cha09]

A tropical linear program always arises as the tropicalization of a classical linear
program over a non-Archimedean �eld. Hence, tropical linear programming can be
thought of as an asymptotic version of linear programming [Jer73a], and the approach
of Filar, Altman and Avrachenkov [FAA02] should also solve tropical linear programs.

The more general problem of tropical factional linear programming can be solved by
the algorithms presented in [GKS12] and [GMH14].

1.2 Contributions

In this thesis, we present new results on the complexity of classical linear programming
on the one hand, and of tropical linear programming and mean payo� games on the other
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hand. Our contributions lie in the study of the interplay between these two problems
provided by the dequantization process.

Concerning classical linear programming, our �rst contribution is a tropicalization
of the simplex method. More precisely, we describe an implementation of the simplex
method that, under genericity conditions, solves a linear program over an ordered �eld.
Our implementation uses only the restricted information provided by the valuation map,
which corresponds to the \orders of magnitude" of the input. Consequently, the number
of iterations of the simplex method can be measured in terms of the value of these \orders
of magnitude". Using this approach, we exhibit a class of classical linear programs over
the real numbers on which the simplex method, with any pivoting rule, performs a
number of iterations which is polynomial in the input size of the problem. In particular,
this implies that the corresponding polyhedra have a diameter which is polynomial in
the input size.

Our second contribution to classical linear programming comes from the study of
the dequantization of the central path. We disprove the continuous analog of the Hirsch
conjecture proposed by Deza, Terlaky and Zinchenko, by constructing a family of linear
programs with 3r + 4 inequalities in dimension 2r + 2 where the central path has a total
curvature which is exponential in r . Our counter-example is obtained as a deformation of
a family of tropical linear programs introduced by Bezem, Nieuwenhuis and Rodr��guez-
Carbonell. We also point out suprising features of the tropical central path. For example
it has a purely geometric description, while the classical central path depends on the
algebraic representation of a linear program. Moreover, the tropical central path may
lie on the boundary of the tropicalization of the feasible set, and may even coincide with
a path of the tropical simplex method.

Concerning tropical linear programming and mean payo� games, our main result is
a new procedure to solve these problems based on the tropicalization of the simplex
method. The latter readily applies to tropical linear programs satisfying genericity
conditions. In order to solve arbitrary problems, we devise a new perturbation scheme.
Our main tool is to use tropical semirings based on additive groups of vectors ordered
lexicographically.

Then, we transfer complexity results from classical to tropical linear programming.
We show that the existence of a polynomial-time pivoting rule for the classical simplex
method, satisfying additional assumptions, would provide a polynomial algorithm for
tropical linear programming and thus for mean payo� games. By transferring the analysis
of the shadow-vertex rule of Adler, Karp and Shamir, we also obtain the �rst algorithm
that solves mean payo� games in polynomial time on average, assuming the distribution
of the games satis�es an symmetry property.

We establish tropical counterparts of the notions of basic points and edges of a
polyhedron. This yields a geometric interpretation of the tropicalization of the simplex
method. As in the classical case, the tropical algorithm pivots on the graph of an
arrangement of hyperplanes associated to a tropical polyhedron. This interpretation
is based on a geometric connection between the cells of an arrangement of classical
hyperplanes and their tropicalization. Building up on this geometric interpretation, we
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present algorithmic re�nements of the tropical pivoting operation. We show that pivoting
along an edge of a tropical polyhedron de�ned bym inequalities in dimension n can be
done in time O(n(m + n)), a complexity similar to the classical pivoting operation.
We also show that the computation of reduced costs can be done tropically in time
O(n(m + n)).

These algorithmics re�nements, along with our perturbation scheme, have been im-
plemented in the library Simplet [Ben14]. Hence, this library provides a solver for
arbitrary tropical linear programs.

1.3 Organisation of the manuscript

This manuscript is organized as follows.

� Chapter 2 presents the framework used throughout this manuscipt. It recalls the
de�nitions of tropical semirings, non-Archimedean �elds, and related notions.

� Chapter 3 exposes the tropical implementation of the simplex method.

� In Chapter 4, we study tropical polyhedra and their relations with classical polyhe-
dra. We also devise the perturbation scheme that allows to solve arbitrary tropical
linear programs with the tropical simplex method

� In Chapter 5, we transfer complexity results based on the simplex method back
and forth between tropical and classical linear programming.

� Chapter 6 concerns the tropicalization of the shadow-vertex rule, and of the average
case analysis of Adler, Karp and Shamir.

� Chapter 7 exposes algorithmic re�nements of the tropical simplex method.

� Chapter 8 deals with the tropical analysis of the central path.

Most of the notions needed to read this manuscript are given in Chapters 2, 3 and 4.
The other chapters can mostly be read independently, even if the approach in Chapter 6
uses ideas already present in Chapter 5.

The tropicalization of simplex operations (pivoting and computing reduced costs) was
presented in [ABGJ13b]. In [ABGJ13a], the tropicalization of combinatorial pivoting
rules was presented (combinatorial pivoting rules rely only on the signs of the minors
of the input matrix). The study of the tropical shadow-vertex rule [ABG14] led to the
more general framework ofsemi-algebraic pivoting rules that we adopt in Chapter 3.
Chapter 4 gathers results that appeared in [ABGJ13b] and [ABGJ13a]. Chapter 5
generalizes to semi-algebraic pivoting rules the transfer of complexity theorem presented
in [ABGJ13a], and also contains new results. Chapter 6 is covered in [ABG14] and
Chapter 7 is included in [ABGJ13b]. Chapter 8 is mostly covered in [ABGJ14], but
includes a slight improvement of the curvature analysis.



Chapter 2

Preliminaries

In this chapter, we recall the de�nitions of (totally) ordered abelian groups and (totally)
ordered �elds. Note that the orders on the structures that we consider will always be
total order. We also present basic notions of model theory. In particular, the notion
of completeness of a theory will play an important role. Indeed, the completeness of
the theory of ordered �eld will allow us to transfer results that holds on the �eld of
real numbers to other ordered �elds. We also present the framework we shall work
with: tropical semirings and non-Archimedean �elds. The tropical semirings we consider
are constructed from arbitrary ordered groups. They arise as the image under the
Archimedean valuation map of ordered �elds, such as the �eld of formal Hahn series.

2.1 Model theory

We recall some de�nitions and results of model theory, referring the reader to [Mar02]
for more background.

2.1.1 Languages and �rst-order formul�

A languageL = ( R; F ; C) consists of a set of relation symbolsR, a set of function symbols
F , and a set of constant symbolsC. Each relation symbol R 2 R is equipped with an
arity , nR , which is a positive integer. Similarly, each function symbol f 2 F also has
an arity, denoted asnf . For example, the language of ordered groups isL og = ( <; + ; 0),
and the language of ordered rings isL or = ( <; + ; �; 0; 1). In these two languages, the
order relation symbol < and the arithmetic function symbols + ; � have arity two. We
shall now describe the (�rst-order) formul� of a language L . Such a formula is a string
of symbols built from the symbols of L , a �nite number of variable symbols v1; v2; : : : ,
the equality symbol =, the Boolean symbols : , ^ ,_ (\not", \and", \or"), quanti�ers 8,
9 and parentheses (,). AnL -term is either:

� a variable symbol vi , for somei � 1

� a constant symbol c 2 C

13
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� f (t1; : : : ; tn f ) where f 2 F is a function symbol, and t1; : : : tn f are L -terms

An L-formula is then de�ned inductively as follows:

� if t1 and t2 are L -terms, then t1 = t2 is an L -formula

� if R 2 R is a relation symbol, and t1; : : : tnR are terms, then R(t1; : : : tnR ) is an
L -formula

� if � and  are L -formul�, then ( : � ), ( � ^  ) and (� _  ) are L -formul�

� if � is an L -formula and vi is a variable symbol, then9vi � and 8vi � are L -formul�

A variable symbol vi which occurs in a formula � without being modi�ed by a
quanti�er 9 or 8 is said to be a free variable. We shall emphasize the free variables
vi 1 ; : : : ; vi k of a formula � by writing � (vi 1 ; : : : ; vi k ). A formula without free variables is
called a sentence. In the following, we shall use the usual abbreviations in �rst-order
formul�:

� � !  for : � _  

� � $  for (� !  ) ^ ( ! � )

�
V n

i =1 � i for � 1 ^ � 2 ^ � � � ^ � n

�
Wn

i =1 � i for � 1 _ � 2 _ � � � ^ � n

� 9 !v� (v) for 9v(� (v) ^ (8w(� (w) ! w = v)).

2.1.2 Structures

Let L = ( R; F ; C) be a language. AnL -structure M consists of a non-empty setM
(called the domain of M ) together with an interpretation L M of the symbols of L in
M . A relation symbol R 2 R is interpreted by a subset SR � M nR , where a tuple
(x1; : : : ; xnR ) satis�es the relation R if ( x1; : : : ; xnR ) 2 SR . A function symbol f 2 F is
interpreted by a map M n f ! M , and the interpretation of a constant symbol c 2 C is
an element ofM . For example, the ordered �eld of real numbers �R = ( R; <; + ; �; 0; 1) is
a L or-structure. In the following, we shall use the same notationL for a language and
its interpretation. Hence, we will denote a L -structure M by (M; L ).

The interpretation of the language L induces an interpretation of the formul� of L
in the structure M . Every formula � (vi 1 ; : : : ; vi k ) de�nes a Boolean function � M on M k .
If � M is true at a 2 M k , we write M j= � (a). In particular, if � is a sentence ofL , the
function � M is constant. Thus a sentence de�nes a statement onM which is either true
or false.

For example, consider the following formula in the language of ordered ringsL or :

� (v) : 9y (y � y = v) :
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When interpreted in a L or-structure M , the sentence� (v) yields a boolean function
which is true at a 2 M if a admits a square root in M . Now consider the following
sentence:

 : 8x (x > 0 ! 9 y (y � y = x)) :

A L or-structure M satisfy M j=  if every positive element of the domain ofM has a
square root. This statement is false onL or-structure of the rational numbers �Q = ( Q; <
; + ; �; 0; 1), but true on the ordered �eld of the real numbers �R.

2.1.3 Complete theories

A L-theory T is a set of sentences of the languageL , the axioms of the theory T. A
L -structure M is a model of the theory T if M j= � for all axioms � 2 T. We say that
a L -theory is complete if, for any two models M ; N of the theory T, a L -sentence� is
true in M if and only if it is true in N.

We shall describe two complete theories: the theory of ordered divisible abelian
groups and the theory of real closed �elds.

Ordered abelian groups

The theory of abelian groups consists of the following sentences in the languageL g =
f + ; 0g.

8x 0 + x = x + 0 = x (identity element)

8x8y8z x + ( y + z) = ( x + y) + z (associativity)

8x9y x + y = y + x = 0 (invertibility)

8x8y x + y = y + x (abelian)

The theory of divisible abelian group is obtained by adding, for all integersn � 2, the
axiom:

8x9y y + y + � � � + y
| {z }

n times

= x : (divisibility)

Ordered (divisible) abelian groups are described in the languageL og = f <; + ; 0g by the
axioms of (divisible) abelian groups along with:

8x : (x < x ) (irre
exivity)

8x8y8z ((x < y ) ^ y < z ) ! x < z ) (transitivity)

8x8y (x < y _ x = y _ y < x ) (totality)

8x8y8z (x < y ! x + z < y + z) (translation-invariance)

The non-strict order relation � is then de�ned as 8x8y (x � y) $ (x < y _ x = y).

Theorem 2.1 ([Mar02, Corollary 3.1.17]). The theory of ordered divisible abelian groups
is complete.

This result can be traced back to Robinson [Rob77, Theorem 4.3.2].
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Ordered �elds

The theory of ordered �elds is described in the languageL or = ( <; + ; �; 0; 1). It consists
of the axioms of ordered abelian groups in the language (<; + ; 0), along with:

8x 1 � x = x � 1 = 1 (multiplicative identity element)

8x8y x � y = y � x (commutativity of multiplication)

8x8y8z x � (y � z) = ( x � y) � z (multiplicative associativity)

8x (x = 0 _ 9y x � y = 1) (multiplicative invertibility)

8x8y8z x � (y + z) = ( x � y) + ( x � z) (distributivity)

8x8y8z ((x < y ) ^ z > 0) ! x � z < y � z) (scaling-invariance)

The theory of real closed �elds is obtained from the theory of ordered �elds by also
requiring every positive element to be a square root and every polynomial of odd degree
to have at least one root. In symbols, the �rst requirement is described by:

8x (x > 0 ! 9 y ; (y � y = x)) ;

while the second requirement amounts to the set of sentencesf � n j n � 0g, de�ned by:

� n : 8a08a1 : : : 8a2n+1 9x (a2n+1 � x2n+1 + a2n � x2n + � � � + a1 � x + a0 = 0) ;

where we usexk as an abbreviation for x � x � : : : � x| {z }
k times

.

Theorem 2.2 ([Mar02, Corollary 3.3.16]). The theory of real closed �elds is complete.

This theorem follows from the work of Tarski and Seidenberg [Tar51, Sei54] who
proved that the theory of real closed �elds admits elimination of quanti�ers.

2.2 Tropical semirings and non-Archimedean ordered �elds

The theory of ordered (commutative) semirings, in the language (<; + ; �; 0; 1), is obtained
from the theory of ordered �elds by removing the axioms asserting the existence of inverse
elements for the addition and the multiplication, and adding the axiom 8x 0 � x =
x � 0 = 0. The set of non-negative integers, or the set of non-negative real numbers, with
their natural ordering and usual addition and multiplication, are examples of ordered
semirings.

We are mainly interested in semirings formed with the non-negative elements of
an ordered �eld. On these semirings, the notion of \order of magnitude" is captured
by Archimedean classes. The map that sends an element to its Archimedean class is
a homomorphism to another semiring, called a tropical semiring. We begin with the
description of tropical semirings, and explain how they arise from ordered �elds. We
then present non-Archimedean �elds, that is �elds with a non-trivial set of Archimedean
classes. First, the �eld of Hahn series consists of formal power series with exponents in an
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arbitrary ordered group. Second, we present �elds of real-valued functions, called Hardy
�elds. Such a �eld consists of functions that are de�nable in a o-minimal structure. The
advantage of an Hardy �eld over Hahn series is that it consists of real-valued functions,
rather than formal objects.

2.2.1 Tropical semirings

We are interested in a speci�c class of ordered semirings, that we calltropical semirings.
We shall describe them in the language (<; � ; � ; 0; 1). Given an ordered abelian group
(G; <; +), the tropical semiring (T(G); <; � ; � ; 0; 1) is de�ned as follows. The base set
is T(G) = G[ f 0T(G)g where the new element0T(G) 62G satis�es 0T(G) > a for all a 2 G.
The additive law � is de�ned by a � b = max( a; b), where the maximum is taken with
respect to < . The multiplicative law � is the group addition + extended to T(G) by
setting a + 0T(G) = 0T(G) + a = 0T(G) for all a 2 T(G). The zero and unit elements
are 0T(G) and 1T(G) := 0 G, the neutral element of G, respectively. In the following, we
simply denote T(G) by T when this is clear from the context.

The operations are extended to matricesA = ( A ij ); B = ( B ij ) with entries in T by
setting A � B = ( A ij � B ij ) and A � B = (

L
k A ik � Bkj ). In the following, unless

explicitly stated, the entries of a matrix A are denoted by A ij . Moreover, we denote
by A I the submatrix of A obtained with rows indexed by I . By abuse of notation, we
denote A f i g by A i . We also denote byA> the transpose of the matrix A. For the sake
of simplicity, we identify vectors of size n with n� 1-matrices.

Given a = ( a1j ) 2 T1� n and x 2 Tn , we denote by arg(a � x) the set of indices
i 2 [n] = f 1; : : : ; ng attaining the maximum in

a � x = max
j 2 [n]

(a1j + x j ) :

The usual total order � on G extends to T. This induces a partial ordering of tropical
vectors by entry-wise comparisons. The topology induced by the order makes (T; � ; � )
a topological semiring.

In the following, we will think of the n-fold product spaceTn as a semimodule over
T, where scalars act tropically on vectors by (�; x ) 7! � � x := ( � + x1; : : : ; � + xn ) and
the tropical vector addition is ( x; y) 7! x � y := (max( x1; y1); : : : ; max(xn ; yn )).

2.2.2 Non-Archimedean �elds

Let K be an ordered �eld. Two elementsa; b 2 K satisfy the Archimedean relation if
they are within a rational multiple of each other, i.e., if there exists a positive rational
number r such that r � 1jbj < jaj < r jbj, where jaj = max( a; � a) is the absolute value.
The equivalence class ofa for the Archimedean relation is called the value of a and is
denoted by val(a). The map val : a 7! val(a) is called a valuation map.

We shall see below that val(K nf 0g) is an ordered group, called thevalue groupof K .
A �eld K is non-Archimedean if its value group is not the trivial group, i.e., if K n f 0g
has more than one Archimedean class.
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A lift of a value a 2 val(K ) is an element a 2 K such that val(a) = a. Clearly,
such a lift is by no means unique. The set of all lifts will be denoted val� 1(a). The set
of values val(K ) inherits an order from the order on K , and an operation � from the
multiplication on K . They are de�ned for a; b2 val(K ) by:

a < b , a 6= b and jaj < jbj for any a 2 val� 1(a); b 2 val� 1(b)

a � b = val( ab) for any a 2 val� 1(a); b 2 val� 1(b):

These de�nitions do not depend on the choice of the liftsa; b.

Proposition 2.3. The ordering relation a < b and the operation a � b are well-de�ned
for any a; b 2 val(K ). Moreover, the set val(K n f 0g), equipped with the order< , the
operation � , and the neutral element1 := val(1) , forms an ordered abelian group.

Proof. First, let us show that a < b is well de�ned for any a; b 2 val(K ). Suppose that
a 6= b. Consider any a 2 val� 1(a); b 2 val� 1(b), and assume without loss of generality
that jaj < jbj. Then, we claim that ja0j < jb0j for all a0 2 val� 1(a) and b0 2 val� 1(b).
By de�nition, there exists two rational numbers p; q 2 Q such that ja0j < p jaj and
jbj < q jb0j. Since jaj < jbj, we obtain ja0j < pqjb0j. Suppose, by contradiction, that
ja0j � j b0j. Then, ja0j > 1

2 jb0j. Consider the rational number r = max( pq;2). We have
r � 1jb0j < ja0j < r jb0j. Hence, a0 and b0 belongs to the same Archimedean class. This
contradicts the hypothesis val(a) 6= val( b), and proves our claim.

Second, let us showa � b = val( ab) is independent of the choice ofa 2 val� 1(a) and
b 2 val� 1(b). Consider any lifts a; a0 2 val� 1(a) andb; b0 2 val� 1(b). By de�nition, there
exist two rational numbers p; q 2 Q such that p� 1ja0j < jaj < p ja0j and q� 1jb0j < jbj <
q� 1jb0j. It follows that ( pq) � 1ja0b0j < jabj < (pq)ja0b0j, and thus val(a0b0) = val( ab).

It follows immediately from the de�nition that � is commutative, admits 1 = val(1)
as a neutral element, and that any element val(a) 2 val(K nf 0g) has an inverse val(a � 1).
Moreover, it is also easy to see thata > b implies a � c > b � c for all a; b2 val(K ) and
c 2 val(K n f 0g). Consequently, (val(K n f 0g); <; � ) is an ordered abelian group.

In the following, we shall always identify val(K ) with the tropical semiring based on
the value group of K , where we have set0 := val(0). The valuation map satis�es the
following crucial properties.

Proposition 2.4. Let (K; <; + ; �; 0; 1) be an ordered group and(val( K ); <; � ; � ; 0; 1)
the tropical semiring of its value group. The valuation map, restricted to the setK +

of non-negative elements ofK , is a homomorphism of ordered semirings, i.e., for any
a; b 2 K + , we have:

val(a + b) = val( a) � val(b)

val(ab) = val( a) � val(b) :

a � b ) val(a) � val(b)

Proof. The identity val( ab) = val( a) � val(b), and the implication a � b ) val(a) �
val(b) are direct consequences of the de�nition of the order on val(K ) and of the operation
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� . We now prove the equality val(a+ b) = val( a)� val(b). Consider two positive elements
a; b 2 K . Without loss of generality, we can assume thata � b. We have the inequalities
2a � a + b � a=2, and thus val(a + b) = val( a) = max(val( a); val(b)).

2.2.3 Signed tropical numbers, and the signed valuation map

We now enhance the valuation map with a sign information. Thesigned tropical numbers
T � = T+ [ T � consist of two copies ofT, the set of positive tropical numbers T+ and the
set of negative tropical numbersT � . These elements are respectively denoted asa and
	 a for a 2 T. The elementsa and 	 a are distinct unlessa = 0T . In the latter case, these
two elements are identi�ed, i.e., we have0T = 	 0T . The sign of the elementsa and 	 a
are sign(a) = 1 and sign(	 a) = � 1, respectively, whena is not 0T , and sign(0T) = 0.
The re
ection map a 7! 	 x sends a positive elementa to 	 a, and a negative element	 a
to a. The modulus of x 2 f a; 	 ag is de�ned as jxj := a. The multiplication x � y of two
elementsx; y 2 T � yields the element whose modulus isjxj + jyj and whose sign is the
product sign(x) sign(y). The positive part and the negative part of an elementa 2 T �

are the tropical numbers a+ and a� de�ned by:

a+ =
�

jaj if a is positive
0 otherwise

a� =
�

0 if a is positive
jaj otherwise

When T = val( K ) is the tropical semiring of an ordered �eld, we de�ne the signed
valuation map sval : K ! T � by:

sval : a 7!

(
val(a) if a � 0 ;

	 val(a) otherwise.

Consequently, a 2 K and sval(a) have the same sign, sval(� a) = 	 sval(a), and the
modulus of sval(a) is val( jaj). Moreover, the signed valuation map preserves the mul-
tiplication: we have sval(ab) = sval( a) � sval(b) for any a; b 2 K . Note that we do
not equip the tropical signed numbers with an additive law, asa � (	 a) would not be
de�ned. Similarly, we do not de�ne an order on T � . However,T � can be embedded into
a semiring, called thesymmetrized tropical semiring; see Section 7.2.1. In the following,
an element of an ordered �eld will be written in bold and its signed value with a stan-
dard font, e.g., a = val( a). Modulus, the re
ection map, positive and negative parts,
and signed valuation extend to matrices entry-wise.

2.2.4 Hahn series

Given a (totally) ordered abelian group (G; <; + ; 0), the set of Hahn series R[[tG]] with
value group (G; <; + ; 0) and with real coe�cient consists of formal series

a :=
X

g2 G

agtg ;
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where the coe�cients ag are real numbers, and thesupport Supp(a) := f g 2 G j ag 6= 0g
is anti well-ordered (i.e., every non-empty subset of Supp(a) admits a greatest element).
Note that Hahn series are sometimes de�ned as series with well-ordered support, instead
of anti well-ordered. As we use the (max; +) notation for tropical semirings, we �nd it
more natural to adopt the anti well-ordered de�nition. We shall equip the set of Hahn
series with an L or-structure (R[[tG]]; <; + ; �; 0; 1). The constant symbol 0 is interpreted
as the unique Hahn series with empty support, while 1 is the Hahn series 1Rt0G , where
1R is the multiplicative identity of R and 0G the additive identity of G. Addition and
multiplication are de�ned, for any a =

P
g2 G agtg and b =

P
g2 G bgtg, by:

a + b :=
X

g2 G

(ag + bg)tg ;

ab :=
X

g2 G

0

B
B
@

X

�;� 2 G;
� + � = g

a� b�

1

C
C
A tg :

Theorem 2.5. Hahn series, equipped with the addition and multiplication of formal
series, forms a �eld.

Proof. We give a sketch of proof for the sake of completeness, and refer to [Pas77,
Chap. 13, Theorem 2.11] for details. LetA = Supp(a) and B = Supp(b). To prove
the stability of the addition, it is su�cient to observe that Supp( a + b) � A [ B is anti
well-ordered, sinceA and B are.

For the multiplication, one �rst show that Supp( ab) is well-ordered. It comes from
the fact that Supp(ab) is a subset of the Minkowski sumA + B , and that A + B is anti
well-ordered. Then, one can show that for anyg 2 Supp(ab), there is a �nite number
of (�; � ) 2 A � B such that � + � = g. Consequently, the coe�cient of tg in ab is a
well-de�ned real number.

Proving that a a 6= 0 has a multiplicative inverse is slightly more involved. In a
nutshell, a can always be written asa = ctg(1 � w ) with c a non-zero real number,
g 2 G and w a Hahn series with support included in the negative elements ofG. Clearly
c� 1t � g is a multiplicative inverse of ctg. One then proves that the geometric series
1 +

P + 1
i =1 w i is a Hahn series, which is the inverse of 1� w .

The leading coe�cient lc(x ) of a Hahn seriesa =
P

g2 G a� tg is the coe�cient a� max

where � max is the greatest element of Supp(a). By convention, we set lc(0) := 0. A
non-null Hahn seriesa is positive if lc( a) > 0, and we write a > 0 in this case. Similarly,
we write a > b if a � b > 0. This de�nition turns R[[tG]] into an ordered �eld. Moreover,
the topology induced by this order makesR[[tG]] a topological �eld.

Two Hahn seriesa; b belongs to the same Archimedean class if and only if Supp(a)
and Supp(b) have the same greatest element. Hence, the value group ofR[[tG]] is G, and
we can write the Archimedean valuation map as val(a) = max f g 2 Supp(a)g.

Theorem 2.6 ([DW96, Theorem 2.15(iv)]). If G is divisible, then R[[tG]] is a real closed
�eld.
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2.2.5 The Hardy �eld of an o-minimal structure

We now present a particular class of ordered �elds of germs real-valued functions, called
Hardy �elds. Such a �eld arises from functions that are de�nable in a o-minimal struc-
ture. This framework have been devised by Alessandrini to study the tropicalization of
semi-algebraic sets [Ale13].

An expansionL 0 of a languageL is obtained by adding some new relations, functions
and constants to L . We de�ne an expansion of an L -structure M to be an L 0-structure
M 0 such that: L 0 is an expansion ofL , M and M 0 have the same domain, and the
interpretation of the language L in M coincides with the one inM 0. In the rest of this
section, R = ( R; L ) will denote an expansion of theL or-structure of the real numbers �R.
In particular, the domain of R is the set of real numbers.

A set A 2 Rk is de�nable in R if there exists an L -formula � (v1; : : : vk ; w1; : : : ; wl )
and an elementb 2 Rl such that A = f a 2 Rk j R j= � (a; b)g. Given a de�nable set
A 2 Rk , a map F : A ! Rl is de�nable if its graph f (a; F (a)) j a 2 Ag � Rk+ l is a
de�nable set.

The structure R is o-minimal if every subset of R that is de�nable in R is a �-
nite union of points and intervals with endpoints in R [ f�1 ; + 1g . Under the o-
minimality requirement, de�nable sets and maps are \well-behaved". For example, the
set f (x; sin(1=x)) j x > 0g is not de�nable in an o-minimal structure. We refer the reader
to [vdD98] or [Cos00] for more details.

We say that two de�nable functions f; g : R ! R are equivalent, and we writef � g,
if f (t) = g(t) ultimately, i.e., for all t large enough. Thegerm f of a de�nable function f
is the equivalence class off for the relation � . By abuse of notation, f will also denote
a representative of the germf .

Let H (R) := f f j f : R ! R is de�nable in Rg be the set of germs of functions
de�nable in R. Each function symbol F 2 F has a natural interpretation in H (R), by
de�ning F (f 1; : : : ; f nF ) as the germ of the de�nable function t 7! F (f 1(t); : : : ; f nF (t)).
Besides, the setR is embedded intoH (R) by identifying each element a 2 R with the
constant function with value a. This provides an interpretation of the constant symbols
of L in H (R). Finally, given a relation R of the languageL and f 1; : : : ; f nR 2 H (R),
the set f t j R j= R(f 1(t); : : : ; f nR (t))g is de�nable, and thus consists in a �nite union of
points and intervals. Hence,R(f 1(t); : : : ; f nR (t)) is either ultimately true or ultimately
false. This provides an interpretation of R over H (R). In particular, f > 0 if f (t) > 0
ultimately.

Consequently,H (R) has a natural L -structure, which we denote byH(R). It follows
from [Cos00, Prop. 5.9] that H(R) and R have the same full theory; see also [Fos10,
Lemma 2.2.64]. In other words, the following holds.

Proposition 2.7. Let R be an o-minimal L -structure and H(R) the natural L -structure
of the germs of functions that are de�nable inR. Then, for any L -sentence� , we have
R j= � if and only if H(R) j= � .

As an expansion of�R, the structure R satis�es the axioms of the theory of real closed
�elds. By Proposition 2.7, the structure H(R) satis�es the same axioms. As a result,
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H (R) is a real closed �eld that we will refer to as the Hardy �eld of structure R. In
particular, H (R) is an ordered �eld, and it carries a natural topology induced by the
ordering. The standard topology on R coincides with the subspace topology induced
from H (R).

A structure R is polynomially boundedif for any de�nable function f : R ! R, there
exists a natural number n such that jf (t)j � tn ultimately. Miller proved [Mil94b] that
in an o-minimal and polynomially bounded expansion of �R, if a de�nable function f is
not ultimately zero, then there exists an exponentr 2 R and a non-zero coe�cient c 2 R
such that

lim
t ! + 1

f (t)
t r = c : (2.1)

The set of such exponentsr forms a sub�eld of R, called the �eld of exponents of the
structure R.

It follows that the Archimedean value group of H(R) is the �eld of exponents of R,
with its additive law. Moreover, the Archimedean valuation can be identi�ed with the
map:

f 7! lim
t ! + 1

log(jf (t)j)=log(t) :

In the following, we will use the structure �RR which expands �R by adding to the
languageL or the family of function symbols (f r )r 2 R, and interpreting f r as the power
function that maps a positive number t to t r , and any non-positive number to 0. The
structure �RR is o-minimal, polynomially bounded and its �eld of exponents is R; see
[Mil94a, Mil12]. It follows that the value group of H ( �RR) is the additive group (R; <
; + ; 0). Another structure with the same properties is Ran� , the reals with restricted
analytic functions and convergent generalized power series [vdDS98].

2.2.6 Maximal ordered groups and �elds

Hahn series forms the more general ordered �eld we need to consider. Indeed, every
ordered �eld can be embedded inR[[tG]] for some groupG. Recall that an ordered group
G is torsion-free, and thus there exists a unique (up to isomorphism) minimal divisible
group that contains G, called the divisible hull of G; see [Mar02, Lemma 3.1.8].

Theorem 2.8 ([CD69, Theorem II]) . Let K be an ordered �eld with value groupG.
Then, there exists a value and order preserving isomorphism� of K into a sub�eld of
R[[tG]].

In addition, assume that �R � K is any order-isomorphic copy of the reals andr 7! �r
is the unique order-isormorphism ofR onto �R. Let � � G be a rationally independant
basis for the divisible hull ofG, and (x � ) � 2 � � K + a system of positive representatives
of � . Then � can be chosen so that� (�r x � ) = rt � for each r 2 R and � 2 � .

Kaplansky proved that any valued �eld of characteric 0 can be embedded into a
power series �eld, and his result extends to �elds of positive characteric under some
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conditions [Kap42, Theorem 6]. So Theorem 2.8 is sometimes called \Kaplansky's em-
bedding Theorem" [DW96, Theorem 2.17]; see also [Poo93]. Conrad and Dauns in fact
extended this result to lattice-ordered �elds [CD69]; see also [Ste10].

The additive group of Hahn series is also the more general group we need.

Theorem 2.9 (Hahn's embedding Theorem [Hah07]). Every ordered group is order-
isomorphic to a subgroup of the additive group of Hahn seriesR[[tS]], for some ordered
set S.

The notion of Archimedean classes extends to ordered groups, and the setS is in
fact the set of Archimedean classes ofG. Several proofs of this theorem are known, see
the books [DW96, Fuc63, Ste10] and the references therein.
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Chapter 3

Tropicalizing the simplex method

The simplex method is a family of algorithms that solve classical linear programs on an
ordered �eld K , i.e., problems of the form

minimize c> x

subject to Ax + b � 0; x 2 K n ;
LP (A ; b; c)

where A 2 K m� n , b 2 K m , and c 2 K n . In this chapter, we give conditions under
which a simplex algorithm can be implemented using only the \tropical" information
sval

�
A b
c 0

�
.

This is motivated by the tropical counterpart of linear programming developped
in the subsequent chapters, but also by the question of the complexity of linear pro-
gramming over ordered �elds [Meg87], in particular over �elds of rational functions
[Jer73a, ER89, FAA02]. Intuitively, we will perform arithmetic operations over series
expansions of rational functions using only the leading terms.

In a nutshell, to perform the basic operations of the simplex method, pivoting and
computing the signs of reduced costs, it is su�cient to know the signs of some minors
of

�
A b
c 0

�
. Hence, to tropicalize, it is su�cient to determine the signs of the minors of�

A b
c 0

�
using only sval

�
A b
c 0

�
. However, pivoting rules may be arbitrary procedures. In

order to tropicalize, we restrict ourselves tosemi-algebraicpivoting rules, i.e., pivoting
rules that have access to the problem at hand only through the signs of polynomials
evaluated on

�
A b
c 0

�
. It turns out that, for a polynomial P, the sign of P

�
A b
c 0

�
can be

computed from sval
�

A b
c 0

�
, provided that sval

�
A b
c 0

�
satis�es some genericity conditions.

Moreover, under assumptions onP, that sign can be determined in time polynomial in
the input size of sval

�
A b
c 0

�
.

This chapter is organized as follows. We �rst recall basic notions and results on
polyhedra and linear programming in Section 3.1. A key idea of this chapter is contained
in Section 3.2, where we explain how the sign of a polynomial can be computed by tropical
means. Section 3.3 discusses the simplex method in the context of ordered �elds. Last,
semi-algebraic pivoting rules and the tropical implementation of simplex algorithms are
presented in Section 3.4.

25
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In this chapter, we demonstrate the feasibility of the tropicalization of the simplex
method. Even if the tropical versions of pivoting and computing reduced costs pre-
sented here run in polynomial time, their complexities can be improved. More e�cient
implementations are presented in Chapter 7.

The tropicalization of simplex operations (pivoting and computing reduced costs)
was exposed in [ABGJ13b]. In [ABGJ13a], the tropicalization ofcombinatorial pivoting
rules was presented (combinatorial pivoting rules rely only on the signs of the minors
of the input matrix). The study of the tropical shadow-vertex rule [ABG14] led to the
more general framework ofsemi-algebraicpivoting rules that we adopt here.

3.1 Polyhedra over ordered �elds

In this section, we review relevant basic results on linear programming and polyhedra
over ordered �elds. Throughout this chapter, K denotes an arbitrary ordered �eld.

A halfspacein dimension n � 1 is a set of the form

H � (a; b) := f x 2 K n j ax + b � 0g (3.1)

where a 2 K 1� n and b 2 K . When b = 0, it is said to be a linear halfspace. The
boundary

H (a; b) := f x 2 K n j ax + b = 0g (3.2)

of an halfpsace in ahyperplane. A polyhedron is the intersection of �nitely many halfs-
paces,i.e., a set of the form:

P (A ; b) := f x 2 K n j Ax + b � 0g :

When b is the zero vector,P (A ; b) is a polyhedral cone.

3.1.1 Convexity

A subset P of the K -vector spaceK n is convex if, for any x ; y 2 P , the set P also
contains the convex hull conv(x ; y ) of x and y , where:

conv(x ; y ) := f �x + �y j � ; � 2 K + and � + � = 1g :

More generally, the convex hull conv(S) of an arbitrary subset S � K n is the smallest
convex subset containingS. When S consists of �nitely many points x 1; : : : ; x k 2 K n ,
we have:

conv(x 1; : : : ; x k ) :=

(
kX

i =1

� kx k j � i 2 K + for all i 2 [k]; and
kX

i =1

� i = 1

)

:

We say that a point v in a convex setP is an extreme point, or vertex, of P if it cannot
be expressed as a convex combinaison of points inP n f vg. This means that if v is
contained in conv(x ; y ) for some x ; y 2 P , then v = x or v = y .
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A convex conein K n is a convex setC that is also stable under multiplication by
positive scalars, i.e., for any x 2 C and any positive � 2 K , the point �x belongs
to C . Equivalently, C is a convex cone if and only if for any �nite subset of points
x 1; : : : ; x k 2 C , the set C contains their positive hull pos(x 1; : : : ; x k ), where:

pos(x 1; : : : ; x k ) :=

(
kX

i =1

� kx k j � i 2 K + for all i 2 [k]

)

:

As for convex hull, the positive hull pos(S) of an arbitrary subset S � K n is the
smallest convex cone containingS, or, equivalently, the union of pos(x 1; : : : ; x k ) for all
�nite number of points x 1; : : : ; x k 2 S.

A ray of a convex coneC is a set of the form [r ] := f �r j � 2 K + g for some non-null
vector r 2 C . We say that a ray [r ] is an extreme ray of the convex coneC if x 2 [r ]
or y 2 [r ] wheneverr 2 pos(x ; y ) for some x ; y 2 C .

The \unbounded" part of a convex set P is described by its recession conerec(P ),
where:

rec(P ) := f r 2 K n j �r + x 2 P for all x 2 P and all � 2 K + g :

When P is a non-empty polyhedronP (A ; b), its recession cone coincides with the poly-
hedral coneP (A ; 0). By extension, we say that [r ] is an extreme ray of the convex set
P if [r ] is an extreme ray of its recession cone rec(P ).

3.1.2 Double description

In the remaining of this section, we shall prove the following fundamental theorem.

Theorem 3.1. A polyhedron on an ordered �eld is the convex hull of �nitely many point
and rays. More precisely, for any A 2 K m� n and b 2 K m , there exists two �nite sets
V ; R � K n such that:

P (A ; b) = conv( V ) + pos( R ) ; (3.3)

where conv(V ) + pos( R ) := f x + y j x 2 conv(V ); y 2 pos(R )g is the Minkowksi sum
of these two sets.

We shall derive Theorem 3.1 as a corollary of a slightly more precise statement for
bounded polyhedra.

Theorem 3.2 ([CC58]). A bounded polyhedron on an ordered �eld is the convex hull of
a �nite set of points, the set of its extreme points.

Corollary 3.3. If P (A ; b) is included in the non-negative orthant ofK n , then

P (A ; b) = conv( V ) + pos( R ) ; (3.4)

where V is the set of extreme points ofP (A ; b), and R is the set of its extreme rays.
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Proof. Let us write P := P (A ; b). We homogeneizeP into the polyhedral cone

C = f (x ; � ) 2 K n � K j Ax + b� � 0; � � 0g : (3.5)

Clearly, if x belongs to the polyhedronP , then (x ; 1) 2 C. An conversely, if (x ; � ) is
a non-null vector contained in the coneC, then either � = 0 and x is in the recession
cone ofP , or � � 1x 2 P . Observe that an extreme point x of P yields an extreme ray
[(x ; 1)] of C, and an extreme ray [r ] of the recession cone ofP provides an extreme ray
[(r ; 0)] of C. Futhermore, any extreme ray of C arises in this way.

Since P is included in the non-negative orthant of K n , its homogeneization C is
included in the non-negative orthant of K n+1 . It follows that the set of rays of C can be
identi�ed with the bounded polyhedron obtained by intersecting C with the hyperplane
f (x ; � ) 2 K n+1 j

P n
j =1 x j + � = 1g. By Theorem 3.2, this bounded polyhedron is the

convex hull of its set G of extreme points. Consequently, the coneC is the conic hull
of G, and it is easy to see thatG consists of a representative of each extreme ray ofC.
It follows that P = conv( V ) + pos( R ) where V = f x 2 K n j (x ; 0) 2 Gg is the set of
extreme points of P , and R = f r j (r ; � ) 2 G for some� 6= 0g is the set of extreme
rays of P .

An arbitrary polyhedron may not have extreme points or extreme rays, but it is still
�nitely generated.

Proof of Theorem 3.1. Observe that an arbitrary polyhedron P (A ; b) � K n is a projec-
tion of the polyhedron

f (x + ; x � ) 2 K n � K n j Ax + � Ax � + b � 0; x + � 0; x � � 0g ;

which is included in the positive orthant, and that this projection preserves convex and
conic hulls. The result then follows from Corollary 3.3.

3.1.3 Classical linear programming

A linear program is an optimization problem of the form:

minimize c> x

subject to Ax + b � 0; x 2 K n ;
LP (A ; b; c)

where A 2 K m� n , b 2 K m , and c 2 K n . Thus a linear program LP (A ; b; c) seeks
a minimizer of a linear function x 7! c> x over a polyhedron P (A ; b). When P (A ; b)
is empty, we say that LP (A ; b; c) is infeasible. A linear program is unbounded if, for
any � 2 K , there exists a feasible pointx such that c> x < � . An optimal solution of
LP (A ; b; c) is a x � 2 P (A ; b) such that c> x � � c> x for all x 2 P (A ; b). If an optimal
solution exists, c> x � is called the optimal value of LP (A ; b; c).

Proposition 3.4. A linear program LP (A ; b; c) over an ordered �eld K is either infea-
sible, unbounded, or admits an optimal solution.
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Proof. If the linear program is infeasible, then the other two possibilities are excluded.
Now suppose thatP (A ; b) is not empty. Then, by Theorem 3.1, there exists two �nite
setsV ; R � K n such that

P (A ; b) = conv( V ) + pos( R ) :

If there exists a r 2 R such that c> r < 0, then the linear program is unbounded.
Otherwise any feasible pointx satisfy c> x � minv 2 V c> v, and an element ofV is an
optimal solution.

Unboundedness can be certi�ed as follows.

Lemma 3.5. A feasible linear program LP (A ; b; c) is unbounded if and only if there
exists a r in the polyhedral coneP (A ; 0) such that c> r < 0.

Proof. Continuing the previous proof, the feasible linear program is unbounded if and
only if there exists r 2 R such that c> r < 0, whereP (A ; b) = conv( V )+pos( R ). Then,
observe that pos(R ) is the recession cone ofP (A ; b), which is exactly the polyhedral
coneP (A ; 0).

Duality

The dual linear program of LP (A ; b; c) is :

maximize � b> y

subject to A > y = c; y � 0; y 2 K m :
LD (A ; b; c)

Theorem 3.6. Let x be a feasible solution of the linear programLP (A ; b; c) and y a
feasible solution of the dual problemLD (A ; b; c). Then, c> x � � b> y .

Proof. Since y is dual feasible, we havec> = y > A . Hence, c> x = y > Ax and c> x +
b> y = y > (Ax + b). Since y � 0 and Ax + b � 0, it follows that c> x + b> y � 0.

Theorem 3.7 (Complementary Slackness). Let x � be a feasible solution of the linear
program LP (A ; b; c) and y � a feasible solution of the dual problemLD (A ; b; c) such
that:

y �
i (A i x � + bi ) = 0 for all i 2 [m] : (3.6)

Then, x � and y � are optimal solutions of LP (A ; b; c) and LD (A ; b; c) respectively.
Moreover, c> x � = � b> y � .

Proof. By Weak Duality (Theorem 3.6), � b> y � is a lower bound for the optimal value of
LP (A ; b; c), and c> x � is an upper bound for the optimal value ofLD (A ; b; c). Hence, it
is su�cient to prove the equality c> x � = � b> y � . As in the proof of Theorem 3.6, we have
c> x � + b> y � = ( y � )> (Ax � + b). Then, the conditions (3.6) imply that ( y � )> (Ax � + b) =
0.
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3.2 Computing the sign of a polynomial by tropical means

A key ingredient to tropicalize algorithms is to determine the sign of a polynomial
expression on an ordered �eldK using only the information provided by the valuation
map. Given a polynomial P 2 Q[X 1; : : : ; X l ], we show that under genericity conditions
on � 2 K l , the sign of P(� ) can be computed using only sval(� ). More precisely, to
compute the sign ofP(� ), we solve a linear program over the Newton polytope of the
polynomial P. The objective function of the linear program is given by sval(� ). Hence,
if we have an algorithm that solves linear programs over the Newton polytope ofP in
polynomial time, the sign of P(� ) can be computed in time polynomial in the input size
of sval(� ).

We shall write a multivariate polynomial P 2 Q[X 1; : : : ; X l ] as the formal expression:

P =
X

� 2 �

q� X � ;

where � � Nl is a �nite set, the coe�cients q� 6= 0 are rationals numbers, and X � =Q l
i =1 X � i

i .

3.2.1 Tropicalization of polynomials

The tropicalization of a polynomial P 2 Q[X 1; : : : ; X l ] is the formal tropical expression:

trop( P) :=
M

� 2 �

tsign(q� ) � � � � 1
1 � � � � � � � � l

l ; (3.7)

where tsign(q� ) = 1 if q� > 0, and tsign(q� ) = 	 1 if q� < 0. A tropical vector � 2 T l
�

is generic for the polynomial P if the maximum in
M

� 2 �

j� j � � 1
1 � � � � � j � j � � l

l = max
� 2 �

� 1j� j1 + � 2j� j2 + � � � + � l j� j l ; (3.8)

is equal to 0 or attained on a unique � � 2 � .
We also say that � 2 T l

� is sign-generic for P if, for any two �; � 2 � attaining the
maximum in (3.8), the terms tsign(q� ) � � � � 1

1 � � � � � � � � l
l and tsign(q� ) � � � � 1

1 � � � � � � � � l
l

have the same tropical sign. When� 2 T l
� is generic, or sign-generic, forP, we write:

trop( P)( � ) := tsign( q� � ) � � � � �
1

1 � � � � � �
� � �

l
l (3.9)

where � � is any maximizer in (3.8). Observe that if � is generic forP, then it is sign-
generic. Also notice that the modulus of trop(P)( � ) is equal to (3.8). We say that � 2 �
is a maximizer for jtrop( P)( � )j if it attains the maximum in (3.8).

The determinant is a polynomial that plays an important role in this manuscript.
The tropicalization of the determinant of a square matrix M 2 Tn� n

� will be denoted by
tdet( M ). It is de�ned by:

tdet( M ) :=
M

� 2 Sym(n)

tsign(� ) � M 1� (1) � � � � � M n� (n) ;
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where Sym(n) is the set of all permutations of [n], and tsign(� ) = 1 if � is an even
permutation and tsign( � ) = 	 1 otherwise. Observe that

j tdet( M )j = max
� 2 Sym(n)

jM 1� (1) j + � � � + jM n� (n) j : (3.10)

Computing a maximizer for j tdet( M )j amounts to �nding a permutation which at-
tains the maximum in (3.10). Such a permutation is a solution of the assignment prob-
lem with costs (jM ij j). It can be found in time O(n3) using the Hungarian method; see
[Sch03,x17.3].

Lemma 3.8. Consider a polynomial P =
P

� 2 � q� X � 2 Q[X 1; : : : ; X l ] and � 2 K l .
Suppose that� = sval( � ) is sign-generic for the polynomialP, then

trop(P)( � ) = sval( P(� )) :

Proof. First one easily checks that if two elementsx ; y 2 K have the same value and
the same sign, then val(x + y ) = max(val( x ); val(y )) and x + y has the same sign asx
and y . Similarly, if val( x ) > val(y ), then we have val(x + y ) = val( x ) and x + y has
the same sign asx .

Let � � be the set of maximizer for jtrop( P)( � )j. For any � � 2 � � , the image under
the signed valuation map of the monomialq� �

Q
i �

� �
i

i is trop(P)( � ). Consequently, the

signed value of
P

� � 2 � � q� �
Q

i �
� �

i
i is also trop(P)( � ). For every � 2 � n� � the monomial

q�
Q

i � � i
i has a value strictly smaller than jtrop( P)( � )j. Hence, the signed value ofP(� )

is trop(P)( � ).

When � 2 T l
� is (sign-)generic for a polynomialP, computing trop( P)( � ) amounts to

�nding a maximizer for jtrop( P)( � )j. It turns out that such a maximizer is an optimal
vertex of an (abstract) linear program over the polytope conv(� ), the Newton polytope
of P.

To see this, let us �rst suppose that � does not have0 entries. In that case, trop(P)( � )
is not equal to 0. Moreover, jtrop( P)( � )j is the maximum of the linear function � 7!P

i 2 [l ] � i j� j i . evaluated on the �nite number of points � 2 � . By convexity, jtrop( P)( � )j
is the optimal value of the following optimization problem:

maximize
X

i 2 [l ]

� i j� j i

subject to � 2 conv(� ):

(3.11)

Hence, the set of maximizers forjtrop( P)( � )j is exactly the set of optimal vertices of the
linear program (3.11). Observe that the feasible set of (3.12) is included inRl , while the
objective function takes values in the totally ordered abelian groupG = T n f 0g. Hence,
the problem (3.12) is a linear program onRl with an abstract linear objective function.
Now, if � 2 T l

� has some entries equal to0, a small technical di�culty arises.
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Lemma 3.9. Let T = T(G). Consider a polynomial P =
P

� 2 � q� X � 2 Q[X 1; : : : ; X l ]
and suppose that� 2 T l

� . Then, a maximizer for jtrop(P)( � )j is given by an optimal
vertex of the problem:

maximize
X

i 2 [l ]

� i di

subject to � 2 conv(� );

(3.12)

whered is the vector with entries in the additive groupQ � G, ordered lexicographically,
de�ned by di = ( � 1; 0) if � i = 0 and di = (0 ; j� j i ) otherwise.

Proof. If � has no0 entries, then the problems (3.11) and (3.12) have the same optimal
solutions. Otherwise, if � has 0 entries, it may happen that trop( P)( � ) = 0. This is
the case if and only if, for all � 2 � , there exists an i 2 [l ] with � i = 0 and � i > 0.
Consequently, trop(P)( � ) = 0 if and only if the optimal value of

maximize
X

i 2 [l ]j� i = 0

� i

subject to � 2 conv(� );

(3.13)

is strictly greater than 0. In this case, every� 2 � is a maximizer for jtrop( P)( � )j. This
holds in particular for an optimal vertex of (3.12)

If trop( P)( � ) 6= 0, then the optimal value of (3.13) is equal to 0, andjtrop( P)( � )j is
the optimal value of:

maximize
X

i 2 [l ]j� i 6= 0

� i

subject to � 2 conv(� )
X

i 2 [l ]j� i = 0

� i = 0 :

(3.14)

Furthermore, any optimal vertex of (3.14) is a maximizer for jtrop( P)( � )j. Observe
that (3.14) and (3.12) have the same set of optimal solutions.

3.2.2 Tropically tractable polynomials

We say that a polynomial P =
P

� 2 � q� X � 2 Q[X 1; : : : ; X l ] is tropically tractable if
there is an algorithm that, given any � 2 T l

� that is sign-generic for P, returns the the
sign of trop(P)( � ) in time polynomial in the input size h� i of � .

The (binary) input size of an integer z 2 Z is the number of bit required to write
z in the binary representation. When z = 0 only one bit is needed. Otherwise, we
need one bit for the sign anddlog2(jzj + 1) e bits for the absolute value jzj, henceh� i :=
dlog2(jzj + 1) e+ 1. The input size of a rational number r , which can always be written
as r = p=qwhere p and q > 0 are relatively prime integers, ishr i = hpi + hqi . The input
size of a matrix is the sum of the input sizes of its entries. In particular, the input size
of a vector v 2 Ql is always greater thanl.



3.2 Computing the sign of a polynomial by tropical means 33

The notion of input size is a-priori not well de�ned for elements of an arbitrary group
G. Since this is su�cient for our purposes, we shall study the tropical tractability of
polynomials over tropical semirings of the form T(Qr ), where r is an integer and Qr

is equipped with component-wise addition and lexicographic order. Note that Hahn's
embedding theorem (Theorem 2.9) states that any totally ordered abelian groupG is
order-isomorphic to an additive subgroup ofRjSj equipped with a lexicographic order,
whereS is a suitable (possibly in�nite) ordered set. Hence,G contains a subgroup which
can be identi�ed with a subgroup of QjSj . The notion of input size is then well-de�ned
for the elements ofQjSj with a �nite number of non-zero components. This of course
depends on the embedding intoQjSj , which may not be known a-priori. Here, we assume
that such an embedding is known.

We now give su�cient conditions on a polynomial to be tropically tractable.

Proposition 3.10. Consider a polynomial P =
P

� 2 � q� X � 2 Q[X 1; : : : ; X l ] that sat-
is�es the following properties:

(i) there exists an algorithm which computessign(q� ), for every � 2 � , in time poly-
nomial in l ;

(ii) the Newton polytope conv(� ) is contained in a L 1 -ball of radius R, where the input
size of R is polynomial in l ;

(iii) there exists an algorithm, which given any � 2 Ql , returns an optimal vertex of the
linear program

maximize � > �

subject to � 2 conv(� );
(3.15)

in time polynomial in h� i .

Then P is tropically tractable.

Proof. Let T = T(Qr � 1) for a �nite r > 1 and � 2 T l
� be sign-generic for trop(P). By

Lemmas 3.8 and 3.9, it is su�cient to �nd an optimal vertex of the problem (3.12), i.e.,
a maximizer of the linear function � 7!

P
i 2 [l ] � i di which takes values in the lexicograph-

ically ordered group Qr . We shall use instead a real-valued linear objective function,
� 7! � > � for some � 2 Ql with an input size bounded by l and hdi , that provides the
same set of optimal solutions.

Note that we are interested in optimal vertices of conv(� ), hence of elements of� .
Thus, it is su�cient to �nd a � such that � 7!

P
i 2 [l ] � i di and � 7! � > � have the same

maximizers in � . Let us denotedi = ( dij ) j 2 [r ] 2 Qr for any i 2 [l ].
Up to multiplying d by the common denominators of the (dij ) ij , we can assume that

the dij are integers (note that this transformation does not change the sum of the input
sizes of thedij ). By assumption (ii), there a exists an integer R0 � 1, whose input size
in bounded by a polynomial in l and h� i , such that

� R0 <
X

i 2 [l ]

� i � ij < R 0 (3.16)
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for all points � 2 � and all j 2 [r ].
The objective vector � 2 Ql , de�ned by � i =

P
j 2 [1+ r ] dij (2R0) � j for all i 2 [l ],

satis�es the required properties. Indeed,� > � � � > � for some�; � 2 � if and only if

X

j 2 [r ]

0

@R0+
X

i 2 [l ]

� i dij

1

A (2R0) � j �
X

j 2 [r ]

0

@R0+
X

i 2 [l ]

� i dij

1

A (2R0) � j : (3.17)

By (3.16), the numbers R0+
P

i 2 [l ] � i dij and R0+
P

i 2 [l ] � i dij are positive integers
strictly smaller than 2 R0. Hence, the left and right-hand side of (3.17) can be thought
of as expansions of rationals in base 2R0. If follows that the inequality (3.17) holds if
and only if

0

@
X

i 2 [l ]

� i di 1; : : : ;
X

i 2 [l ]

� i dir

1

A � lex

0

@
X

i 2 [l ]

� i � i 1; : : : ;
X

i 2 [l ]

� i � ir

1

A :

Lemma 3.11. A determinant is a tropically tractable polynomial. More precisely, given
a M 2 Tn� n

� which is sign-generic for then � n determinant polynomial, the sign of
tdet( M ) can be computed inO(n3) operations an in space polynomial inhM i .

Proof. This is a consequence of Proposition 3.10. The determinant of an � n matrix is
the polynomial of Q[X 11; : : : ; X nn ] de�ned by

det =
X

� 2 S([n])

sign(� )
Y

i 2 [n]

X i� ( i ) :

A permutation � 2 S([n]) corresponds to the vector of exponents� ij 2 Nn� n de�ned
for all i 2 [n] by � i� ( i ) = 1 and � ij = 0 for j 6= � (i ). Hence, the Newton polytope of the
n � n determinant is the Birkho� polytope: its vertices are in bijection with the perfect
matchings of the complete bipartite graph between two sets of nodes of cardinalityn.
This polytope is contained in the L 1 -ball of radius 1 centered at the origin. Hence,
Proposition 3.10 (ii) is satis�ed.

The sign of a permutation � 2 S([n]) can be computed inO(n) operations by counting
the number of transpositions. Consequently, Proposition 3.10 (i) holds.

Finally, a linear program over the Birkho� polytope is a maximal assigment problem.
It can be solved in strongly polynomial time (in fact in O(n3) operations) by the Hun-
garian method; see [Sch03, Theorem 17.3]. Thus, Proposition 3.10 (iii) is satis�ed.

A separation oracle for a convex setC � Rl is a routine which, given � 2 Rl decides
whether � 2 C, and if not, returns a hyperplane that separates� from C, i.e., �nds a
vector d 2 Rl such that d> � > maxf d> � j � 2 Cg.

Proposition 3.12. Consider a polynomialP =
P

� 2 � q� X � 2 Q[X 1; : : : ; X l ] that satis-
�es Conditions (ii) and (i) of Proposition 3.10, and such that there exists a polynomial-
time separation oracle for the Newton polytopeconv(� ). Then P is tropically tractable.
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Proof. By the results of Gr•otschel, Lov�asz and Schrijver (Theorem 6.6.5 and Lemma 4.2.7
in [GLS88]), an optimal vertex of the linear program (3.15) can be found inO(l) opera-
tions, and in space polynomial inl and h� i , if there exists a polynomial-time separation
oracle for the Newton polytope conv(� ), and the vertices of conv(� ) have an input size
bounded by a polynomial in l .

3.3 The simplex method

In this section, we recall the basic notions needed to present the simplex method.

Basic points

A basisof a polyhedronP (A ; b) a subsetI � [m] of cardinality n such that the submatrix
A I , formed from the rows with indices in I , is non-singular. The system

\

i 2 I

H (A i ; bi ) = f x 2 K n j A I x + bI = 0g (3.18)

contains a unique point, called abasic point and denoted asx I . When x I belongs to
the polyhedron P (A ; b), it is called a feasible basic point, and we say that I is a feasible
basis. By extension, we say that I is a (feasible) basis of a linear programLP (A ; b; c)
if it is a (feasible) basis for its feasible setP (A ; b).

Remark 3.13. A basis is sometimes de�ned by a partition of the (explicitly bounded)
variables (w1; : : : ; wm ) in \basic" and \non-basic" variables, where w = Ax + b. Observe
that I corresponds to the \non-basic" variables as it indexes the zero coordinates ofw .
The set I can also be interpreted as the set of \basic" variables in the dual program.

Basic points are the \algebraic" counterpart of the geometric notion of extreme
points.

Proposition 3.14. Each feasible basic point of a polyhedron is an extreme point. Con-
versely, each extreme point is a basic point for some feasible basis.

Proof. Let x I be a basic point for some basisI . Suppose by contradiction that x I is
not an extreme point of P (A ; b). Then x I = �y + (1 � � )z for some y ; z 2 P (A ; b)
and 0 < � < 1. As y 6= x I , we haveA i y + bi > 0 for somei 2 I , otherwise y would
be a solution of the system (3.18). Since (1� � )(A i z + bi ) = � � (A i y + bi ) < 0 and
(1 � � ) > 0, we deduce thatA i z + bi < 0, and thus that z 62P (A ; b), a contradiction.

Conversely, consider an extreme pointx of P (A ; b). Let I = f i 2 [m] j A i x + bi = 0g.
If A I has a rank smaller than the dimensionn, then there exists a vectord 6= 0 K n in
the kernel of A I . Hence, for� > 0 small enough, the pointsx + �d and x � �d belongs
to P (A ; b). Hence, x is in the convex hull of two points of P (A ; b) that are distincts
from x . ConsequentlyA I has rank at least n, hence it contains an � n submatrix A I 0

with det( A I 0) 6= 0.
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Note however that two distinct bases I; I 0 can yield the same basic point. This will
not happen under the non-degeneracy assumption explained below.

Given a basis, the corresponding basic point can be computed with Cramer's formul�.

Proposition 3.15 (Cramer's formul�) . Let I be a basis ofP (A ; b). The components
of the basic pointx I 2 K n are given by:

x I
j = ( � 1)n+1+ j det(A I; bj bI )=det(A I ) for all j 2 [n] ; (3.19)

where A I; bj is the submatrix of A I obtained by removing thej th column.

Proof. Consider anyk 2 [m]. Expanding the determinant of
�

A I bI
A k bk

�
along the last row

yields:

det
�

A I bI

A k bk

�
=

0

@
nX

j =1

(� 1)n+1+ j A kj det(A I; bj bI ) + ( � 1)2n+2 bk det(A I )

1

A

=

0

@
nX

j =1

A kj x I
j + bk

1

A det(A I ) :

(3.20)

Now suppose that k 2 I . Since the determinant is an alternative form, we have
det

�
A I bI
A k bk

�
= 0. Since det(A I ) 6= 0, we deduce that

P n
j =1 A kj x I

j + bk = 0. Hence, (3.19)

provides the unique solutionA � 1
I (� bI ) of the system (3.18).

Cramer's formul� provide the following characterization of feasible bases.

Lemma 3.16. Let I be a basis ofP (A ; b). The basis I is feasible if and only if:

det
�

A I bI

A k bk

�
=det(A I ) � 0 for all k 2 [m] n I :

Proof. By de�nition, a basis I is feasible if and only if the basic point x I satisfy the
inequalities Ax + b � 0. By de�nition of a basic point, A I x I + bI = 0. Hence, it su�ces
to check the inequalities A kx I + bk � 0 for k 2 [m] n I . Equation (3.20) shows that

A kx I + bk is equal to det
�

A I bI
A k bk

�
=det(A I ).

Degeneracy

In general, a feasible basic pointx I may be contained in a hyperplaneH (A k ; bk ) for
somek 62I . When this happens we say that the basisI is degenerate. A polyhedron
P (A ; b) is non-degenerate if it does not admit a degenerate basis. Under the non-
degeneracy assumption, two distinct bases yield two distinct basic points. Geometrically,
this implies that the polyhedron is simple. By extension, we say that a linear program
LP (A ; b; c) is (primally) non-degenerate when its feasible setP (A ; b) is non-degenerate.
Non-degeneracy corresponds to the following algebraic conditions.
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Lemma 3.17. A polyhedron P (A ; b) is non-degenerate if and only if, for every feasible
basis I , the following strict inequalities are satis�ed:

det
�

A I bI

A k bk

�
=det(A I ) > 0 for all k 2 [m] n I :

Proof. This follows immediately from the arguments in the proof of Lemma 3.16.

Edges

A subset K � [m + n] of cardinality n � 1 de�nes a (feasible) edge

EK :=
\

i 2 K

H (A i ; bi ) \ P (A ; b)

when
T

i 2 K H (A i ; bi ) is an a�ne line that intersects P (A ; b). Notice that an edge
de�ned in this way may have \length zero", i.e., as a set it may only consist of a single
point. However, this does not happen under the non-degeneracy assumption.

A basic point x I is contained in the n edges de�ned by the setsI n f i outg for i out 2 I .
The edgeEI nf i outg is contained in a half-line f x I + �d I nf i outg j � � 0g that we direct with
the vector dI nf i outg 2 K n , de�ned as the unique solution d 2 K n of the system:

A I nf i outgd = 0 and A i out d = 1 : (3.21)

The edgeEI nf i outg is unbounded if and only if the set

Ent(I; i out) := f i 2 [m] n I j A i dI nf i outg < 0g

is empty. Otherwise, the length of the edge is given by:

�� = min
�

A i x I + bi

� A i dI nf i outg
j i 2 Ent(I; i out)

�
:

The other endpoint of the edge isx 0 = x I + ��d I nf i outg. Clearly, this point is contained in
the hyperplanesH (A i ; bi ) for i 2 I n f i outg, but also for i 2 Ent(I; i out). Moreover, the
intersection

T
i 2 I nf i outg[f i entg H (A i ; bi ) is reduced to x 0 for any i ent 2 Ent(I; i out). Hence,

for any suchi ent, the set I nf i outg[f i entg is a feasible basis andx 0 the corresponding basic
point. A basis I 0 is said to beadjacent to a basisI if it is of the form I 0 = I nf i outg[f i entg
for somei out 2 I and i ent 2 Ent(I; i out). In that case, we also say that the basic pointx I 0

is adjacent to the basic point x I . For a non-degenerate polyhedron, the setEnt(I; i out)
is either empty or reduced to a singleton.

Reduced costs and optimal bases

Moving along an edgeEI nf i outg from the basic point x I decreases the objective function
x 7! c> x if and only if the reduced costy I

i out
= c> dI nf i outg is negative.
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Lemma 3.18. The vector of reduced costsy I = ( y I
i out

) i out2 I at a basis I is the unique
solution of the following system of equations:

(A I )> y = c : (3.22)

Proof. By (3.21), the direction vector dI nf i outg is equal to A � 1
I ei out , where ek is the k-th

unit vector of K jI j . It follows that y I
i out

= c> A � 1
I ei out . Hence,y I = ( A � 1

I )> c, which is
the unique solution of (3.22).

Lemma 3.19. Let I be a feasible basis. If reduced costs(y I
i out

) i out2 I are non-negative,
then the basic pointx I is an optimal solution of the linear program LP (A ; b; c).

Proof. We can extend y I = ( y I
i out

) i out2 I 2 K jI j to a vector K m by adding components
equal to 0. Then, the pair (x I ; y I ) satisfy the complementary slackness conditions
(Theorem 3.7).

We say that a feasible basisI is optimal if the reduced costs atI are non-negative.
Note that, in case of degeneracy, a basic pointx I may be an optimal solution while I is
not an optimal basis.

Example 3.20. Consider the linear program:

minimize x 2 s.t x 1 � x 2; x 1 � 0; x 2 � 0 :

The point (0; 0) is an optimal solution. It is a basic point for the basis indexing the
inequalities x1 � x2 and x1 � 0. However, the vector of reduced costs for this basis is
(� 1; 1), which have a negative component. Hence this basis is not optimal.

The simplex method

We now present the simplex method. For the sake of simplicity, we restrict the exposition
to non-degenerate linear programs. The principle of the simplex method is to pivot from
feasible basis to feasible basis by following edges. The signs of the reduced costs indicate
which pivot improves the objective value and provide a stopping criterion.

Each iteration of the simplex method starts with a feasible basisI . The reduced
costs y I are computed. If y I is non-negative, then the current basisI is optimal, and
the basic point x I is an optimal solution of the problem.

If the current basis is not optimal, an edgeEI nf i outg with a negative reduced costy I
i out

is selected. The indexi out is called a leaving index. If the selected edge is unbounded,
then the linear program is unbounded. Otherwise, the algorithmpivots, i.e., moves to
the other end of the selected edge. By the non-degeneracy assumption, the setEnt(I; i out)
is reduced to a singletonf i entg. The index i ent is called the entering index. The other
endpoint of the edge is a basic point for the basisI 0 = I n f i outg [ f i entg. The basisI 0 is
then used to perform the next iteration.

Algorithm 1 describes the simplex method for a linear programLP (A ; b; c). We
have denoted byUnbounded(A ; b) a routine which, given a feasible basisI and a leaving
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Algorithm 1: The simplex method for non-degenerate linear programs
Data : A 2 K m� n ; b 2 K m and c 2 K n

Input : A feasible basisI 1 of the linear program LP (A ; b; c).
Output : Either Unbounded, or an optimal basis of LP (A ; b; c).

1 k  1
2 while SignRedCosts(A ; c)( I k ) has a negative entrydo
3 i out = � (A ; b; c)( f I 1; : : : ; I kg)
4 if Unbounded(A ; b)( I k ; i out) then
5 return Unbounded

6 i ent  Pivot(A ; b)( I k ; i out)
7 I k+1  I k n f i outg [ f i entg
8 k  k + 1

9 return the optimal basis I k

index i out 2 I , returns true if the edge EI nf i outg is unbounded. Otherwise, the routine
Pivot(A ; b) returns the entering index i ent. Similarly, SignRedCosts(A ; c) is a function
that returns the signs of the reduced costsy I .

Given an initial feasible basis I 1, the simplex method builds a sequence of bases
I 1; I 2; : : : ; I N . At every iteration k � 1, the leaving index i out is chosen by a function
� (A ; b; c) which takes as input f I 1; : : : ; I kg the history up to time k. The map � is
called a pivoting rule.

Proposition 3.21. Suppose thatLP (A ; b; c) is a non-degenerate linear program, and
that the pivoting rule � always returns a leaving indexi out such that reduced costy I

i out
is

negative. Then, Algorithm 1 terminates and is correct.

Proof. Since a feasible basis is given as input, the linear program is always feasible. If
an unbounded edgeEI nf i outg is encountered, then its direction vectord satis�es c> d =
y I

i out
< 0. For any � 2 K + , the point x I + �d belongs to the polyhedron P (A ; b).

Consequently, for any � 2 K , we can �nd a point x 2 P (A ; b) such that c> x < � and
the linear program is unbounded.

Otherwise the problem admits an optimal solution. By non-degeneracy, each edge
has a positive length. Since the pivoting rule always chooses a leaving index with a
negative reduced cost, each pivot operation strictly improves the value of the objective
function. Consequently, the algorithm terminates, and provides an optimal basis.

In the following, we shall always assume that a pivoting rule always selects a leaving
index with a negative reduced cost.
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3.4 Tropical implementation of the simplex method

We now explain how to implement the operations of the simplex method on a linear
program LP (A ; b; c) (pivoting, computing the signs of the reduced costs, and evaluating
the pivoting rule) by tropical means, i.e., using only the signed valuation of

�
A b
c 0

�
. For

pivoting and the reduced costs, we shall see that we only need to compute the signs
of minors of

�
A b
c 0

�
. As explained in Section 3.2, determinants are tropically tractable

polynomials, so the signs of the minors of
�

A b
c 0

�
can be computed in polynomial time

from sval
�

A b
c 0

�
. Pivoting rules may be arbitrary procedures. In order to tropicalize,

we restrict ourselves to pivoting rules that rely on the signs of polynomials, so that the
results of Section 3.2 apply. This does not seem to be a strong restriction, since most
known pivoting rules �t in this context.

We begin with the pivoting, and the computation of the signs of reduced costs.

Proposition 3.22. There exists three mapsSignRedCostsT ; UnboundedT and PivotT sat-
isfying

SignRedCostsT(A; c) = SignRedCosts(A ; c)

UnboundedT(A; b) = Unbounded(A ; b)

PivotT(A; b) = Pivot(A ; b)

for any linear programs LP (A ; b; c) such that
�

A b
c 0

�
= sval

�
A b
c 0

�
is sign-generic for the

polynomials providing the minors of
�

A b
c 0

�
, i.e., all polynomials P such that P

�
A b
c 0

�
is

a minor of
�

A b
c 0

�
.

Furthermore, the values of SignRedCostsT(A; c); UnboundedT(A; b) and PivotT(A; b)
can be computed inO(n4); O(m2n3) and O(m2n3) tropical operations respectively, and
in space bounded by a polynomial in the input size ofA; b; c.

Proof. The signs of the reduced costs at a basisI are given by the Cramer's formul�
of the system (3.22). This involves the computation of the sign of det(A I ), and of the
determinants det((A I nf i g)> c) for i 2 I , hencen + 1 minors of

�
A b
c 0

�
of sizen � n. By

Lemma 3.8, we can compute the signs of these determinants by computing their tropical
counterparts on

�
A b
c 0

�
. By Lemma 3.11, computing a n � n tropical minor of

�
A b
c 0

�

takes O(n3) operations and uses a space bounded by the input size ofA; b; c.
Pivoting, and determining unboundedness, can be implemented as follows. GivenI

and i out 2 I , we determine which of them � n sets of the form I 0 = I n f i outg [ f i entg,
for i ent 2 [m] n I , is a feasible basis. By Lemma 3.16, this amounts, for each such

I 0, to computing the sign of det(A I 0) and of det
�

A I 0 bI 0

A k bk

�
for k 2 [m] n I 0, hence one

determinant of size n � n and m � n determinants of size (n + 1) � (n + 1). Thus, to
test all I 0, we haveO((m � n)(m � n + 1)) = O(m2) determinants to compute. Each
tropical determinant takes O(n3) operations and uses a space bounded by the input size
of A; b; c.

Remark 3.23. The complexity bounds in Proposition 3.22 can be improved. In Chapter 7,
we show that these three complexity bounds can be reduced toO(n(m + n)) under
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additional technical assumptions. In particular, the computation of reduced costs in
Chapter 7 is based on the iterative Jacobi algorithm of [Plu90] for tropical Cramer
systems. In [RGST05] Richter-Gebert, Sturmfels and Theobald relate the solutions of
tropical Cramer systems to solutions of transportation problems. Hence, algorithms for
transportation problems may also be used to compute the signs of the reduced costs.

3.4.1 Semi-algebraic pivoting rules

We shall restrict ourselves tosemi-algberaicpivoting rules,i.e., pivoting rules that have
access to information on the problem at hand only through the signs of polynomials
evaluated on

�
A b
c 0

�
. More precisely, we say that a pivoting rule � is semi-algebraic, if

� (A ; b; c) is determined from (A ; b; c) by the signs of a �nite number of polynomials
(P �

i ) i 2 [r ] � Q[X 11; : : : ; X (m+1)( n+1) ] evaluated on
�

A b
c 0

�
.

Formally, let us denote by 
 � the oracle which takes as inputi 2 [r ] and returns the
sign of P �

i

�
A b
c 0

�
. If a strategy � is semi-algebraic, then� (A ; b; c) takes as input the

history f I 1; : : : ; I kg and is allowed to call the oracle
 � .
We say that a pivoting rule is tropically tractable when:

� the polynomials (P �
i ) i are tropically tractables;

� � (A ; b; c) can be de�ned in the arithmetic model of computation with oracle, which
means that � (A ; b; c) is allowed to perform arithmetic operations + ; � ; � ; =, and
call the oracle 
 � ;

� the number of arithmetic operations, calls to the oracle, and the space complexity
of � (A ; b; c)( f I 1; : : : ; I kg) is bounded by a polynomial in m; n and k.

Observe that a tropically tractable pivoting rule may involve polynomials that are
\untractable" in a classical setting. For example, it may use permanents. A permanent
is tropically tractable, as its Newton polytope is, as for the determinant, tge Birko� poly-
tope. However, computing a classical permanent is a #P-complete problem, see [Val79].

Proposition 3.24. Let � be a semi-algebraic pivoting rule. There exists a map� T

satisfying
� T(A; b; c) = � (A ; b; c)

for all linear programs LP (A ; b; c) such that
�

A b
c 0

�
= sval

�
A b
c 0

�
is sign-generic for the

the polynomials (P �
i ) i .

Furthermore, if � is tropically tractable, then for any sequence of basesf I 1; : : : ; I kg,
the leaving index provided by� T(A; b; c)( f I 1; : : : ; I kg) can be computed in time polynomial
in k and in the input size of A; b; c.

Proof. This is an immediate consequence of Lemma 3.8, and the de�nition of a (tropically
tractable) semi-algebraic pivoting rule.

Any � T which arises in this way is called atropical pivoting rule .
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Examples of semi-algebraic pivoting rules

Most known pivoting rules are semi-algebraic. Consider for example the rule that se-
lects the smallest index with a negative reduced cost (this rule is known as Bland's
rule [Bla77]). Since the signs of the reduced costs are given by determinants, Bland's
rule is a semi-algebraic pivoting rule which is also tropically tractable. The tropicaliza-
tion of Bland's rule will use O(n4) tropical operations to compute the signs of reduced
costs (as in Proposition 3.22) and thenO(m) operations to determine the smallest index
with a negative reduced cost.

Similarly, every pivoting rule that relies only on the signs of the reduced costs is
semi-algebraic. This includes the \least entered" rule, introduced by Zadeh [Zad80].
Indeed, this rule selects the improving pivot with the leaving index that has left the
basis the least number of times through the execution of the method. In particular, the
\least entered" rule is tropically tractable. The \shadow-vertex" rule is also a tropically
tractable semi-algebraic pivoting rule, as we shall see in Chapter 6.

The rule originally proposed by Dantzig [Dan98] picks the leaving index of the small-
est negative reduced cost. Since the vector of reduced costsy I at a basisI is the solution
of the system (3.22), its i -th entry, for i 2 I , is given by the Cramer formula

y I
i = ( � 1)n+ idx(i;I ) det

�
A I nf i g

c>

�
=det(A I ) ;

where idx(i; I ) is the index of i in the ordered set I . Hence, comparing the two reduced
costsy I

i and y I
k boils down to computing the sign of the expression

det
�

A I nf i g
c>

�
� det

�
A I nf kg

c>

�
; (3.23)

which is a polynomial in
�

A b
c 0

�
. Hence, Dantzig's rule is semi-algebraic. However, it is

unclear whether the polynomial (3.23) is tropically tractable.
The \largest improvement" rule selects the pivot that leads to the largest improvent

of the objective value. Hence, we need to compare the objective values of adjacent basic
points. At a basis I , the objective value is given by:

c> x I = det
�

A I bI

c 0

�
=det A I :

To see this, one can use Equation (3.20) with the row (A k bk ) replaced by (c 0). Conse-
quently, the \largest improvement" rule is semi-algebraic, but it is also unclear whether
it is tropically tractable.

3.4.2 The tropical simplex method

Algorithm 2 presents our �rst tropical implementation of the simplex method. This
algorithm can be viewed as a puri�ed version of the method, which is especially useful
for theoretical purposes. It is the foundation of the practical algorithm which will be



3.4 Tropical implementation of the simplex method 43

Algorithm 2: The tropical simplex method for non-degenerate linear programs

Data : A tropical signed matrix A 2 Tm� n
� , two vectors b 2 Tm

� ; c 2 Tn
�

Input : A subset I 1 � [m] of cardinality n.
Output : Either Unbounded, or a subsetI � [m] of cardinality n.

1 k  1
2 while SignRedCostsT(A; c)( I k ) has a negative entrydo
3 i out = � T(A; b; c)( f I 1; : : : ; I kg)
4 if UnboundedT(A; b)( I k ; i out) then
5 return Unbounded

6 i ent  PivotT(A; b)( I k ; i out)
7 I k+1  I k n f i outg [ f i entg
8 k  k + 1

9 return I k

presented in Chapter 7, where more e�cient versions of the operations of pivoting and
computing reduced costs will be given.

Observe that Algorithm 2, is analogous to Algorithm 1, excepts that the maps
Pivot; Unbounded; SignRedCostsand � have been replaced by their tropical counterparts.
As an immediate application of Propositions 3.22 and 3.24, we have the following theo-
rem.

Theorem 3.25. Let LP (A ; b; c) be a non-degenerate linear program, and� a semi-
algebraic pivoting rule. Suppose that

�
A b
c 0

�
= sval

�
A b
c 0

�
is sign-generic for the polyno-

mials providing a minor of
�

A b
c 0

�
, and the polynomials(P �

i ) i de�ning � .
Then, for any feasible basisI 1, the tropical simplex method (Algorithm 2), equipped

with the tropical pivoting rule � T and applied on the inputA; b; c and I 1, correctly de-
termines if LP (A ; b; c) is unbounded, or provides an optimal basis.

The sequence of basesI 1; : : : ; I N produced by the tropical simplex method is exactly
the sequence of bases obtained by the classical simplex method (Algorithm 1), equipped
with the pivoting rule � and applied on the inputA ; b; c; I 1.

If furthermore the pivoting rule � is tropically tractable, the k-th iteration of the
tropical simplex method can be performed in time polynomial ink and in the input size
of A; b; c.
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Chapter 4

Tropical linear programming via
the simplex method

In this chapter, we use the tropicalization of the simplex method to solve linear programs
over an arbitrary tropical semiring T = T(G), i.e., problems of the form

minimize c> � x
subject to A+ � x � b+ � A � � x � b� ;

LP(A; b; c)

whereA+ ; A � 2 Tm� n , b+ ; b� 2 Tm and c 2 Tn . One of the main motivation is to obtain
an algorithm for mean payo� games, thanks to the reduction presented in Section 1.1.4.

Our approach is the following. A tropical linear program can be lifted to a linear
program LP (A ; b; c) over Hahn series such that the valuation of the entries ofA ; b; c
are given byA+ ; A � ; b+ ; b� and c. An optimal solution of the Hahn problem LP (A ; b; c)
provides an optimal solution of the tropical problem LP(A; b; c). Hence, the tropical-
ization of the simplex method presented in Chapter 3 provides an algorithm that solves
tropical linear programs, provided that A+ ; A � ; b+ ; b� and c satisfy genericity conditions.

However, we cannot solve arbitrary tropical linear programs in this way. To overcome
this obstacle, we introduce a perturbation scheme, that transforms an arbitrary tropical
linear program into an equivalent, but generic, problem. Our main idea is to use tropical
semirings based on additive groups of vectors with a lexicographic order.

This chapter is organized as follows. In Section 4.1, we expose basic results on tropical
polyhedra and linear programs. In particular, we explain how tropical polyhedra relate
to classical polyhedra over Hahn series. In Section 4.2, we show, that under genericity
conditions, the valuation map preseves the face poset of an arrangement of hyperplanes.
In particular, this entails a geometric notion of tropical basic points and edges. This
geometric interpretation of the tropical simplex method presented in Section 4.3, along
with the tropical versions of other related notions such as reduced costs or degeneracy.
In Section 4.4, we devise the perturbation scheme that allows to solve arbitrary tropical
linear programs with the tropical simplex method.

The contents of this chapter are mostly adapted from [ABGJ13b] and [ABGJ13a].
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4.1 Tropical polyhedra

In the following, we work with an arbitrary tropical semiring T = T(G). We use in-
diferrently the notations ( G; + ; 0) and (G; � ; 1) for the group structure on G. The
non-Archimedean �eld we use is any sub�eld K of R[[tG]] that contains all the series
f ctg j c 2 R; g 2 Gg. By Theorem 2.8, any ordered �eld with value group G that
contains R as a sub�eld can be identi�ed with such a K.

Tropical halfspaces

An (a�ne) tropical halfspace is the set of points x 2 Tn satisfying a tropical linear
inequality:

max(� 1 + x1; : : : ; � n + xn ; � ) � max(� 1 + x1 : : : ; � n + xn ; 
 ) ; (4.1)

where �; � 2 Tn and �; 
 2 T. When � = 
 = 0, it is said to be a linear tropical
halfspace. Throughout this paper, we assume that half-spaces are de�ned by non-trivial
inequalities:

Assumption A. There is at least one non0 coe�cient in the inequality (4.1), i.e.,

max
�

max
j 2 [n]

� j ; max
j 2 [n]

� j ; �; 

�

> 0 :

Tropical halfspaces relate to classical halfspaces, see Figure 4.1 for an illustration.

Lemma 4.1. The tropical halfspace de�ned by�; � 2 Tn and �; 
 2 T is the image
under the valuation map of the intersection of the halfspace

8
<

:
x 2 Kn j �

0

@
nX

j =1

t � j x j + t �

1

A �
nX

j =1

t � j x i + t 


9
=

;
(4.2)

with the positive orthant Kn
+ , for any � 2 R greater than n + 1 .

Proof. Let x 2 Tn be a point in the tropical halfspace (4.1). Then, the lift x =
(tx1 ; : : : ; txn ) belongs to the Hahn halfspace (4.2). Indeed, we have:

nX

j =1

t � j x j + t 
 � (n + 1) tmax( � 1+ x1 ;:::;� n + xn ;
 ) � �t � � x � 


and

�

0

@
nX

j =1

t � j x j + t �

1

A � �t max( � 1+ x1 ;:::;� n + xn ;� ) = �t � � x � � � �t � � x � 
 :

Conversely, supposex 2 Kn
+ belongs to the halfspace (4.2). The Hahn series which

appears in the inequality de�ning (4.2) are non-negative. Since the valuation map is
an order-preserving homomorphism from (K+ ; + ; �) to ( T; max; +), it follows that val( x )
belongs to the tropical halfspace (4.1).
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x1

x2

max( x1 ;x2 )� 0

x 1

x 2

x 1+ x 2 � 1

x1

x2

max(0 ;x2 )� x1

x 1

x 2

1+ x 2 � x 1

x1

x2

max(0 ;x1 )� x2

x 1

x 2

1+ x 1 � x 2

Figure 4.1: Some tropical halfspaces inT2, and examples of their lifts into halfspaces
over the positive orthant K2

+ of Hahn series.

Lemma 4.2. Let H � (a; b) be a halfspace for somea 2 K1� n and b 2 K. Then, the
image under the valuation map ofH � (a; b) \ Kn

+ is a tropical halfspace. More precisely,
val(H � (a; b) \ Kn

+ ) is exactly the set of pointsx 2 Tn that satisfy

max(a+
11 + x1; : : : ; a+

1n + xn ; b+ ) � max(a�
11 + x1; : : : ; a�

1n + xn ; b� ) ; (4.3)

where a+ ; a� 2 T1� n and b+ ; b� 2 T are the values ofa+ = max( a; 0); a � = min( a; 0)
and b+ = max( b; 0); b� = min( b; 0) respectively.

Proof. Using the homorphism property of the valuation map, val(H � (a; b) \ Kn
+ ) is

clearly included in the tropical halfspace (4.3). Conversely, consider any pointx 2
Tn satisfying (4.3). We claim that there exists a lift x 2 Kn

+ of x, of the form x =
(v1tx1 ; : : : ; vn txn ) for some vector of positive real numbersv 2 Rn

+ , which belongs to
val(H � (a; b)). Let us �rst treat the case of a linear halfspace, i.e., b = 0 or equivalently
b+ = b� = 0. If the inequality (4.3) is strict at x, then the claim holds with any v with
positive entries. Otherwise,a+ � x = a� � x and it is su�cient to �nd of a v 2 Rn which
satisfy:

X

j 2 arg max ( a+ � x)

lc(a+
1j )vj >

X

j 2 arg max ( a� � x)

lc(a �
1j )vj

vj > 0 for all j 2 [n] :

(4.4)

Indeed, given such av, the Hahn seriesax has a positive leading coe�cient when x is
the lift ( vj tx j ) j . The system (4.4) clearly admits a solution, and this proves the claim
when b = 0.
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The caseb 6= 0, easily follows by homogeneization. Ifx 2 Tn satisfy (4.3), then the
point ( x; 1) 2 Tn+1 admits a lift ( c1tx1 ; : : : ; cn txn ; cn+1 ) 2 Kn+1

+ , with cn+1 > 0, which
belongs to the linear halfspaceH � ((a b); 0). Consequently, x = ( c1

cn +1
tx1 ; : : : ; cn

cn +1
txn )

is nonnegative and belongs toH � (a; b).

Remark 4.3. The proof above shows that any pointx in the tropical halfspace (4.4) has
a pre-image by the valuation map in the interior of the Hahn halfspaceH � (a; b).

It follows from the two previous lemmas that we can always assume that each variable
(comprising the \a�ne" variable) appears on at most one side of the inequality de�ning
a tropical halfspace. In other words, any tropical halfspace can be concisely describe by
a signed row vectora = ( a1j ) 2 T1� n

� and a signed scalarb 2 T � as:

H � (a; b) : = f x 2 Tn j a+
11 � x1 � � � � � a+

1n � xn � b+ � a�
11 � x1 � � � � � a�

1n � xn � b� g

= f x 2 Tn j a+ � x � b+ � a� � x � b� g :

See [GK11, Lemma 1], for an elementary proof.

Tropical s-hyperplanes

A signed tropical hyperplane, or s-hyperplane, is de�ned as the set of solutionsx 2 Tn of
a tropically linear equality:

H (a; b) = f x 2 Tn j a+ � x � b+ = a� � x � b� g ; (4.5)

where a 2 T1� n
� and b 2 T � . When H � (a; b) is a non-empty proper subset ofTn , its

boundary is H(a; b).

Lemma 4.4. For any a 2 Kn and any b 2 K, let a = sval( a) and b = sval( b). Then:

val(H (a; b) \ Kn
+ ) = H(a; b) : (4.6)

Proof. Clearly, val(H (a; b) \ Kn
+ ) � H (a; b). The converse inclusion is a straightfoward

consequence of Lemma 4.2. Indeed, ifx 2 H (a; b), then x belongs to the two tropical
halfspacesH � (a; b) and H � (a; b). Hence, x admits two lifts x 1; x 2 2 Kn

+ , one on each
side of the hyperplaneH (a; b). Thus the line segment betweenx 1 and x 2 intersects
the hyperplane H (a; b). Since x 1 and x 2 have nonnegative entries, and share the same
value x, any point in their convex hull is contained in Kn

+ and has valuex.

Remark 4.5. The set H(a; b) is said to be signed because it corresponds to the tropi-
calization of the intersection of a Hahn hyperplane with the non-negative orthant. A
tropical (unsigned) hyperplane is de�ned by an unsigned row vectora = ( a1j ) 2 T1� n

and an unsigned scalarb 2 T as the set of all pointsx 2 Tn such that the maximum is
attained at least twice in a � x � b = max( a11 + x1; : : : ; a1n + xn ; b); see [RGST05]. This
corresponds to the tropicalization of an entire Hahn hyperplane.
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Tropical polyhedra

A tropical polyhedron is the intersection of �nitely many tropical a�ne halfspaces. It
will be denoted by a signed matrix A 2 Tm� n

� and a signed vectorb 2 Tm
� as :

P(A; b) := f x 2 Tn j A+ � x � b+ � A � � x � b� g =
\

i 2 [m]

H � (A i ; bi ) :

If all those tropical halfspaces are linear,i.e., if b is identically 0, that intersection is a
tropical polyhedral cone.

Example 4.6. The tropical polyhedron depicted in Figure 1.3 is de�ned by the following
matrix and vector.

A =

0

B
B
@

� 5 � 3
	 (� 7) � 5

� 7 � 2
� 2 	 (� 6)

1

C
C
A and b =

0

B
B
@

	 0
0

	 0
	 0

1

C
C
A

The half-space depicted in orange in Figure 1.3 isH � (A1; b1) = f x 2 T2 j max(x1 �
5; x2 � 3) � 0g. Its boundary is the signed hyperplaneH(A1; b1) = f x 2 T2 j max(x1 �
5; x2 � 3) = 0g. The last three rows yield the inequalities:

max(x2; 0) � x1 � 7 ;

max(x1 � 7; x2 � 2) � 0 ;

x1 � max(x2 � 6; 0) ;

which de�ne the half-spaces respectively depicted in purple, green and khaki in Fig-
ure 1.3.

Proposition 4.7. Consider a tropical polyhedraP(A; b) for someA 2 Tm� n
� and b 2 Tm

� .
Then there exist A 2 sval� 1(A) and b 2 sval� 1(b) such that

P(A; b) = val( P (A ; b) \ Kn
+ ) : (4.7)

Proof. Lifting the inequalities as in Lemma 4.1, the proposition holds for any lift of the
form (A b ) = ( A + b+ ) � (A � b� ) de�ned, for i 2 [m] and j 2 [n] by:

A + = ( �t A +
ij ) and A � = ( tA �

ij )

b+ = ( �t b+
i ) and b� = ( tb�

i )

where � is a real number strictly greater than n + 1. Indeed, in this case, if x 2 P (A; b),
then Ax + b > 0 at x = ( tx1 ; : : : ; txn ). Hencex belongs toP (A ; b) \ Kn

+ . The converse
inclusion val(P (A ; b) \ Kn

+ ) � P (A; b) follows from the homomorphism property of the
valuation map.
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0 x1

0

x2

t0 x 1

t0

x 2

0 x1

0

x2

Figure 4.2: Left: the tropical polyhedron P described in (4.8); middle: the Puiseux
polyhedron P obtained by lifting the inequality representation of P as in (4.9); right:
the set val(P ), which is strictly contained in P.

For arbitrary A 2 Km� n and b 2 Km , the image by the valuation map ofP (A ; b)\ Kn
+

is always contained inP(A; b), where A = val( A ) and b = val( b). However, this inclusion
may be strict.

Example 4.8. Consider the tropical polyhedron:

P = f x 2 T2 j max(0; x2) � x1; max(0; x1) � x2; x1 � 0; x2 � 0g : (4.8)

A lift of its inequality representation provides the following Puiseux polyhedron:

P = f x 2 K2 j 1 + 0:5x 2 � x 1; 1 + 0:5x 1 � x 2; x 1 � 0; x 2 � 0g : (4.9)

See Figure 4.2. By the homomorphism property of the valuation map, we have val(P ) �
P, but this inclusion is strict for this example. The val( P ) consists of the pointsx 2 T2

such that x1 � 0 and x2 � 0. However, P also contains the half-line f (�; � ) j � > 0g.
Indeed, suppose that there exist (x 1; x 2) 2 P such that val(x 1) = val( x 2) = � > 0.
Let u1t � and u2t � be the leading terms ofx 1 and x 2 respectively. Then, the inequality
1 + 0:5x 1 � x 2 implies that 0:5u1 � u2, while 1 + 0:5x 2 � x 1 imposes that 0:5u2 � u1,
and we obtain a contradiction.

4.1.1 Tropical convexity

We de�ne a tropical convex setof Tn as the image by the valuation map of a convex set
of Hahn series contained in the positive orthantKn

+ . Consider a convex combination of
two points x ; y 2 Kn

+ :

z = �x + �y where � + � = 1 ; � � 0 ; � � 0 :

Since x and y have nonnegative entries, and� ; � � 0, the value of z is the tropical
convex combination:

val(z) = � � x � � � y ; where � � � = 1 ;
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of the tropical vectors x = val( x ) and y = val( y ) with scaling coe�cients � = val( � )
and � = val( � ). Hence, a setP � Tn is tropically convex if and only if, for any
�nite number of points x1; : : : ; xk 2 P , the set P also contains their tropical convex hull
tconv(x1; : : : ; xk ), which is de�ned by:

tconv(x1; : : : ; xk ) :=

8
<

:

M

i 2 [k]

� i � x i j � i 2 T for all i 2 [k] and
M

i 2 [k]

� i = 0

9
=

;
:

By analogy with the classical case, we say that a pointv in a tropically convex set P is
a tropical extreme point of P if v 2 tconv(x; y) for some x; y 2 P implies that v = x or
v = y.

It is straightforward to verify that a tropical polyhedron P(A; b) is stable by tropical
convex hull, and thus is tropically convex. Alternatively, this follows from Proposi-
tion 4.7.

We de�ne similarly a tropical convex coneof Tn as the image by the valuation map
of a convex cone of Hahn series contained inKn

+ . Equivalently, C � Tn is a tropical
convex cone if it contains thetropical conic hull tpos(x1; : : : ; xk ) of any �nite number of
points x1; : : : ; xk 2 C, where:

tpos(x1; : : : ; xk ) :=

8
<

:

M

i 2 [k]

� i � x i j � i 2 T for all i 2 [k]

9
=

;
:

Clearly, a tropical polyhedral cone P(A; 0) is a tropical convex cone.
A point r in a tropical convex coneCde�nes a tropical ray [r ] := f � � r j � 2 T nf 0gg

of C. We say that [r ] is a tropical extreme ray of C if x 2 [r ] or y 2 [r ] whenever
r 2 tpos(x; y) for some x; y 2 C. Equivalently, r = x � y implies r = x or r = y.

The tropical recession coneof a tropical convex setP � Tn is

trec(P) := f r 2 Tn j x � (� � r ) 2 P for all x 2 P and all � 2 Tg :

Proposition 4.9. If P(A; b) is a non-empty tropical polyhedron, its tropical recession
cone is the tropical polyhedral coneP(A; 0).

Proof. Consider anyA 2 Tm� n
� and b 2 Tm

� . Let r be an element of the tropical recession
cone of P(A; b). By contradiction, suppose that r does not belong toP(A; 0). Then,
A+

i � r < A �
i � r for some i 2 [m]. Clearly, this implies A �

i � r > 0. Choose any
x 2 P (A; b). By de�nition of the tropical recession cone, for any � 2 T, we have

(A+
i � x � b+

i ) � (� � A+
i � r ) � (A �

i � x � b�
i ) � (� � A �

i � r ) : (4.10)

SinceA+
i � r < A �

i � r , we obtain:

A+
i � x � b+

i � � � A �
i � r :

As the latter inequality holds for any � 2 T, and A �
i � r > 0 , we obtain a contradiction.

Conversely, let r 2 P (A; 0) and x 2 P (A; b). Then, for any � 2 T, the inequal-
ity (4.10) is satis�ed for all i 2 [m], and thus x � (� � r ) belongs to P(A; b). Hence, r is
an element of the tropical recession cone.
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4.1.2 Homogeneization

It is sometimes convenient to homogeneize a tropical polyhedronP(A; b) � Tn into the
tropical into the polyhedral cone C(A; b) � Tn+1 , de�ned by

C(A; b) := P((A b); 0) = f (x; � ) 2 Tn � T j A+ � x � b+ � � � A � � x � b+ � � g : (4.11)

The points of the tropical polyhedron P(A; b) are associated with elements of the tropical
polyhedral coneC(A; b) by the following bijection:

P(A; b) �! f y 2 C j yn+1 = 1g

x 7�! (x; 1)
(4.12)

The points of the form (x; 0) in C(A; b) correspond to the rays in the recession cone of
P(A; b).

As a tropical cone, C(A; b) is closed under tropical scalar multiplication. For this
reason, we identify C(A; b), with its image in the tropical projective space TPn . The
tropical projective space TPn consists of the equivalent classes ofTn+1 for the relation
x � y which holds for x; y 2 Tn+1 if there exists a � 2 T n f 0g such that x = � � y.

Remark 4.10. Consider the tropical semiring T = T(R), and let r 1; : : : ; r k 2 Tn be a set
of points with entries in R. Then P = tpos( r 1; : : : ; r k ) is a tropical polyhedral cone in
Tn such that the image ofP \ Rn under the canonical projection fromRn to the tropical
torus f R � x j x 2 Rng is a \tropical polytope" in the sense of Develin and Sturmfels
[DS04]. Via this identi�cation, the tropical linear halfspaces which are non-empty proper
subsets ofTn correspond to the \tropical halfspaces" studied in [Jos05]. The tropical
projective space de�ned above compacti�es the tropical torus (with boundary).

4.1.3 Tropical double description

As their classical counterparts, tropical polyhedra are exactly the tropical convex sets
which are �nitely generated , i.e., the convex hull of a �nite number of points and rays.
This has been established in [BH84], see also [GP97]. We refer to [GK11] for more
references. We include a proof for the sake of completeness.

Theorem 4.11. Let P(A; b) be a tropical polyhedron for someA 2 Tm� n
� and b 2 Tm

� .
Then:

P(A; b) = tconv( V ) � tpos(R) = f x � y j x 2 tconv(V ); y 2 tpos(R)g ;

where V is the set of tropical extreme points ofP(A; b) and R the set of its tropical
extreme rays. Moreover, the setsV; R are �nite.

Proof. It is fact su�cient to prove the result for tropical polyhedral cones. Indeed, we
can always homogenize a tropical polyhedronP(A; b) into the tropical polyhedral cone
C(A; b) de�ned in (4.11). The rays of the homogeneized coneC(A; b) are in bijection
with the points in P(A; b) and in its recession coneP(A; 0). Moreover, one easily veri�es
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that [( x; 0)] is an extreme ray of C(A; b) if and only if x is an extreme point of P(A; b).
Similarly, [( x; 1)] 2 C(A; b) is an extreme ray if and only if x is an extreme ray of the
recession cone ofP(A; b).

We now prove that a tropical polyhedral cone C is the convex hull of its extreme
rays. By Proposition 4.7, there exists a polyhedral coneC � Kn

+ whose image under
the valuation map is C. It follows that C is the tropical conic hull of a �nite number of
points r 1 = val( r 1); : : : ; r l = val( r l ), where [r 1]; : : : ; [r l ] are the extreme rays ofC.

It turns out that some points of the generating set R = f r 1; : : : ; r l g of C may not
yield extreme rays ofC; see Example 4.12. Hence, it may happen that for somei 2 [l ],
the point r i belongs to the tropical conic hull of the other generators tpos(R n f r i g).
Clearly, we can remove these points fromR and still have a generating set ofC. Let us
write I = f i 2 [l ] j r i 62tpos(R n f r i g). We claim that f [r i ] j i 2 I g is exactly the set of
extreme rays ofC.

First, any extreme ray [x] of C can be decomposed inx =
L

i 2 I � i � r i for some
� 2 TI . It follows from the extremality of [ x] that r i 2 [x] for somei 2 I .

Second, consider anyq 2 I . We shall prove that [r q] is an extreme ray of C. By
contradiction, suppose that r q = x � y for some x; y 2 C. There exist �; � 2 TI such
that x =

L
i 2 I � i � r i and y =

L
i 2 I � i � r i . Hence,

r q = ( � q � � q) � r q �

0

@
M

i 2 I nf qg

(� i � � i ) � r i

1

A : (4.13)

This imply the two inequalities:

r q � (� q � � q) � r q ;

r q �
M

i 2 I nf qg

(� i � � i ) � r i : (4.14)

Equality cannot occur in the last inequality, since r q is not contained in the tropical
conic hull of f r i j i 2 I n f qgg. Therefore, there must exists a coordinatej 2 [n] such
that r q

j >
L

i 2 I nf qg(� i � � i ) � r i
j . Consequently,r q

j = ( � q � � q) � r q
j , by (4.13) and (4.14).

It follows that � q � � q = 1. Hence,� q = 1 or � q = 1. Without loss of generality, let us
assume that � q = 1. Then,

x = r q �

0

@
M

i 2 I nf qg

� i � r i

1

A :

By (4.14), we haver q �
L

i 2 I nf qg � i � r i and thus x = r q.

Example 4.12. Consider the tropical polyhedron whose feasible set is an usual square:

2 � x1 � 1 ; 2 � x2 � 1 :
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It can be lifted to the square in K2:

t2 � x 1 � t1 ; t2 � x 2 � t1 :

The point ( t2; t2) is extreme in K2. However, its value (2; 2) is not an extreme point of
the tropical polyhedron. Indeed, (2; 2) = (2 ; 1) � (1; 2). In fact, the usual square, as a
tropical polyhedron, is a triangle: it is the tropical convex hull of (1 ; 1); (2; 1) and (1; 2).

Remark 4.13. In the proof of Theorem 4.11, we actually showed that if P(A; b) =
conv(V ) � tpos(R) for some �nite sets V; R, then V contains the set of extreme points
of P(A; b), and R its set of extreme rays.

The \converse" of Theorem 4.11 also holds: a �nitely generated tropical convex set
is a tropical polyhedron.

Theorem 4.14. Let V; R � Tn be two �nite sets. Then the tropical convex set

tconv(V ) � tpos(R) := f x � y j x 2 tconv(V ); y 2 tpos(R)g (4.15)

is a tropical polyhedron.

The classical counterpart of Theorem 4.14 can be proved using separation hyper-
planes. The same approach also works in the tropical case. Thepolar C � of a tropical
convex coneC parametrizes the set of tropical linear halfspaces containingC, i.e.,

C � := f (�; � ) 2 Tn � Tn j � > � x � � > � x for all x 2 Cg :

By de�nition, the tropical cone C is included in the intersection of the tropical halfspaces
parametrized by C � . When C is �nitely generated, the converse inclusion holds, thanks
to the following separation theorem.

Theorem 4.15. Let C = tpos( R) be a tropical convex cone generated by a �nite set
R � Tn . If v 2 Tn does not belong toC, then there exists a tropical halfspace that
contains C and does not containv.

Proof. This tropical separation theorem holds for general convex cone (see [CGQ04,
Zim77, CGQS05]), but in tropical semirings which are complete, or conditionnaly com-
plete, for their natural ordering. However, in the case of�nitely generated cones, the
completeness requirement can be dispensed with. The proof below is and adaptation
of [CGQ04] to our setting.

It is su�cient to prove the theorem for a point v 2 Tn n Cwith �nite entries. Indeed,
suppose thatvj = 0 for somej 2 [n] and let J = f j 2 [n] j vj > 0g. Then, the projection
vJ of v in TJ has �nite entries. The projection CJ of C is a tropical convex cone which
is �nitely generated by the projections of the generatorsr 2 R. A tropical halfspace in
TJ separating vJ from CJ extends to a tropical halfspace ofTn separating v from C.

We now assume thatv 2 Tn n C has �nite entries. If C is included in one of the
coordinate hyperplane f x 2 Tn j x j = 0g for some j 2 [n], then the inequality x j � 0
provides a tropical halfspace separatingC from v. Hence we can restrict to the case



4.1 Tropical polyhedra 55

where, for any j 2 [n], there exists a generatorr 2 R such that r j > 0. Without loss of
generality, we may also assume thatr 6= 0Tn for every r 2 R. Let � 2 TR be de�ned for
every r 2 R by

� r := min
j 2 [n]

vj � r j ;

with the convention � 0 = + 1 . Note that � r 2 T is well-de�ned since v has �nite
entries, and there exists aj 2 [n] such that r j > 0. Consider the point � :=

L
r 2 R � r � r .

Equivalently, for any j 2 [n]:
� j = max

r 2 R
� r + r j : (4.16)

Clearly, � j > 0 since� has �nite entries and at least one generatorr 2 R satis�es r j > 0.
We claim that the tropical halfspace:

H � = f x 2 Tn j max
j 2 [n]

x j � vj � max
j 2 [n]

x j � � j g

separate the tropical coneC from v. Observe that � vj 2 T and � � j 2 T, sincev and �
have �nite entries.

First we show that v does not belong toH � . Consider any j 2 [n] and let r � 2 G be
a generator that attains the maximum in (4.16), i.e., such that � j = � r � + r �

j . Since � j

is �nite, so is r �
j . As � r � � vj � r �

j , it follows that � j � vj . However, the equality � = v
cannot occurs, as� 2 C and v 62 C. Hence, there exists at least onej 2 [n] such that
� j < v j . Consequently,

max
j 2 [n]

vj � vj = 0 < max
j 2 [n]

vj � � j ;

and v does not belong toH � .
Second, we prove the inclusionC � H � . By convexity, it is su�cient to show that

every r 2 R belongs to H � . Fix any generator r 2 R. By de�nition of � r , we have
maxj 2 [n] r j � vj = � � r . Moreover, � � r � r j � � j for every j 2 [n], by de�nition of � .
This concludes the proof.

Corollary 4.16. Let R 2 Tn be a �nite set. Then, the tropical convex conetpos(R) is
a tropical polyhedral cone.

Proof. By Theorem 4.15, the tropical coneC is the intersection of the tropical halfspaces
in its polar:

C =
\

(�;� )2 C �

f x 2 Tn j � > x � � > xg :

By convexity, the polar C � of the tropical coneC = tpos( R) is the intersection of �nitely
many tropical halfspaces:

C � =
\

r 2 R

f (�; � ) 2 Tn � Tn j r > � � � r > � � g :

By Theorem 4.11, C � is a �nitely generated convex cone,i.e., there exists a �nite set
G 2 T2n such that C � = tpos( G). Hence, ifx 2 Tn satis�es the inequality � > � x � � > � x
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for all ( �; � ) 2 G, then x also satis�es this inequality for any (�; � ) 2 C � by convexity.
Consequently,C is the following tropical polyhedral cone:

C =
\

(�;� )2 G

f x 2 Tn j � > x � � > xg :

Proof of Theorem 4.14. Let us homogeneize the convex setP = tconv( V ) � tpos(R) �
Tn into the convex coneC = pos(V 0 [ R0) � Tn+1 where V 0 = f (v; 1) j v 2 Vg and
R0 = f (r; 0) j r 2 Rg. By Corollary 4.16, there exists a matrix (A b) 2 Tm� (n+1) such
that C = P((A b); 0). If x 2 P, then (x; 1) 2 C and thus x 2 P (A; b). Conversely, if
x 2 P (A; b), then (x; 1) 2 C and thus x 2 P.

4.1.4 Tropical linear programming

A tropical linear program is an optimization problem of the form

optimize c> � x
subject to x 2 P (A; b) ;

where A 2 Tm� n
� , b 2 Tm

� are signed matrices,c 2 Tn is an unsigned vector, and \op-
timize" means either \maximize" or \minimize". We say that the program is infeasible
if the tropical polyhedron P(A; b) is empty. Otherwise, it is said to be feasible. A
maximization problem is unbounded if for any � 2 T, there exists a x 2 P (A; b) such
that c> � x > � . Since 0 is a lower bound on any tropical number, tropical minimiza-
tion problems are always bounded. Anoptimal solution of a minimization problem is a
x � 2 P (A; b) such that:

c> � x � � c> � x for all x 2 P (A; b) : (4.17)

For a maximization problem, the inequality � in (4.17) is replaced by� .

Lemma 4.17. A tropical linear maximization problem is either infeasible, unbounded,
or admits an optimal solution. A tropical linear minimization problem is either infeasible
or admits an optimal solution.

Proof. If the linear program is infeasible, then the other possibilities are excluded. Now
suppose thatP(A; b) is not empty. Then, by Theorem 4.11, there exist a �nite number
of points v1; : : : ; vk 2 Tn and r 1; : : : ; r l 2 Tn such that

P(A; b) = tconv( v1; : : : ; vk ) � tpos(r 1; : : : ; r l ) :

First consider a maximization problem. If there exists a i 2 [l ] such that c> � r i > 0,
then the linear program is unbounded. Otherwise any feasible pointx satisfy

c> � x � max
i 2 [k]

c> � vi = c> �

0

@
M

i 2 [l ]

vi

1

A ;
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and the element
L

i 2 [l ] vi is an optimal solution.
In case of a feasible minimization problem, any feasible pointx can be written as

x =

0

@
M

i 2 [k]

� i � vi

1

A �

0

@
M

i 2 [l ]

� i � r i

1

A

where
L

i 2 [k] � k = 1. Consequently, we havec> � x �
L

i 2 [k] � i � (c> � vi ). Consider

any i � 2 [k] such that � i � = 1. Then, c> � x � c> � vi �
� min i 2 [k] c> � vi . Consequently,

the optimal value of the linear program is mini 2 [k] c> � vi and it is attained on some
vi .

Remark 4.18. The proof of Lemma 4.17 shows that a feasible maximization problem is
unbounded if and only if there exists a r in the polyhedral cone tpos(r 1; : : : ; r l ) such
that c> r > 0. The set tpos(r 1; : : : ; r l ) is the tropical recession cone ofP(A; b) and it is
equal to P(A; 0) by Proposition 4.9. Hence, Lemma 3.5 admits a tropical counterpart.

Remark 4.19. The proof of Lemma 4.17 also shows that a feasible a bounded maxi-
mization problem admits

L
i 2 [l ] vi as an optimal solution. Observe that this point is

optimal for all objective vector c that yields a bounded problem. In case of a feasible
minimization problem, we proved that there always exists an extreme pointvi which is
an optimal solution.

In the following, we shall consider only minimization problems, that we denote as
follows:

minimize c> � x
subject to x 2 P (A; b) ;

LP(A; b; c)

Proposition 4.20. There is a way to associate to every tropical linear program of the
form LP (A; b; c) a linear program over K

minimize cx
subject to x 2 P (A ; b); x � 0

(4.18)

satisfying A 2 sval� 1(A), b 2 sval� 1(b) and c 2 sval� 1(c), so that:

(i) the image by the valuation of the feasible set of the linear program(4.18) is precisely
the feasible set of the tropical linear program LP(A; b; c); in particular, the former
program is feasible if, and only if, the latter one is feasible;

(ii) the valuation of any optimal solution of (4.18) (if any) is an optimal solution of
LP(A; b; c).

Proof. The lifted matrices A 2 sval� 1(A) and b 2 sval� 1(b) provided by Proposition 4.7
proves the �rst part of the proposition. For the second part, choose anyc 2 sval� 1(c).
Sincec has tropically non-negative entries,c also has non-negative entries. It follows that
c> x > 0 for all x 2 P (A ; b) \ Kn

+ . If P(A; b) is not empty, then P (A ; b) \ Kn
+ is also not
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(0; 0; 0)

(0; 0; 4)

(4; 0; 0)

(4; 4; 0)

(4; 4; 4)

Figure 4.3: The tropical polyhedron de�ned by the inequalities (4.19) and its
external representation.

(t0; t0; t0)

(t0; t0; t � 4)

(t � 4; t0; t0)

(t � 4; t � 4; t0)

(t � 4; t � 4; t � 4)

Figure 4.4: A lift of the tropical polyhedron de�ned by the inequalities (4.19)
and its external representation.
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empty by the �rst part of the proposition. Hence, the Hahn linear program (4.18) admits
an optimal solution x � by Proposition 3.4. As c> x � � c> x for all x 2 P (A ; b) \ Kn

+ , it
follows from the homomorphism property of the valuation map that c> � val(x � ) � c> � x
for all x 2 val(P (A ; b) \ Kn

+ ) = P(A; b).

Example 4.21. Throughout the rest of this manuscript, we will illustrate some results
on the following problem.

minimize max(x1 � 2; x2; x3 � 1)

subject to max(0; x2 � 1) � max(x1 � 1; x3 � 1) H 1

x3 � max(0; x2 � 2) H 2

x2 � 0 H 3

x1 � max(0; x2 � 3) H 4

0 � x2 � 4 : H 5

These constraints de�ne the tropical polyhedron represented in Figure 4.3. A lift of this
tropical polyhedron is depicted in Figure 4.4. The optimal value of this tropical linear
program is 0 and the set of optimal solutions is the ordinary square:

f (x1; x2; x3) 2 T3 j 0 � x1 � 1 and x2 = 0 and 0 � x3 � 1g:

However, over Hahn series, there is a unique optimum. It is the point located in the
intersection of three hyperplanes obtained by lifting the inequalities (H 2), (H 3) and (H 4).
This point has value (0; 0; 0), which is an optimum for the tropical linear program.

The homogeneization of the polyhedron (4.19) is the cone described by the inequal-
ities:

max(x4; x2 � 1) � max(x1 � 1; x3 � 1)

x3 � max(x4; x2 � 2)

x2 � x4

x1 � max(x4; x2 � 3)

x4 � x2 � 4 ;

(4.20)

where the coordinatex4 plays the role of the a�ne component. For the sake of simplicity,
the linear half-spaces in (4.20) are still referred to as (H 1){( H 5).

4.2 Generic arrangements of tropical hyperplanes

A set of Hahn hyperplanesf H (A i ; bi )gi 2 [m] induces a cell decomposition of the ambient
spaceKn into polyhedra. Similarly a set of tropical hyperplanes fH (A i ; bi )gi 2 [m] decom-
poses the spaceTn . In this section, we establish the following relation between these
two decompositions (see Figure 4.5 for an illustration).
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x 1

x 2

t0t � 1

t � 1

t0

� 1 0

� 1

0

x1

x2

Figure 4.5: Illustration of Theorem 4.22. Left: the cell decomposition ofK2
+ induced

by the hyperplane arrangement of Example 1.2. Right: the cell decomposition ofT2

induced by the tropicalization of the hyperplanes of Example 1.2. Note that in the
tropical decomposition, the zero-dimensionnal cells that correspond to points with0
entries are not represented.

Theorem 4.22. Suppose that(A b) 2 Tm� (n+1) is sign-generic for all minors polyno-
mials. Then, for all A 2 sval� 1(A), b 2 sval� 1(b) and I � [m],

val
�

P I (A ; b) \ Kn
+

�
= PI (A; b) : (4.21)

where, for any subset of rowsI � [m], we denote

PI (A; b) :=
\

i 2 I

H(A i ; bi ) \ P (A; b); P I (A ; b) :=
\

i 2 I

H (A i ; bi ) \ P (A ; b) :

By Theorem 4.22, the set of tropical s-hyperplanesfH (A i ; bi )gi 2 [m] induces a cellular
decomposition ofTn into tropical polyhedra. We call this collection of tropical polyhedra
the signed cellsof the arrangement fH (A i ; bi )gi 2 [m]. Notice that the signed cells form
an intersection poset thanks to Theorem 4.22.

The signed cell decomposition coarsens the cell decomposition introduced in [DS04],
which partitions Tn into ordinary polyhedra. Here we call the latter cells unsigned.
In particular, the one dimensional signed cells are unions of (closed) one-dimensional
unsigned cells. However, some one-dimensional unsigned cells may not belong to any
one dimensional signed cell. In the example depicted in Figure 4.3, this is the case for
the ordinary line segment [(1; 0; 1); (1; 1; 1)].

Example 4.23. Consider the tropical polyhedral coneC in T3 given by the three homoge-
nous constraints

x2 � max(x1; x3) (4.22)

x1 � max(x2 � 2; x3 � 1) (4.23)

max(x1; x3 + 1) � x2 � 1 : (4.24)
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1

2

3

(0 ; 0; 0)

(0 ; 2; 1)

(0 ; 1; � 1)

[2; 1; 3]

[� ; � ; 123]

[2; � ; 13]

[12; � ; 3]

[123; � ; � ] [23; 1; � ] [2; 13; � ] [� ; 123; � ]

[�
; 1

; 2
3]

[�
; 1

2;
3]

Figure 4.6: Unsigned (left) and signed (right) cell decompositions induced by the three
tropical s-hyperplanes in Example 4.23.

This gives rise to an arrangement of three tropical s-hyperplanes in whichC forms one
signed cell; see Figure 4.6 (right) for a visualization in thex1 = 0 plane. Each tropical
s-hyperplane yields a unique unsigned tropical hyperplane. Anopen sector is one con-
nected component of the complement of an unsigned tropical hyperplane. The ordinary
polyhedral complex arising from intersecting the open sectors of an arrangement of un-
signed tropical hyperplanes is thetype decompositionof Develin and Sturmfels [DS04].
In our example the type decomposition has ten unsigned maximal cells; in Figure 4.6
(left), we marked them with labels as in [DS04].

The apices of the unsigned tropical hyperplanes arising from the three constraints
above arep1 = (0 ; 0; 0), p2 = (0 ; 2; 1) and p3 = (0 ; 1; � 1). The tropical convex hull of p1,
p2 and p3, with respect to min as the tropical addition, is the topological closure of the
unsigend bounded cell [2; 1; 3].

The signed cellC is precisely the union of the two maximal unsigned cells [2; 1; 3]
and [23; 1; � ] together with the (relatively open) bounded edge of type [23; 1; 3] sitting
in-between. The other signed cells come about by replacing \� " by \ � " in some subset
of the constraints above. For instance, exchanging \� " by \ � " in (4.22) and keeping the
other two yields the signed cell which is the union of the three unsigned cells [2; � ; 13],
[12; � ; 3], [123; � ; � ] and two (relatively open) edges in-between. Altogether there are
six maximal signed cells in this case.

The proper notion of a \face" of a tropical polyhedron is a subject of active research,
see [Jos05] and [DY07]. Notice that the signed and unsigned cells depend on the ar-
rangement of s-hyperplanes, while several di�erent arrangements may describe the same
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tropical polyhedron. For example,

f x 2 T2 j x1 � x2 � 1g = f x 2 T2 j x1 � 1 and x2 � 1g: (4.25)

Even if a canonical external representation exists, see [AK13], it may not satisfy the
genericity conditions of Theorem 4.22. Thus this approach does not easily lead to a
meaningful notion of faces for tropical polyhedra.

The rest of this section is devoted to prove Theorem 4.22.

4.2.1 The tangent digraph

Consider a matrix W = ( Wij ) 2 Tm� (n+1)
� . For every point x 2 Tn+1 with no 0 entries,

we de�ne the tangent graph Gx (W ) at the point x with respect to W as a bipartite
graph over the following two disjoint sets of nodes: the \coordinate nodes" [n + 1] and
the \hyperplane nodes" f i 2 [m] j W +

i � x = W �
i � x > 0g. There is an edge between

the hyperplane nodei and the coordinate nodej when j 2 arg(jWi j � x).
The tangent digraph ~Gx (W ) is an oriented version ofGx (W ), where the edge between

the hyperplane nodei and the coordinate nodej is oriented from j to i when Wij is
tropically positive, and from i to j when Wij is tropically negative (if a tangent digraph
contains an edge betweeni and j then Wij 6= 0).

Examples of tangent digraphs are given in Figure 4.7 (there, hyperplane nodes are
denoted H i ). The term \tangent" comes from the fact that ~Gx (W ) is a combinatorial
encoding of the tangent cone atx in the tropical cone C = P(W; 0), see [AGG13]. The
tangent digraph is the same for any two points in the same cell of the arrangement of
tropical hyperplanes given by the inequalities. The tangent graphGx (W ) corresponds
to the \types" introduced in [DS04] but relative only to the hyperplanes given by the
tight inequalities at x.

When there is no risk of confusion, we will denote byGx and ~Gx the tangent graph
and digraph, respectively.

Example 4.24. Let W be the matrix formed by the coe�cients of the system (4.20), and
consider the point x = (1 ; 0; 0; 0) (corresponding to (1; 0; 0) via the bijection (4.12)).
The inequalities (H 1), (H 2) and (H 3) are tight at x. They read

max(x4; x2 � 1) � max(x1 � 1; x3 � 1)

x3 � max(x4; x2 � 2)

x2 � x4

where we marked the positions where the maxima are attained. The tangent digraph
~Gx (W ) is depicted in the top left of Figure 4.7. For instance, the �rst inequality provides
the arcs from coordinate node 4 to hyperplane nodeH 1, and from H 1 to coordinate node
1.

If I and J are respectively subsets of the hyperplane and coordinate nodes ofGx , a
matching betweenI and J is a subgraph ofGx with node set I [ J in which every node
is incident to exactly one edge. A matching can be identi�ed with a bijection � : I ! J .
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At (1 ; 0; 0)

3 2

14 H 1

H 2 H 3

In the open segment
](1; 0; 0); (1; 1; 0)[

3 2

14 H 1

H 2

At (1 ; 1; 0)

3 2

14

H 1H 2

In the open segment
](1; 1; 0); (2; 2; 0)[

3 2

14

H 1H 2

At (2 ; 2; 0)

3 2

14

H 1H 2

In the open segment
](2; 2; 0); (4; 4; 2)[

3 2

14

H 1

H 2

At (4 ; 4; 2)

3 2

14

H 5 H 1

H 2

Figure 4.7: Tangent digraphs at various points of the tropical cone obtained by homoge-
nization of the tropical polyhedron de�ned by the inequalities (4.19). Hyperplane nodes
are rectangles and coordinate nodes are circles.

Lemma 4.25. Let W 2 Tm� (n+1)
� and x 2 Tn+1 be a point with no 0 entries. Suppose

the tangent graphGx contains a matching between the hyperplane nodesI and the co-
ordinate nodesJ . Then this matching is a solution of the maximal assignment problem
with costs (jWij j) i 2 I;j 2 J .

Proof. Let f (i 1; j 1); : : : ; (i q; j q)g be a matching between the hyperplanes nodesI =
f i 1; : : : ; i qg and the coordinate nodesJ = f j 1; : : : j qg. By de�nition of the tangent
graph, for all p 2 [q], we have:

jWi p j p j + x j p � j Wi p l j + x l for all l 2 [n + 1] :

Since x has no 0 entries, this implies
P q

p=1 jWi p j p j �
P q

p=1 jWi p � ( i p ) j for any bijection
� : I ! J .

Lemma 4.26. Let W 2 Tm� (n+1)
� and x 2 Tn+1 be a point with no 0 entries. If

the tangent graphGx contains an undirected cycle, then the matrixW admits a square
submatrix W 0 which is not generic for the determinant polynomial. Moreover, if the cycle
is directed in the tangent digraph ~Gx , then W 0 is not sign-generic for the determinant
polynomial.
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Proof. To prove the �rst statement, let j 1; i 1; j 2; : : : ; i q; j q+1 = j 1 be an undirected cycle
in Gx . Up to restricting to a subcycle, we may assume that the cycle is simple,i.e.,
the indices i 1; : : : ; i q and j 1; : : : j q are pair-wise distinct. As a consequence, the maps
� : i p 7! j p and � : i p 7! j p+1 for p 2 [q] are bijections. The sets of edgesf (i p; j p) j p 2 [q]g
and f (i p; j p+1 ) j p 2 [q]g are two distinct matchings between the hyperplane nodes
i 1; : : : ; i p and the coordinate nodesj 1; : : : ; j p. Let W 0 be the submatrix of W made with
rows i 1; : : : ; i q and columns j 1; : : : j q. By Lemma 4.25, the bijections � and � are both
maximizing in j tdet( W 0)j, henceW 0 is not generic for the determinant.

Now suppose that the cycle is directed. Then,Wi p j p is tropically positive and Wi p j p+1

is tropically negative for all p 2 [q]. Consequently, the tropical signs ofWi 1 j 1 � � � � �
Wi q j q and Wi 1 j 2 � � � � � Wi q j q+1 di�er by ( � 1)q. Moreover, � is obtained from � by a
cyclic permutation of order q, so their signs di�ers by (� 1)q+1 . As a result, the terms
tsign(� ) � Wi 1 j 1 � � � � � Wi q j q and tsign(� ) � Wi 1 j 2 � � � � � Wi q j q+1 have opposite tropical
signs, andW 0 is not sign-generic for the determinant. This completes the proof.

4.2.2 Cells of an arrangement of signed tropical hyperplanes

Theorem 4.27. Suppose that(A b) 2 Tm� (n+1) is sign-generic for all minors polyno-
mials. Then the identity

val
�

P (A ; b) \ Kn
+

�
= P(A; b)

holds for any A 2 sval� 1(A) and b 2 sval� 1(b).

Proof. Let W = ( A b). For any A 2 sval� 1(A) and b 2 sval� 1(b), let W = ( A b ).
We �rst prove the result for the cones C = P(W; 0) and C = P (W ; 0). The inclusion
val(C \ Kn+1

+ ) � C is trivial. Conversely, let x 2 C. Up to removing the columns j of W
with x j = 0, we can assume thatx has no 0 entries. We construct a lift x of x in the
coneC\ Kn+1

+ using the tangent digraph ~Gx with hyperplane node setI . We claim that
it is su�cient to �nd a vector v 2 Rn+1 satisfying the following conditions:

X

j 2 arg( jW i j� x)

lc(w ij )vj > 0 for all i 2 I ; (4.26)

vj > 0 for all j 2 [n + 1] ; (4.27)

where W = ( w ij ).
Indeed, given such a vectorv, consider the lift x = ( vj tx j ) j of x. Clearly x 2 Kn+1

+ .
If i 2 I , then (4.26) ensures that the leading coe�cient of W i x is positive. If i 62I ,
two cases can occur. EitherW +

i � x = W �
i � x = 0 and thus W i x = 0. Otherwise,

W +
i � x > W �

i � x, so the leading term ofW i x is positive. We conclude that W i x � 0
for all i 2 [m]. This proves the claim.

Let F = ( f ij ) 2 RjI j� (n+1) be the real matrix de�ned by f ij = lc( w ij ) when j 2
arg(jWi j � x) and f ij = 0 otherwise. We claim that there exists a v 2 Rn+1 such that
Fv > 0 and v > 0, or, equivalently, that the following polyhedron is not empty:

f v 2 Rn+1 j F v � 1; v � 1g :
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By contradiction, suppose that the latter polyhedron is empty. Then, by Farkas' lemma
[Sch03,x5.4], there exist � 2 RjI j

+ and � 2 Rn+1
+ such that:

F > � + � � 0 (4.28)
X

i 2 I

� i +
X

j 2 [n+1]

� j > 0 (4.29)

Note that if � is the 0 vector, then by (4.29), there exists a� j > 0 for somej 2 [n + 1],
which contradicts (4.28). Thus, the setK = f i 2 I j � i > 0g is not empty. Let J � [n+1]
be de�ned by:

J :=
[

i 2 K

arg(W +
i � x) =

[

i 2 K

f j j f ij > 0g :

By de�nition of the tangent digraph, every hyperplane node in K has an incoming arc
from a coordinate node inJ . Moreover, for every j 2 J , the inequality (4.28) yields:

X

i 2 I

f ij � i � 0 :

This sum contains a positive term f ij � i (by de�nition of J ). Consequently, it must also
contain a negative term f kj � k . Equivalently, k 2 K and f kj < 0, which means that
the coordinate nodej has an incoming arc from the hyperplane nodek. It follows that
the tangent digraph ~Gx contains a directed cycle (through the nodesK [ J ). Then, by
Lemma 4.26, the matrix W is not sign-generic for a minor polynomial. This contradicts
the sign-genericity of W and proves the claim.

Now we consider the polyhedronP(A; b). The inclusion val(P (A ; b) \ Kn
+ ) � P (A; b)

is still valid. Conversely, given x 2 P (A; b), the point x0 = ( x; 1) 2 Tn+1 belongs to the
coneC. By the previous proof, there exists a lift x 0of x0 in C\ Kn+1

+ . Since val(x 0
n+1 ) = 1,

the point x = ( x 0
1=x 0

n+1 ; : : : ; x 0
n=x 0

n+1 ) is well-de�ned. Furthermore, x clearly satis�es
val(x ) = x and it belongs to P (A ; b) \ Kn

+ .

Theorem 4.27 shows that valuation commutes with intersection for halfspaces in gen-
eral position. This extends to mixed intersection of halfspaces and (signed) hyperplanes.

Proof of Theorem 4.22. We �rst prove the result when I = [ m]. In this case, the claim is
about the intersection of all (Hahn or signed tropical) hyperplanes in the arrangement.
The �rst inclusion val

� T m
i =1 H (A i ; bi ) \ Kn

+

�
�

T m
i =1 H(A i ; bi ) is trivial. Conversely,

let x 2
T m

i =1 H(A i ; bi ). The point x belongs to the tropical polyhedron P(A; b). By
Theorem 4.27,x admits a lift in P (A ; b) \ Kn

+ . But observe that the choice of tropical
signs for the rows of (A b) is arbitrary. Indeed, if ( A0 b0) is obtained by multiplying some
rows of (A b) by 	 1, then (A0 b0) satisfy the conditions of Theorem 4.27 andx belongs
to P(A0; b0). Thus for any sign pattern s 2 f� 1; +1gm , there exists a lift x s of x which

belongs to the Hahn polyhedronP (A s; bs) \ Kn
+ , where (A s bs) =

� s1 . . .
sm

�
(A b ).

Since the Hahn pointsx s are non-negative with value x, any point in their convex
hull is also non-negative with value x. We claim that the convex hull convf x s j s 2
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f� 1; +1gm g contains a point in the intersection
T m

i =1 H (A i ; bi ). We prove the claim by
induction on the number m of hyperplanes.

If m = 1, we obtain two points x + and x � on each side of the hyperplaneH (A 1; b1),
and it is easy to see that their convex hull intersects the hyperplane. Now, suppose we
havem � 2 hyperplanes. LetS+ (resp.S� ) be the set of all signs patternss 2 f� 1; +1gm

with sm = +1 (resp. sm = � 1). By induction, the convex hull convf x s j s 2 S+ g
contains a point x + in the intersection of the �rst m � 1 hyperplanes

T m� 1
i =1 H (A i ; bi ).

Similarly, convf x s j s 2 S� g contains a point x � in
T m� 1

i =1 H (A i ; bi ). The points x +

and x � are on opposite sides of the last hyperplaneH (A m ; bm ), thus their convex hull
intersects H (A m ; bm ).

When I ( [m], the previous proof can be generalized by considering only the sign
patterns s 2 f� 1; +1gm such that si = +1 for all i 62I .

4.3 The simplex method for tropical linear programming

We shall now use the tropical simplex method to solve a tropical linear program. By
Proposition 4.20, a solution of LP(A; b; c) can be found by applying the simplex method
to a classical linear program

minimize cx
subject to x 2 P (A ; b); x � 0

(4.30)

over Hahn series, for some
�

A b
c 0

�
2 sval� 1 �

A b
c 0

�
. Note that the feasible set of (4.30) is

included in the positive orthant. To ease the connection between tropical and classical
linear programs, we shall make the following assumption.

Assumption B. The matrix ( A b) 2 Tm� (n+1)
� is such that P (A ; b) is included in the

positive orthant Kn
+ for any (A b ) 2 sval� 1(A b).

This assumption can be easily satis�ed by adding explicitely the (implicit) inequali-
ties x � 0 to the description of P(A; b).

Tropical basic points

Proposition-De�nition 4.28. Suppose that(A b) 2 Tm� (n+1)
� is sign-generic for the

minor polynomials and satis�es Assumption B. Let I be a subset of[m] of cardinality n
such that tdet( A I ) 6= 0. If the set

PI (A; b) = f x 2 P (A; b) j A+
I � x � b+

I = A �
I � x � b�

I g (4.31)

is not empty, it contains a unique point x I . In this case, I is called a (feasible) basis,
and x I a (feasible) basic point, ofP(A; b).

For any (A b ) 2 sval� 1(A b), the feasible bases ofP(A; b) are exactly the feasible
bases ofP (A ; b), Moreover, for any feasible basisI , the basic point x I of P(A; b) is the
value of the basic pointx I of P (A ; b).
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Proof. Consider any (A b ) 2 sval� 1(A b). By Assumption B, the Hahn polyhedron
P (A ; b) is included in the positive orthant Kn

+ . Hence, by Corollary 4.22, the set (4.31)
is exactly the image under the valuation map of the set

P I (A ; b) = f x 2 P (A ; b) j A I x + bI = 0g (4.32)

Since tdet(A I ) 6= 0, and A I is sign-generic for the determinant, it follows from Lemma 3.8
that det( A I ) 6= 0. As a consequence,I is a basis ofP (A ; b), and the intersectionT

i 2 I H (A i ; bi ) contains only the Hahn basic point x I . If this point is contained in
P (A ; b), i.e., if the basis is feasible forP (A ; b), then the set (4.32) is reduced to
f val(x I )g. Otherwise, the set (4.32) is empty.

Given a basis, the corresponding basic point can be obtained as follows.

Proposition 4.29. Suppose that(A b) 2 Tm� (n+1)
� is sign-generic for the minor poly-

nomials and satis�es Assumption B. Let I � [m] be a feasible basis ofP(A; b). The j th
component of the basic pointx I 2 Tn is given by

x I
j = ( 	 1) � n+1+ j � tdet( A I; bj bI ) � (tdet( A I )) �� 1 = j tdet( A I; bj bI )j � j tdet( A I )j : (4.33)

Proof. By Lemma 3.15, the tropical basic point x I is the image under the valuation map
of the Hahn basic point x I of the polyhedron P (A ; b), for any (A b ) 2 sval� 1(A b).
The rest of the proposition then follows from Cramer's formul� (Proposition 3.15) and
Lemma 3.8.

Proposition 4.30. Every extreme point of a tropical polyhedron is a feasible basic point.

Proof. Let (A b ) 2 sval� 1(A b) be the lifted matrix given by Proposition 4.7, so that
val(P (A ; b)) coincides with P(A; b). Let V be the set of basic points ofP (A ; b). By
Proposition 4.28, V = val( V ) is the set of tropical basic points of P(A; b). The set
of extreme points of P (A ; b) is exactly the set of its basic points by Proposition 3.14.
Hence, P (A ; b) = conv( V ) + pos( R ) for some �nite set R � Kn by Theorem 3.1.
Consequently, P(A; b) = tconv( V ) � tpos(val(R )). It then follows from Remark 4.13
that V contains the set of extreme points ofP(A; b).

However, in contrast with the classical case, a tropical basic point may not be an
extreme point. This happens in particular in Example 4.12, where (2; 2) is a basic point
but not an extreme point. Observe that the set of basic points actually depends on
the external representation chosen for a tropical polyhedron. For example, the tropical
polyhedron of Example 4.12 can also be described by:

2 � max(x1; x2); x1 � 1; x2 � 1 :

With this representation, (2 ; 2) is no longer a basic point. In fact, the set of basic points
is f (2; 1); (1; 2); (1; 1)g, and it coincides with the set of extreme points.
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Non-degeneracy

By analogy with the classical case, we say that a feasible basisI of a tropical polyhedron
P(A; b) is degenerateif the tropical basic point x I belongs to an s-hyperplaneH(Ak ; bk )
for somek 62I . When there is no degenerate basis, we say that the tropical polyhedron
P(A; b), and the tropical linear program LP( A; b; c), is non-degenerate.

Note that even if (A b) is generic for the minor polynomials, it may happenP(A; b)
is degenerate. This happens in particular in the tropical counterpart of the degenerate
linear program in Example 3.20.

Example 4.31. The tropical polyhedron of T2 de�ned by the inequalities:

x1 � x2 ; x1 � 0 ; x2 � 0 (4.34)

has a sign-generic matrix, and (0; 0) is a basic point for the three distinct basesx1 =
x2; x1 = 0, and x1 = x2; x2 = 0, and x1 = 0; x2 = 0.

The following conditions are su�cient to ensure non-degeneracy.

Lemma 4.32. Suppose that(A b) 2 Tm� (n+1)
� is sign-generic for the minor polyno-

mials and satis�es Assumption B. If one of the following conditions holds, the tropical
polyhedron P(A; b) is non-degenerate.

(i) The polyhedron P(A; b) does not contain a point with 0 entries.

(ii) The matrix (A b) is of the form
�

A 0 b0

D 0

�
, whereb0 has no0 entries, and D is a n � n

diagonal matrix with tropically positive entries on the diagonal.

Proof. Let (A b ) 2 sval� 1(A b) and I a feasible basis. By Corollary 4.22, it is su�cient
to prove that, for any k 2 [m] n I , the basic point x I is not contained in the hyperplane

H (A k ; bk ). By contradiction, suppose that A kx I + bk = 0. Then, det
�

A I bI
A k bk

�
= 0

by (3.20). Thus tdet
�

A I bI
A k bk

�
= 0 by genericity on that minor polynomial. By de�nition

of the tropical determinant, we have
�
�
�
� tdet

�
A I bI

Ak bk

� �
�
�
� �

M

j 2 [n]

jAkj j � j tdet( A I; bj bI )j � j bk j � j tdet( A I )j : (4.35)

(i) If the polyhedron does not contain point with 0 entries, the basic point x I does
not have 0 entries. By Proposition 4.29, it follows that j tdet( A I; bj bI )j 6= 0 for all j 2 [n].
Moreover, j tdet( A I )j 6= 0. At least one of the jAk1j; : : : ; jAkn j; jbk j is di�erent from 0 by

Assumption A. Consequently, we obtain the contradiction tdet
�

A I bI
A k bk

�
> 0 by (4.35).

(ii) Now suppose that (A b) is of the form
�

A 0 b0

D 0

�
, where b0 has no 0 entries, and

D is a n � n diagonal matrix with tropically positive entries on the diagonal. Since
j tdet( A I )j 6= 0, Equation (4.35) imply bk = 0. As the components ofb0 are not equal to

0, we haveAk = D l for somel 2 [n]. Hence,
�
�
� tdet

�
A I bI
A k bk

� �
�
� = jD ll j � j tdet( A I; bl bI )j.
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Let � : [n] 7! I be a maximizing permutation in tdet( A I ). As tdet( A I ) 6= 0, we have
A � ( j ) j 6= 0 for all j 2 [n]. In particular, A � ( l ) l 6= 0. Consequently,� (l ) either indexes the
row (Ak bk ) = ( D l 0), or a row of (A0 b0). Since � (l ) 2 I and k 62I , we deduce that� (l )
indexes a row of (A0 b0), and thus that b� ( l ) 6= 0. Finally, we obtain the contradiction:

0 = j tdet( A I; bl bI )j � j bj � ( l ) +
X

j 2 [n]nf lg

jAj j� ( j ) > 0 :

Tropical edges

Proposition-De�nition 4.33. Suppose that(A b) 2 Tm� (n+1)
� is sign-generic for the

minor polynomials and satis�es Assumption B. Let K be a subset of[m] of cardinality
n � 1 such that AK has a maximal square submatrix with a non0 tropical determinant.
If the set

PK (A; b) = f x 2 P (A; b) j A+
K � x � b+

K = A �
I � x � b�

K g (4.36)

is not empty, then it is called an edge ofP(A; b).
The edges ofP(A; b) are exactly image under the valuation map of the edges of

P (A ; b) for any lift (A b ) 2 sval� 1(A b).

Proof. The arguments are the same as in the proof of Proposition-De�nition 4.28.

Since a bounded edge of a Hahn polyhedron is the convex hull of two of its basic
points, a bounded edge of a tropical polyhedron is the tropical convex hull of two of its
basic points. We refer to Chapter 7 for a more thorough description of tropical edges.

Tropical reduced costs

We also de�ne a tropical version of reduced costs.

Proposition-De�nition 4.34. Suppose that
�

A b
c 0

�
2 T(m+1) � (n+1)

� satis�es Assump-
tion B and is sign-generic for the minor polynomials. Let I be a feasible basis of
LP(A; b; c). The vector of reduced costsof LP(A; b; c) at I is the vector yI 2 T jI j

�
with entries:

yI
i = ( 	 1)n+ idx(i;I ) � tdet

�
A I nf i g

c>

�
� (tdet( A I )) �� 1 for all i 2 I (4.37)

where idx(i; I ) is the index of i in the ordered setI .
For any

�
A b
c 0

�
2 sval� 1 �

A b
c 0

�
, and for any feasible basisI , the reduced costs vector

yI of LP(A; b; c) is the image under the signed valuation map of the reduced costs vector
y I of LP (A ; b; c).

Proof. The reduced costs vectory I at a basis I is the unique solution of the system
A >

I y = c. We then apply Cramer's formul� to this system, and Lemma 3.8.
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1 2 3

1
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x1
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t1 t2 t3
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x 1
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Figure 4.8: Illustration of Example 4.35. The set of optimal solutions of the tropical
linear program on the left is the segment between (1; 1) and (1; 3). In particular, the
tropical basic point (1; 3) is an optimal solution. However, the corresponding basis is
not optimal. Indeed, on a lift of this tropical linear program (on the right), the basic
point de�ned by the blue and green hyperplanes is not optimal.

If, at a feasible basisI all reduced costs (yI
i ) i 2 I have a non-negative tropical sign,

we say that I is an optimal basis of LP(A; b; c). Observe that at an optimal basis I , the
basic point x I is an optimal solution of LP(A; b; c). Indeed, x I is an optimal solution of
the Hahn linear program provided by Proposition 4.7.

However, it may happen that a basic point x I is an optimal solution of LP(A; b; c),
while I is not an optimal basis, i.e., some reduced costs have negative sign. Unlike the
classical case, this can happen even on a non-degenerate tropical linear program.

Example 4.35. Consider following the tropical linear program (illustrated in Figure 4.8):

minimize max(x1; x2 � 4) s.t. 3 � max(x1; x2); x1 � 1; x2 � 1 :

It can be described by the matrices

A =

0

@
	 1 	 1
1 0
0 1

1

A ; b =

0

@
3

	 1
	 1

1

A and c =
�

1
� 4

�

One easily verify that
�

A b
c 0

�
is sign-generic for the minor polynomials, and that Assump-

tion B is satis�ed.
The set of optimal solutions of this tropical linear program is the line segment between

the two basic points (1; 1) and (3; 1). The basic point (3; 1) is de�ned by the system

3 = max( x1; x2); x2 = 1 :
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The tropical reduced cost for the constraint 3 � max(x1; x2) is 	 1, hence tropically
negative.

To see this, it may be easier to look at a lift of this tropical linear program over Hahn
series:

minimize x 1 + t � 4x 2 s.t. t3 � x 1 + x 2; x 1 � t; x 2 � t :

The Hahn basic point corresponding to the tropical basic point (3; 1) is de�ned by:

t3 = x 1 + x 2; x 2 = t :

The vector of reduced cost for the corresponding basis is the unique solutiony 2 K2 of

�
� 1 0
� 1 1

�
y =

�
1

t � 4

�

hence is
�

1� t � 4

� 1

�
. Its image under the signed valuation map is

�
1

	 1

�
.

The tropical simplex method solves generic tropical linear programs

Proposition 4.36. Let � be a semi-algebraic pivoting rule. Suppose that LP(A; b; c) a
non-degenerate tropical linear program satisfying Assumption B and such that

�
A b
c 0

�
is

sign-generic for the minor polynomials, and all polynomials(P �
i ).

Then, for any feasible basisI of LP(A; b; c), the tropical simplex method, equipped
with the tropical pivoting rule � T , and applied on A; b; c; I , terminates and returns an
optimal basis of LP(A; b; c).

Proof. Consider the matrix
�

A b
c 0

�
2 sval� 1(

�
A b
c 0

�
) given by Proposition 4.20. The

conditions of Theorem 3.25 are satis�ed and thus the tropical simplex method terminates.
The linear program LP (A ; b; c) seek a minimum of x 7! c> x with c � 0, and the
polyhedron P (A ; b) is included in the positive orthant. Hence, LP (A ; b; c) is bounded
and the tropical simplex method returns an optimal basis I � of LP (A ; b; c). It follows
that the basic point x I �

is optimal for LP (A ; b; c). By Proposition 4.20, the tropical
basic point x I �

= val( x I �
) is optimal for LP( A; b; c).

We conclude this section by applying the tropical simplex algorithm to the running
example 4.21.

Example 4.37. We start from the tropical basic point (4 ; 4; 2) associated with the basis
I = fH 1; H 2; H 5g. For this basis, the tropical reduced costs areyH 1 = 	 (� 1), yH 2 = � 1
and yH 5 = 	 4. We choosei out = H 5 and pivot along the tropical edgeEfH 1 ;H 2g.

We arrive at the basic point (1; 0; 0), associated withI = fH 1; H 2; H 3g. The reduced
costs areyH 1 = 	 (� 1), yH 2 = � 1 and yH 3 = 0. The only tropically negative reduced
cost is yH 1 , thus we pivot along EfH 2 ;H 3g.

The new basic point is (0; 0; 0), corresponding to the setfH 2; H 3; H 4g. The reduced
costs are tropically positive: yH 2 = � 1, yH 3 = 0 and yH 4 = � 2. Thus (0; 0; 0) is optimal.
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4.4 Perturbation scheme

We �x a totally ordered abelian group G, and a tropical linear program LP = LP( A; b; c)
on the tropical semiring T = T(G). We shall construct a tropical linear program fLP
which is generic and whose solution provides an optimal solution of LP. The problem
fLP is de�ned on a \bigger" semiring I = T(F � G � H ), where F and H are two groups
and F � G � H is ordered lexicographically. We shall use (Z; +) for F , and the additive
group ZN� N, with a lexicographic order, for H . For computational purposes, we shall see
below that it is su�cient to instantiate H as Z(m+ n+3) � (n+3) to use the tropical simplex
method on tropical linear program de�ned by m inequalities in dimension n.

Intuitively, a tuple ( f; g; h ) 2 F � G � H corresponds to an element ofG of the form
fM + g + h� , where M is an in�nite formal value and � and in�nitesimal formal value.
An element g 2 G is lifted into (0 ; �; �). In contrast, the elements of I of the form (f; �; �)
with f 6= 0 correspond to di�erent layers of in�nite values, namely �1 if f < 0, and +1
if f > 0. Finally, the semiring I has its own bottom element,0I , which also corresponds
to 0T .

We de�ne a canonical embedding , which maps a tropical signed numberx 2 T � to
 (x) 2 I� de�ned by:

 (x) :=

8
><

>:

(0; jxj; 0) if x is tropically positive ;

	 (0; jxj; 0) if x is tropically negative ;

0G if x = 0T :

The map  is extended to matrices component-wise, and we let

A :=  (A); b =  (b); and c =  (c) : (4.38)

In order to obtain a non-degenerate linear program, we wish to use Lemma 4.32 (ii).
So, we replace the0 entries of b by \in�nitely small" but �nite entries. We de�ne d 2 Im

�
to be a vector such that

1I � di > 0I for all i 2 [m] : (4.39)

For example, we can takedi = ( � 1; 0; 0) for all i 2 [m]. We want to solve the following
linear program over I :

maximize c � x
subject to A+ � x � (b+ � d) � A� � x � b�

x � 0 :
(4.40)

However, the matrix of this problem may not be sign-generic. We now use theH -entries
of the elements ofI to satisfy the genericity conditions. Let E = ( " i;j ) be a basis of
the Z-module H = ZN� N. For example, we can use the canonical basis where" i;j is the
in�nite matrix with all entries equal to 0 except the ( i; j )-th entry which is equal to 1.
We de�ne a perturbation map � E , that associates to anyM 2 Ip� q

� , the perturbed matrix
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fM = � E (M) 2 Ip� q
� de�ned by

fM ij =

8
><

>:

(f ij ; gij ; " i;j ) if Mij is tropically positive, and jMij j = ( f ij ; gij ; �)

	 (f ij ; gij ; � " i;j ) if Mij is tropically negative, and jMij j = ( f ij ; gij ; �)

0I if Mij = 0T :

Lemma 4.38. Let M 2 Ip� q
� . The perturbed matrix � E (M) is generic for any polynomial

P 2 Q[X 11; : : : ; X pq].

Proof. Let fM = � E (M) and P =
P

� 2 � q� X � . If trop( P)( fM ) = 0 then there is nothing
to prove. Otherwise, let �; � 2 � � Np� q be two maximizers in jtrop( P)( fM )j. We haveP

i;j � � i;j " i;j =
P

i;j � � i;j " i;j . Since E = ( " i;j ) is a basis, and�; � have non-negative
entries, it follows that � = � .

We are now considering now the following tropical linear program onI :

minimize ec> � x
subject to eA+ � x � (eb+ � ed) � eA � � x � eb�

eId � x � 0In

( fLP)

with parameters given by:

0

@
ec> 0 0
eA eb ed
eId 0In 0

1

A = � E

0

@
 (c)> 0 0
 (A)  (b) d

Id 0In 0

1

A (4.41)

where Id is the n � n identity matrix of I .

Example 4.39. Let us illustrate our perturbation scheme on a very simple example.
Consider the tropical polyhedron P(A; b) in T2 de�ned by:

x1 � x2 and x2 � x1 :

This polyhedron consists of the diagonalx1 = x2 (see Figure 4.9, right). After embedding
into I2, and replacing the 0 entries of the right-hand sideb by (� 1; 0; 0) as in (4.40), we
obtain the polyhedron in I2 depicted in Figure 4.9 (middle), which de�ned by:

x1 � (� 1; 0; 0) � x2

x2 � (� 1; 0; 0) � x1 :

Finally, applying the perturbation map as in (4.41) provides the polyhedron illustrated
in the left of Figure 4.9, which can be described by:

(0; 0; "1;1) � x1 � (� 1; 0; "1;3) � (0; 0; � "1;2) � x2

(0; 0; "2;2) � x2 � (� 1; 0; "2;3) � (0; 0; � "2;1) � x1 :
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x1

x2

x1

x2

x1

x2

Figure 4.9: Illustration of the two perturbation steps on the polyhedron described in
Example 4.39. Left: the original tropical polyhedron P(A; b), embedded into I2, which
is the diagonal x1 = x2. Middle: the polyhedron obtained when the 0 entries of b have
been replaced by the\in�nitely small" scalar ( � 1; 0; 0). Right: the polyhedron obtained
after applying the perturbation map � E .

Lemma 4.40. Suppose that the elements ofE are positive. Then, given any feasible
point x 2 Tn of LP, its canonical embeddingx =  (x) is feasible for fLP.

Proof. Clearly, eId � x � 0In . For the other inequalities, it su�ces to show that eA+
i � x �

eb+
i � eA �

i � x� eb�
i for i 2 [m]. If A �

i � x� b�
i = 0T , then we also haveeA �

i � x� eb�
i = 0I . Since

eA+
i � x� eb+

i � 0I , the inequality is satis�ed. Otherwise A+
i � x � b+

i � A �
i � x � b�

i > 0T .
In this case, we have

eA+
i � x � eb+

i = (0 ; A+
i � x � b+

i ; "+ )

eA �
i � x � eb�

i = (0 ; A �
i � x � b�

i ; � " � )

where "+ and " � are sum of elements inE . Since the elements ofE are positive, it
follows that "+ � 0 � � " � .

Let I � denote the subset ofI consisting of the elements (f; g; h ) 2 F � G � H with
f � 0, together with 0I . We project the elements ofI � to T with the map � , de�ned by
� (0; g;�) = g, and � (f; �; �) = 0T for f < 0, along with � (0I ) = 0T . The map � is extended
to vectors entry-wise.

Lemma 4.41. Let x 2 In be a point with entries in I � . If x is feasible for fLP, then � (x)
is feasible for LP. Besides, ifx is optimal for fLP, then � (x) is optimal for LP.

Proof. Observe that I � is a subsemiring ofI , and that the coe�cients de�ning fLP belong
to I � . The lemma then follows from the fact that � is a homomorphism of semirings
from I � to T that preserves the order.
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Remark 4.42. The feasible points of fLP with some entries in I n I � correspond to rays
of the recession cone ofP(A; b). Indeed, consider such a pointx. Let � = � maxj (xj )
and let r = � � x be the point obtained by rescalingx by � . Then, r has entries in I � ,
and satis�es:

eA+ � r � (� � eb+ ) � eA � � r � (� � eb� ) :

Note that � is of the form (� f; �; �) for some positivef , whereaseb+ and eb� have entries of
the form (0; �; �) or 0I . Hence, the image of both� � eb+ and � � eb� under the projection
map � is the vector with 0T entries. It follows that � (r) belongs to the polyhedral cone
P(A; 0), which is the recession cone ofP(A; b).

Lemma 4.43. Let I be a feasible basis offLP. Then the basic point xI have entries in
I � .

Proof. Let ( eA0 ed0) be the matrix de�ning the feasible set of fLP, i.e., eA0 =
�

eA
eId

�
and

ed0 =
�

b0

0In

�
, with eb0 2 Im

� being the vector such that (eb0)+ = eb+ � ed and (eb0) � = eb� . By
Proposition 4.29, the components ofxI 2 In are given by

xI
j = j tdet( eA0

I; bj
eb0

I )j � j tdet( eA0
I )j ;

The entries of j(fA0 eb0)j belongs to I � , hence j tdet( eA0
I; bj

eb0
I )j is also in I � . Moreover,

the entries of j eA0j are either of the form (0; �; �) or equal to 0I . Since tdet(fA0
I ) 6= 0I , we

deduce that j tdet( eA0
I )j is an element of the form (0; �; �). HencexI have entries inI � .

Proposition 4.44. Suppose thatfLP is feasible and letI be a feasible basis offLP. Then,
the tropical simplex method, equipped with any tropical pivoting rule, and applied on the
input

�
eA
eId

�
;
�

eb
0

�
; ec and I , terminates and returns an optimal basisI � of fLP. Let xI �

be

the corresponding basic point. Then,� (xI �
) is an optimal solution of LP.

Proof. By Lemma 4.38, the matrix
�

eA eb
eId 0
ec 0

�
is generic, and thus sign-generic, for the

tropicalization of any polynomial. Moreover, eb has non 0 entries. Hence, fLP is non-
degenerate by Lemma 4.32(ii) Hence, the tropical simplex method terminates and returns
an optimal basis of fLP by Proposition 4.36. By Lemmas 4.41 and 4.43,� (ex I �

) is an
optimal solution of LP.

4.4.1 Perturbation into a bounded polyhedron

It is sometimes convenient to obtain a tropical linear program whose feasible set is
a bounded polyhedron and that contains no points with 0 entries. In particular, this
assumption is needed to apply the implementation of tropical simplex method developped
in Chapter 7. Hence, we shall add to the tropical linear program (4.40) an \in�nitely
small" lower bound xj � lj for each variable j 2 [n]. We require that

dj � li > 0I for all i 2 [m] and j 2 [n] :
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We also add an \in�nitely big" upper bound constraint e> � x � u, where e 2 In
� is the

vector with all entries equal to 1, and u � 1I . For example, we may use the parameters:

d1 = � � � = dm = ( � 1; 0; 0)

l1 = � � � = ln = ( � 2; 0; 0)

u = (1 ; 0; 0) :

(4.42)

As before, we apply the perturbation map

0

B
B
@

ec> 0 0
eA eb ed
eId 	 el 0

	 ee> eu 0

1

C
C
A = � E

0

B
B
@

c> 0 0
 (A)  (b) d

Id 	 l 0
	 e> u 0

1

C
C
A ; (4.43)

and we denote byLP the following linear program:

maximize ec> � �x
subject to eA+ � ex � (eb+ � ed) � eA � � ex � eb�

eId � ex � el

eu � ee> � ex

(LP)

Lemma 4.45. Suppose thatdi � lj for all i; j 2 [m] � [n], that u � 1, and that the
elements ofE are positive. Then, given any feasible pointx 2 Tn of LP, the point x 2 In ,
de�ned by xj = (0 ; x j ; 0) if x j 6= T and xj = el j otherwise, is feasible forLP.

Proof. Clearly, x satis�es eu � ee> � ex and eId � ex � el . Now consider an i 2 [m]. If
A �

i � x � b�
i = 0T , then eA �

i � x � eb�
i is of the form

L
j

eA �
ij � el j . Due to our conditions

on l; d, it follows that edi � eA �
i � x � eb�

i . Otherwise, A+ � x � b+ � A � � x � b� > 0T ,
and the proof of Lemma 4.40 readily applies.

Lemma 4.46. Let I be an optimal basis ofLP, and i u the index of the inequality
eu � ee � ex. If i u 62I , the basic point xI has entries in I � , and � (xI ) is an optimal
solution of LP. Otherwise, if i u 2 I , pivoting along the edge de�ned byI n f i ug provides
another basisI 0 with i u 62I 0. Its basic point xI 0

is also an optimal solution of LP.

Proof. The matrix de�ning the feasible set of LP is of the form
�

eA0 ed0

	 ee> eu

�

where eA0 and ed0 have entries in I � . Suppose that i u 62I , then the Cramer's formul�
providing x I involves minors of (eA0 ed0) (as in Lemma 4.41), and thusx I has entries in
I � .

Otherwise, let I = K [ f i ug. Let us lift LP to the linear program over Hahn series
R[[tF � G� H ]] provided by Proposition 4.20:
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maximize ec> x
subject to eA 0x + ed0 � 0

eu � ee> x

(4.44)

Let xI 2 Kn be the basic point of (4.44) for the basisI , and xI 0
the basic point

obtained by pivoting along the edge EI nf i u g. We claim that the reduced cost of the
edge EI nf i u g is non-positive. This imply that ec> xI 0

� ec> xI . Moreover, I being an
optimal basis, xI is an optimal solution of (4.44). Consequently,ec> xI 0

= ec> xI and thus
ec> � xI 0

= ec> � xI by applying the valuation map.
We now prove our claim. Let us denote byz the reduced cost of the edgeEI nf i u g,

and yk the reduced cost ofEI nf kg for k 2 I n f i ug. Note that the Cramer's formul�

de�ning y and z involves only minors of
�

fA 0

ee>

ec>

�
. It follows that the tropical reduced

costsy = val( y) and z = val( z) have entries in I � .
SinceI is an optimal basis,xI is an optimal solution of (4.44), and (y; z) and optimal

solution of the dual linear program. Consequently,

ec> xI = � ( ed0)> y � euz (4.45)

by Theorem 3.7. Sinceed0; y and z have entries in I � , while eu � 1I , it follows that the
leading term of the Hahn series (4.45) is given by the leading term of� euz. Since ec> xI 0

is non-negative, we deduce that� euz is non-negative and thus that z is non-positive.

4.4.2 Phase I

It remains to detect the feasibility of LP. As usual, we use a Phase I method. We add a
new variable � to LP to measure the \infeasibility" of a point. The objective is now to
minimize � . To keep our linear program bounded, we also add upper and lower bound
constraints on � . Let � 2 Im be the unit vector of sizem, and ln+1 2 I a scalar such that
0 < ln+1 � lj � di for all ( i; j ) 2 [m] � [n]. If we choosed; l1; : : : ; ln and u as in (4.42),
then we can take

ln+1 = ( � 3; 0; 0) : (4.46)

Our Phase I linear program is:

maximize em � �
subject to eA+ � x � e� � � � (eb+ � ed) � eA � � x � eb�

eId � x � el
e1 � � � eln+1

eu � ee> � x � een+1 � �

(Phase I)
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where: 0

B
B
B
B
B
@

0 0 0 em
eA eb ed e�
eId 	 el 0 0
0 	 eln+1 0 e1

	 ee> eu 0 	 een+1

1

C
C
C
C
C
A

= � E

0

B
B
B
B
@

0 0 0 1
A b d �
Id 	 l 0 0
0 	 ln+1 0 1

	 e> u 0 1

1

C
C
C
C
A

; (4.47)

Observe that (4.43) and (4.47) de�ne the same matriceseA; eb; ed; eId and el.
We have a feasible basis for Phase I.

Lemma 4.47. The set I indexing the inequalities eId � x � el and eu � ee> � x � een+1 � �
is a feasible basis of Phase I.

Proof. Clearly tdet
�

eId 0
ee> een +1

�
6= 0. Thus it is su�cient to show that the unique solution

(x; � ) of the system eId � x = el and eu = ee> � x � een+1 � � is feasible for Phase I. Due to
our assumption u � 1 � lj , it follows that � � 1 � xj for all j 2 [n]. Consequently,
e1 � � � eln+1 and

eA+ � x � e� � � � (eb+ � ed) � e� � � � eA � x � eb� :

Lemma 4.48. Let I be an optimal basis of Phase I andi l the index of the inequality
e1 � � � eln+1 . Either i l 2 I and I n f i l g is a feasible basis forLP, or i l 62I and LP is
infeasible.

Proof. Let (xI ; � I ) be the basic point of an optimal basis I . First, consider the case
i l 62I . Since Phase I is non-degenerate by Lemma 4.32, we have the strict inequality
e1 � � I > eln+1 . Hence, the optimal value of Phase I isem � � I , and satisfy:

em � � I > em � eln+1 � e1�� 1 : (4.48)

By contradiction, suppose that LP admits a feasible point x. Let � = eln+1 � (e1) �� 1. We
have:

eA+ � x � e� � � � (eb+ � ed) � eA+ � x � (eb+ � ed) � eA � x � eb� :

Furthermore, een+1 � � � eu asln+1 � 1 � u. Consequently, the point (x; � ) is feasible for
Phase I. At this point, the value of the objective function of Phase I is em� eln+1 � (e1) �� 1.
Using (4.48), this contradicts the optimality of ( xI ; � I ), and thus LP is infeasible.

Second, assume thati l 2 I . Then � I = eln+1 � (e1) �� 1. Since ln+1 � di � 1 for all
i 2 [m], it follows that e� � � I � ed. We obtain:

eA+ � xI � (eb+ � ed) = eA+ � x � e� � � I � (eb+ � ed) :

As (xI ; � I ) is feasible for Phase I, it follows that

eA+
i � xI � (eb+

i � edi ) � eA �
i xI � eb�

i for all i 2 [m] ; (4.49)
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and the inequality (4.49) holds with equality for i 2 I \ [m]. Clearly,

eu � ee> � xI � een+1 � � I � ee> � xI :

Moreover, if I indexes the latter inequality, then we must haveeu = ee> � xI aseen+1 � � I �
eu. Obviously, the inequalities eId � xI � el are satis�ed, and holds with equality when
indexed by I .

We have shown thatxI is feasible forLP and that it activates the inequalities indexed
by I n f i l g. It remains to show that the corresponding submatrix has a non0 tropical

determinant. Denote eA0 =
�

eA
eId

�
and e� 0 =

�
e�

0In

�
. Since I is a basis of Phase I, we

have tdet
�

eA 0
I nf i l g

e� 0

0 e1

�
6= 0. Consequently, tdet( eA0

I nf i l g
) 6= 0. It follows that, I n f i l g is a

feasible basis forLP.

Theorem 4.49 (Tropical simplex method for arbitrary tropical linear programs) . An
arbitrary tropical linear program LP (A; b; c) is solved by the following algorithm:

� Apply the tropical simplex method to the tropical linear program Phase I, starting
with the feasible basis of Lemma 4.47. LetI be the optimal basis of Phase I returned
by the algorithm

� If i l 62I , then LP(A; b; c) is infeasible by Lemma 4.48.

� Otherwise, apply the tropical simplex method toLP with I n f i l g as an initial basis.

� Let I � be the optimal basis ofLP obtained, possibly after the last pivoting step of
Lemma 4.46.

� Compute the basic pointxI �
of LP using Proposition 4.29.

� The projection � (xI �
) is an optimal solution of LP(A; b; c).

Remark 4.50. Since the matrix in (4.47) is of size (m + n + 3) � (n + 3), we use only
(m + n + 3)( n + 3) elements of E to obtained the perturbed matrix. Hence, we can use
H = Z(m+ n+3) � (n+3) as a perturbation group, and the canonical basis ofH for elements
of E . Using the parameters proposed in (4.46) and (4.42), the non0 entries of the
matrices (4.47) and (4.43) are of the form (f i ; gi ; hi ), where jf i j � 3, the element gi is
either 0 or an entry of

�
A b
c 0

�
, and hi 2 H is an element of the basisE of H . Hence the

input size of f i is O(1) and the input size of hi is O(mn). Consequently, the input size
of Phase I andLP are polynomial in the input size of LP(A; b; c).
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Chapter 5

Relations between the complexity
of classical and tropical linear
programming via the simplex
method

In this chapter, we present three results related to the complexity of the simplex method.
First, in Section 5.1, we prove that the existence of a pivoting rule which performs a
strongly polynomial number of iterations on linear programs over R would provide a
polynomial algorithm for tropical linear programming, and thus mean payo� games.
Second, in Section 5.2, we show that if a pivoting rule, used on a tropical linear program,
performs a number of iterations which is polynomial in the input size of the tropical
entries, the number of iterations is in fact strongly polynomial (i.e., polynomial in the
dimensions of the problem). Last, in Section 5.3, we exhibit a class of classical linear
programs on which the simplex method, with any pivoting rule, performs a number
of iterations which is polynomial in the input size of the problem. Consequently, the
corresponding polyhedra have a diameter which is polynomial in the input size.

These three results are based on the following idea. We have seen in Section 3.3 that
the simplex method can be implemented using only the signs of polynomials evaluated
on the problem to be solved. This also provides the following observation.

Proposition 5.1. Consider a semi-algebraic pivoting rule� de�ned by the polynomials
(P �

i ) i . The sequence of bases produced by the simplex method applied to a linear program
LP (A ; b; c) depends only on the signs of the minors of

�
A b
c 0

�
and the signs ofP �

i

�
A b
c 0

�
.

We call this collection of signs thesign pattern of LP (A ; b; c), and we denote it by
s� (A ; b; c). Any linear program with a sign pattern s is called arealization of s.

If the simplex method performs L iterations on an instance LP (A ; b; c), then the
number of iterations is also equal toL on any realization of the sign pattern s� (A ; b; c),
including realizations on other ordered �elds. Our �rst result, in Section 5.1, comes from

81
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the fact that the sign pattern of linear program over Hahn series is realizable over the
real numbers, by completeness of the theory of real-closed �elds.

For a generic tropical linear program, we can also de�ne a sign-pattern, which governs
the behavior of the simplex method. In Section 5.2, we show that the tropical realization
space of a sign pattern is a semi-linear set. Using simultaneous diophantine approxima-
tion, it follows that the sign-pattern of a tropical linear program always have a \short"
realization, i.e., with an input size which is polynomial in the dimensions. Consequently,
an algorithm which is polynomial in the bit model is in fact strongly polynomial.

Finally, in 5.3, we construct linear programs over Q which realize the sign-pattern
of a tropical instance, and whose input sizes are greater than thevalues of tropical
input. Hence, if the simplex method is pseudo-polynomial for the tropical instance, it is
polynomial with respect to the input size of the classical instances.

The transfer of complexity from classical to tropical linear programming (Theo-
rem 5.3 below) appeared in [ABGJ13a] in a less general form (restricted tocombinatorial
pivoting rules). The other contents of this chapter are original.

5.1 From classical to tropical linear programming

Let NK (n; m; � ) be the maximal length of a run of the simplex method, equipped with
a semi-algebraic pivoting rule � , for a non-degenerate classical linear programs of size
(n; m), with coe�cients in a real closed �eld K .

Similarly, let NT(n; m; � T) the maximal length of a run of the tropical simplex algo-
rithm, equipped with the tropical rule � T , for a tropical linear program satisfying the
conditions of Proposition 4.36, with coe�cients in a tropical semiring T = T(G).

Proposition 5.2. Let G be a totally ordered abelian group. Then,

NT(G) (n; m; � T) � NR(n; m; � ) :

Proof. Let LP( A; b; c) be a non-degenerate tropical linear program, with coe�cients in
the semiring T(G), satisfying the conditions of Proposition 4.36, andI a feasible basis of
this problem. By Theorem 3.25, the number of iterations of the tropical simplex method
applied to A; b; c; I is exactly the number of iterations of the classical simplex method
over Hahn series applied toA ; b; c; I for any

�
A b
c 0

�
2 sval� 1 �

A b
c 0

�
.

By Proposition 5.1, the number of iterations of the classical simplex algorithm
depends only on I and the sign pattern s� (A ; b; c). We claim that the sign pat-
tern s� (A ; b; c) is realizable over the real numbers, i.e., we a�rm that there exist
A 2 Rm� n ; b 2 Rm and c 2 Rn such that s� (A; b; c) = s� (A ; b; c). Indeed, let P1; : : : ; Pr

be the polynomials de�ning the sign-pattern. Observe that the realizability of a sign
pattern s 2 f� 1; 0; +1gr by a (n; m) linear program over an ordered �eld K can be
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expressed as the following sentence in the languageL or :

9
�

A b
c 0

�
2 K (m+1) � (n+1) s.t
� ^

i 2 [r ]
si =+1

Pi
�

A b
c 0

�
> 0

�
^

� ^

i 2 [r ]
si =0

Pi
�

A b
c 0

�
= 0

�
^

� ^

i 2 [r ]
si = � 1

Pi
�

A b
c 0

�
< 0

�
: (5.1)

Up to embedding, we can always assume that the abelian groupG is divisible (The-
orem 2.9). In this case, the �eld of Hahn seriesR[[tG]] is real closed (Theorem 2.6).
The sentence (5.1) holds onR[[tG]]. Since the theory of real-closed �elds is complete
(Theorem 2.2), and R is a real-closed �eld, we conclude that (5.1) also holds onR.

It remains to show that the realization
�

A b
c 0

�
of the sign pattern over R does pro-

vide a non-degenerate linear program. Since the tropical linear program LP(A; b; c)
is non-degenerate, so is the Hahn linear programLP (A ; b; c) by Corollary 4.22. By
Lemma 3.17, the non-degeneracy property is entirely determined by the signs of the mi-
nors of

�
A b
c 0

�
. Since the signs of the minors are part of the sign patterns� (A ; b; c), and

since
�

A b
c 0

�
realizes this sign pattern, we conclude thatLP (A; b; c) is non-degenerate.

Theorem 5.3. Let � be a tropically tractable pivoting rule. Suppose that the simplex
method, equipped with� , performs a number of iterations which is polynomial inm and
n on all non-degenerate linear programs overR de�ned m inequalities in dimension n.
Then any tropical linear program can be solved in polynomial time.

Proof. Let T = T(G). Consider a tropical linear program LP(A; b; c) with
�

A b
c 0

�
2

T(m+1) � (n+1) . We construct the problems Phase I andLP as in Section 4.4. Applying
the tropical simplex method succesively to these two problems solves LP(A; b; c) by
Theorem 4.49. The problem Phase I is described bym + n + 2 inequalities in dimension
n + 1, and LP by m + n + 1 inequalities in dimension n. Hence, the two calls to the
tropical simplex method performs a total of NT(n+1 ; m+ n+3 ; � T)+ NT(n; m + n+2 ; � T)
iterations. By Proposition 5.2, this number of iterations is smaller than NR(n + 1 ; m +
n+2 ; � T)+ NR(n; m + n+1 ; � T), and the latter is a polynomial in n and m by hypothesis.

The input sizes of Phase I andLP are polynomial in the input size of A; b; c (see
Remark 4.50). Then, by Theorem 3.25, each iteration of the tropical simplex method on
these problems takes a time polynomial in the input size ofA; b; c when � is tropically
tractable.

5.2 A weakly polynomial tropical pivoting rule in fact per-
forms a strongly polynomial number of iterations

Given a semi-algebraic pivoting rule� , we can also de�ne the sign patterns� (A; b; c) for
a tropical linear program LP( A; b; c) if the matrix

�
A b
c 0

�
is sign-generic for the minor

polynomials and the polynomials de�ning � . Indeed, for any of these polynomials,
trop( P)

�
A b
c 0

�
is well-de�ned (see Section 3.2), and thus has a tropical sign. Since the

execution of the tropical simplex method depends only on this sign pattern, we can
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also look at other tropical realizations of the sign pattern to obtain bounds on the
complexity of the (tropical) simplex method. With this approach, we shall prove the
following theorem.

Theorem 5.4. Let � be a semi-algebraic pivoting rule. Suppose that:

� for any tropical linear program LP (A; b; c) with coe�cients in the semiring T(Q)
satisfying the conditions of Proposition 4.36, the tropical simplex method, equipped
with � T , performs a number of iterations which is polynomial in the input size of
A; b; c;

� for every polynomial
P

� 2 � q� X � 2 Q[X 1; : : : ; X l ] involved in the de�nition of � ,
the Newton polytopeconv(� ) is contained in a L 1 -ball of radius R, where the input
size of R is a polynomial in l .

Then, the tropical simplex method, equipped with� T , in fact performs a strongly poly-
nomial number of iterations on all tropical linear programs, i.e., NT(G) (n; m; � T) is a
polynomial in m and n only for any ordered abelian groupG.

Let us �rst describe the set of tropical realizations of a sign pattern. Let LP(A; b; c)
be a tropical linear program satisfying the conditions of Proposition 4.36 with entries in
an arbitrary tropical semiring T = T(G), and let s be its sign pattern. Observe that the
set of polynomials de�ning the sign pattern includes all minor polynomials. In particular,
this includes the 1� 1 minors. As a consequence, for any tropical realization

�
A b
c 0

�
of

the sign pattern s, the tropical signs of the entries of
�

A b
c 0

�
are identical. To alleviate

the notation, let us consider
�

A b
c 0

�
as a vector� 2 T l

� . By the discussion above, the sign
pattern �xes the sign of the entries � . Consequently, we can identify a realization� of
the sign pattern with a vector consisting of the modulus of the non0 entries of � , i.e.,
with a vector w 2 Gk , where k is the number of non0 entries of � , and the components
of w are exactly the j� i j for the i 2 [l ] such that � i 6= 0. Hence, we identify the set of
tropical realizations of a sign pattern with a subset ofGk .

Lemma 5.5. The set of tropical realizations of a sign patterns is the union of a �nite
number of classical convex cones ofGk . Each of this cone is of the form

f w 2 Gk j Mw � 0; M 0w > 0g (5.2)

for some matrices M; M 0 with integer entries. Moreveor, each entry ofM; M 0 has an
absolute value bounded by2R, where R is the radius of a L 1 -ball containing the Newton
polytopes of all polynomials de�ning the sign pattern.

Proof. Let � 2 T l
� be a realization of the sign pattern s, and P =

P
� 2 � q� X � 2

Q[X 1; : : : ; X l ] a polynomial involved in the de�nition of the sign pattern.
First suppose that trop(P)( � ) = 0. Then, for every � 2 � , there exists ai 2 [l ] with

� i = 0 and � i > 0. Consequently, for every� 0 2 T l
� such that � 0

i = 0 when � i = 0, we
have trop(P)( � 0) = 0. In other words, if we restrict the sign pattern to the signs of the
entries of � and the sign of trop(P)( � ), the realization space isGk .



5.2 A weakly polynomial tropical pivoting rule in fact performs a strongly polynomial
number of iterations 85

Second, suppose that trop(P)( � ) 6= 0. Up to replacing P by � P we can assume that
trop( P)( � ) is tropically positive. Let us de�ne � + ; � � as follows:

� + := f � 2 � j sign(q� )
Y

i 2 [l ]

sign(� i ) � i = +1 g

� � := f � 2 � j sign(q� )
Y

i 2 [l ]

sign(� i ) � i = � 1g :

Since trop(P)( � ) is tropically positive, the maximum in trop( P)( � ) must be attained
only on exponents� 2 � + . Consequently, the modulus of the non0 entries of � , must
satisfy the follwing inequality:

max
� 2 � +

X

i j � i 6= 0

� i j� i j > max
� 2 � �

X

i j � i 6= 0

� i j� i j : (5.3)

Conversely, if � 0 2 T � satis�es (5.3) and have the same0 entries as � , then � 0 is sign-
generic for P and trop(P)( � 0) is tropically positive.

It follows that the realization space of a sign pattern is described by a �nite number
of inequalities of the form (5.3). Selecting a maximizing term in the left-hand side of
each of these inequalities provides a cone of the form (5.2).

As the set of tropical realizations of a sign pattern is described by linear inequalities,
we shall see that we can always �nd a realization onT(Q) with a \short" input size, i.e.,
an input size which is polynomial in m and n. The key tool is simultaneous diophantine
approximation. More precisely, we shall use the following result of Frank and Tardos.

Theorem 5.6 ([FT87, Theorem 3.3]). For any rational vector w 2 Ql and any integer
R, there exists an integral vector �w 2 Nl such that jj �wjj1 � 24l3 Rl ( l+2) and sign(� > w) =
sign(� > �w) for any integral vector � 2 Nl with jj � jj1 � R � 1.

We now have all the ingredients to prove our theorem.

Proof of Theorem 5.4. Let s be the sign pattern of a tropical linear program satisfying
the conditions of Proposition 4.36 with entries in an arbitrary tropical semiring T =
T(G). By Lemma 5.5, the realization space ofs can be described as a disjunction of
conjonctions of linear inequalities with integer coe�cients. Consequently, there exists a
�rst-order formul� � s(A; b; c) in the language of ordered groupsf <; + ; 0g that holds true
if and only if

�
A b
c 0

�
is a realization of s. By hypothesis, the sign pattern s is realizable

on an ordered abelian groupG. Since we can always embedG in a divisible group
(Theorem 2.9), it follows that the �rst-order sentence 9A; b; c � s(A; b; c) holds true in a
ordered abelian divisible group. SinceQ is an ordered abelian divisible group, the sign
pattern s is realizable onT(Q) by Theorem 2.1.

Since the sign pattern s is realizable onT(Q), Theorem 5.6 and Lemma 5.5 tell us
that it is realizable by a matrix

�
A b
c 0

�
with entries that have an input size bounded by

O(l3+ l2 log(R)). By hypothesis, log(R) is a polynomial in l . For a (n; m) linear program,
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we consider polynomials onl = ( m + 1)( n + 1) variables. Hence, the sign-pattern can be
realized on T(Q) by a matrix

�
A b
c 0

�
with an input size that is polynomial in m and n.

By hypothesis, the tropical simplex method applied to LP(A; b; c) performs a number of
iterations that is polynomial in the input size of

�
A b
c 0

�
. Consequently, when applied to

the latter instance, the tropical simplex method performs a number of iterations that is
polynomial in m and n. Since the number of iterations of the tropical simplex method
depends only of the sign patterns, the number of iterations is still a polynomial in m
and n on any realization of the sign pattern s. In particular, this holds for a realization
on any tropical semiring T(G).

5.3 From tropical to classical linear programming

We now exhibit a class of real linear programs on which the number of iterations of
the simplex method is polynomial in the input size, regardless of the pivoting rule.
Consequently, the corresponding polyhedra have a diameter which is polynomial in the
input size. The idea is to consider the tropical linear programs on which the tropical
simplex method is pseudo-polynomial. These instances arequantized into real linear
programs. The quantized linear programs are combinatorially equivalent to the tropical
one, and the values of the tropical input is a lower bound on the input size of the
quantized programs.

5.3.1 Edge-improving tropical linear programs

We say that a tropical linear program LP( A; b; c) is edge-improving if it satis�es the
conditions of Proposition 4.36, and for any pair of adjacent basic pointsx I ; x I 0

, the
objective valuesc> � x I and c> � x I 0

are distinct.

Lemma 5.7. Let LP(A; b; c) be an edge-improving tropical linear program onn variables
with entries in T(Z). Suppose that the non0 entries of

�
� � A b

c 0

� �
� belongs to the interval

[� v; v] � Z. Then, the tropical simplex method, equipped with any pivoting rule, performs
at most O(nv) iterations on LP (A; b; c).

Proof. Let x I be a basic point. By Proposition 4.29, the components ofx I are of the
form

x I
j = j tdet( A I; bj bI )j � j tdet( A I )j :

The matrices (A I; bj bI ) and A I are of sizen � n. Since the non0 entries of
�
� � A b

c 0

� �
� are

integers in the interval [� v; v], the non 0 components ofx I satis�es � 2nv � x I
j � 2nv.

Consequently, � (2n + 1) v � c> � x I � (2n + 1) v.
Suppose that the simplex method starts at the basisI 1. Let I N be the last basis

visited such that c> � x I N
> 0. Since the tropical linear program is edge-improving,I N

is either the last basis visited, or the basis preceding the last. The di�erence between
c> � x I 1

and c> � x I N
is bounded by (4n + 2) v. Moreover, c> � x I is an integer for any

basis I . Since the linear program is edge-improving,c> � x I and c> � x I 0
di�er by at

least 1 for any two adjacent bases.
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Figure 5.1: Illustration of the edge-improving tropical linear program (5.4). The set
of optimal solutions is the segment between (1; 1) and (1; 2). In particular, the tropical
basic point (1; 1) is the unique optimal basic point. The basic point/edge graph of this
tropical linear program, oriented by the signs of the reduced costs, coincides with the
oriented graph of non edge-improving linear program of Example 4.35.

Remark 5.8. Note that genericity for the minor polynomials is not su�cient to ensure an
improvement along an edge. In particular, the tropical linear program in Example 4.35
is generic but not edge-improving. Moreover, even under small perturbations of its
input, this tropical linear program does not become edge-improving. Hence, the set of
edge-improving tropical linear programs is not of measure 0.

However, consider the following tropical linear program, depicted in Figure 5.1.

minimize max(x1; x2 � 4) s.t. 3 � max(x1; x2); x1 � max(1; x2 � 1); x2 � 1 : (5.4)

This problem is edge-improving. Observe that the graph formed by its basic points and
edges, and oriented by the signs of the reduced costs, is the same as in Example 4.35.

5.3.2 Quantized linear programs

In the rest of this section, LP(A; b; c) is a tropical program which satis�es the conditions
of Proposition 4.36, and such that the non0 entries of j

�
A b
c 0

�
j are non-negative integers

smaller than v. We consider the sign pattern signMinors(A; b; c) that consists of the
signs of the minors of

�
A b
c 0

�
. We now construct a set of classical linear programs, with

entries in R, that realize the sign pattern signMinors(A; b; c). The idea is to lift
�

A b
c 0

�

to a matrix
�

A b
c 0

�
whose coe�cients are real-valued functions in the variable t (e.g.,

polynomial functions or rational functions). This provides a family LP (A (t); b(t); c(t))
of real linear programs. We say that a real linear programLP (A (t); b(t); c(t)) obtained
in this way is a quantization of LP(A; b; c) if:
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� LP (A (t); b(t); c(t)) realizes the sign pattern signMinors(A; b; c) of the tropical lin-
ear program (i.e., the real and the tropical polyhedra are combinatorially equiva-
lent);

� the input size of
�

A (t) b(t )
c(t ) 0

�
is greater than v.

Theorem 5.9. On a quantization of an edge-improving tropical linear program, the
classical simplex method, equipped with any pivoting rule, performs a number of iterations
which is polynomial in the input size of the problem.

Proof. Let LP( A; b; c) be an edge-improving tropical linear program. Let I 1; : : : ; I N be
the sequence of bases produced by the simplex method on a quantization of LP(A; b; c),
for a certain pivoting rule (recall that we assume that a pivoting rule always return a
leaving index with a negative reduced cost). Since a quantization is combinatorially
equivalent to LP(A; b; c), the sequenceI 1; : : : ; I N is a sequence of adjacent bases of
LP(A; b; c) with edges of negative reduced cost between them. By Lemma 5.7, it follows
that N = O(nv). Since the input size of the entries of a quantized problem is greater
than v, this proves the result.

We now construct quantizations of a tropical linear program LP(A; b; c).

Proposition 5.10. Let LP(A; b; c) be an edge-improving tropical linear program. Sup-
pose that the non0 entries of j

�
A b
c 0

�
j are non-negative integers, and letv be the largest

entry of j
�

A b
c 0

�
j. Consider any lift

�
A b
c 0

�
2 sval� 1 �

A b
c 0

�
such that the entries of

�
A b
c 0

�

are polynomial real-valued functions of the form:

t 7! �

 
vX

k=0

qk tk

!

; (5.5)

where the qk are non-negative integers. For any rational numbert � 2, the rational
linear program LP (A (t); b(t); c(t)) have an input size which is greater thanv.

Proof. By assumption, there exists an entry ofj
�

A b
c 0

�
j which is equal to v. The corre-

sponding entry of
�

A b
c 0

�
is the form � (

P v
k=0 qk tk ) with qv 6= 0. For any rational t � 2,

the input size of the corresponding entry of the rational matrix
�

A (t) b(t )
c(t ) 0

�
is greater

than

log2

 
vX

k=0

qk tk

!

= v log2(t) + log 2(qv) + log 2

 

1 +
v� 1X

k=0

qk

qv0
tk� v

!

: (5.6)

Since the coe�cients qk are non-negative integers, andt � 2, the expression in (5.6) is

greater than v. Since the input size of
�

A (t) b(t )
c(t ) 0

�
is greater than the sum of the input

sizes of its entries, the result follows.

Remark 5.11. The coe�cients qk in (5.5) are restricted to be non-negative integers only
to easily relate the input size of the quantized problem with v. One can clearly obtain
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quantizations when the qk are rational numbers. However in that case, one may need
values of t that are larger than 2. Instead of lifting the tropical entries to polynomial
functions, one could also consider more general real-valued functions, such as rational
functions.

With a lift as in Proposition 5.10, if t is chosen large enough, we will always realize
the sign-pattern of the tropical linear program.

Proposition 5.12. Let LP(A; b; c) be a tropical linear program on n variables with
m � n constraints with entries in T(Z). Let

�
A b
c 0

�
be any lift of

�
A b
c 0

�
whose entries are

polynomial functions of the form (5.5), and let U be an upper bound on the coe�cients
qk of these polynomial functions. If t � 1 + ( n + 1)!( v + 1) n+1 Un+1 , then the classical
linear program LP (A (t); b(t); c(t)) is a quantization of LP(A; b; c).

Proof. Let M 2 K l � l be a square submatrix of
�

A b
c 0

�
. Since the entries ofM are of the

from (5.5), with coe�cient qi � U, the determinant of M is of the form

det M =
lvX

k=0

r k tk

where the coe�cients r k are integers with an absolute value smaller thatl !(v + 1) l U l .
Observe that detM is a polynomial in t. So, if t is larger than the largest root of
det M , then the real number detM (t) have the same sign as the leading coe�cientr lv ,
which is the sign of the Hahn series detM . The Cauchy bound tells us that the roots
of detM belongs to a disk of radius 1 + maxk2 [lv � 1] jr k j=jr lv j, see Theorem 8.1.3 and
Corollary 8.1.8 in [RS02]. Sincem � n, the biggest square submatrices of

�
A b
c 0

�
are of

size (n + 1) � (n + 1).

Remark 5.13. The bound of Proposition 5.12 is general. For special cases, one can expect
to obtain a quantization for smaller values of t.
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Chapter 6

Tropical shadow-vertex rule for
mean payo� games

In this chapter, we prove that the shadow-vertex pivoting rule is tropically tractable.
Following the average-case analysis of Adler, Karp and Shamir in [AKS87], we obtain
an algorithm that determines the feasibility of tropical polyhedra, and thus solves mean
payo� games, in polynomial time on average. The complexity bound holds when the
distribution of the games satis�es a 
ip invariance property. The latter requires that
the distribution of the games is left invariant by every transformation consisting, for an
arbitrary node of the game, in 
ipping the orientation of all the arcs incident to this
node (see Figure 6.1). Equivalently, the probability distribution on the set of payment
matrices A; B is invariant by every transformation consisting in swapping the i th row of
A with the i th row of B , or the j th column of A with the j th column of B .

The content of this chapter appeared in [ABG14].

6.1 The shadow-vertex pivoting rule

Given u ; v 2 Kn , consider the following parametric family of linear programs for increas-
ing values of � � 0:

minimize (u � �v )> x
subject to Ax + b � 0

LP �

The vectorsu and v are respectively calledobjective and co-objectivevectors. For � = 0,
the problem (LP � ) seeks a minimizer ofx 7! u > x over P := P (A ; b), while for � large
enough, it corresponds to the maximization ofx 7! v> x .

Let us assume that (LP � ) admits an optimal basic point x I 1
for � 0 = 0. Observe that

x I 1
is also an optimal solution of (LP � ) when � lies in a certain closed interval [� 0; � 1].

For � = � 1, the problem (LP � ) admits another optimal basic point x I 2
which is adjacent

to x I 1
. When � is continuously increased from 0, we can construct in this way a sequence

x I 1
; : : : ; x I N

of adjacent basic points, and a subdivision 0 =� 0 � � 1 � � 1 � � � � � � N

of K+ , such that each x I k
is an optimal solution of (LP � ) for all � 2 [� k� 1; � k ]. The

91
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Figure 6.1: A distribution of game satisfying the 
ip invariance property (with m = 1
and n = 2), together with the payment matrices. The four con�gurations are supposed
to be equiprobable. The nodes on which the 
ip operations have been performed are
depicted in bold.

last basic point x I N
will be a maximizer of x 7! v> x over P , unless this problem is

unbounded.
The shadow-vertex rule� is a pivoting rule that provides such a sequence. More

precisely, � (A ; u ; v) will denote the function which, given a basis I k that is optimal for
(LP � ) for all � 2 [� k ; � k+1 ], returns a leaving variable that leads to a basisI k+1 such
that I k and I k+1 are both optimal for ( LP � ) at � = � k+1 .

The shadow-vertex rule was proposed by Gass and Saaty [GS55]. Its name comes
from the fact that the sequence of basic pointsx I 1

; : : : ; x I N
actually corresponds to a

sequence of adjacents basic points in the projection (shadow) of the polyhedronP in
the plane spanned by (u ; v). We refer to [Bor87] for more details.

The shadow-vertex rule can also be de�ned algebraically. Given a basisI , we denote
by y I 2 K I (resp. z I 2 K I ) the reduced costs for the objective vectoru (resp. the
co-objective vector v). Recall that y I and z I are de�ned as the unique solutionsy and
z of the systemsA >

I y = u and A >
I z = v respectively.

Proposition 6.1. Let I be an optimal basis of (LP � ) for some � � 0. At basis I , the
shadow-vertex rule selects the leaving variablei out 2 I such that:

y I
i out

=z I
i out

= min
�

y I
i =z I

i j i 2 I and z I
i > 0

	
: (6.1)

If there is no such i out 2 I , then x I maximizesx 7! v> x over P .

Proof. Observe that the reduced costs for the objective vectoru � �v are given by
y I � �z I . Consequently, x I is an optimal solution of (LP � ) for all � � 0 such that
y I � �z I � 0. In particular, this holds for � � = y I

i out
=z I

i out
, where i out is de�ned in (6.1).

Moreover, the reduced costy I
i out

� � � z I
i out

equals zero. Hence, any point on the edge
EI nf i outg is an optimal solution of (LP � ) for � = � � .
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The shadow-vertex rule as a semi-algebraic rule

We claim that the shadow-vertex rule is a semi-algebraic pivoting rule which is tropically
tractable. More precisely, we shall see that the leaving variable returned by� (A ; u ; v)( I )
only depends on the current basisI and on the signs of �nitely many minors of the matrix
(A > u v ). The key point is to show that two ratios y I

i =z I
i and y I

k=z I
k can be compared

using the signs of the minors of (A > u v ).

Lemma 6.2. Let I be a basis andi; k 2 I with i > k . Then, we have:

y I
i =z I

i � y I
k=z I

k =

det

0

@
A I nf i;k g

u >

v>

1

A det A I

det
�

A I nf i g
v>

�
det

�
A I nf kg

v>

� (6.2)

Proof. By the Cramer's formul�, for any i 2 I we have:

y I
i = ( � 1)n+ idx(i;I ) det

�
A I nf i g

u >

�
=det(A I ) ;

z I
i = ( � 1)n+ idx(i;I ) det

�
A I nf i g

v>

�
=det(A I ) ;

(6.3)

where idx(i; I ) represents the index ofi in the ordered set I .
Given K � [m + 2] a subset of cardinality n, let us denote by PK the polynomial

providing the K � [n] minor of the matrix X = ( X ij ) of (m + 2) � n formal variables,
i.e., we havePK (M ) = det( M K ) for any M 2 K (m+2) � n .

Given a basisI � [m], let us further de�ne, for i 2 I , the polynomials Qi and Ri by:

Qi := PI nf i g[f m+1 g and Ri := PI nf i g[f m+2 g: (6.4)

Then, for any i 2 I , the reduced costsy I
i and z I

i are respectively given by:

y I
i = ( � 1)n+ idx(i;I )Qi (M )=PI (M ) ;

z I
i = ( � 1)n+ idx(i;I ) Ri (M )=PI (M ) ;

(6.5)

where M =
�

A
u >

v >

�
. Consequently, the ratio y I

i =z I
i is equal to Qi (M )=Ri (M ). For any

two distincts indices i; k 2 I , we obtain:

y I
i =z I

i � y I
k=z I

k =
(Qi Rk � QkRi )(M )

(Ri Rk )(M )
(6.6)

It remains to prove that the polynomial Qi Rk � QkRi is equal toPI nf i;k g[f m+1 ;m+2 gPI .
By Pl•ucker relations (see for instance [GKZ94, Chapter 3, Theorem 1.3]), we know that
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for any two sequences 1� j 1 < � � � < j n� 1 � m + 2 and 1 � l1 < � � � < l n+1 � m + 2, we
have:

n+1X

a=1

(� 1)aPf j 1 ;;:::;j n � 1 ;la gPf l1 ;:::;bla ;:::;l n +1 g = 0 ; (6.7)

wherebla means that the index la is omitted. Let us apply these relations with

f j 1; : : : ; j n� 1g = I n f ig and f l1; : : : ; ln+1 g = I n f kg [ f m + 1 ; m + 2g :

If la 2 I n f kg, then Pf j 1 ;;:::;j n � 1 ;la g = 0. Hence, the only terms that are non null in (6.7)
are obtained for la 2 f i; m + 1 ; m + 2g. For la = i , the term reads

(� 1)idx(i;I nf kg)Pj 1 ;:::;j n � 1 ;i PI nf i;k g[f m+1 ;m+2 g : (6.8)

By exchange of rows on the determinantPj 1 ;:::;j n � 1 ;i , we have:

Pj 1 ;:::;j n � 1 ;i = ( � 1)n+ idx(i;I )PI : (6.9)

Furthermore, we assumed that i > k , thus idx(i; I ) = idx(i; I n f kg) + 1. It follows
that (6.8) is the polynomial ( � 1)n+1 PI PI nf i;k g[f m+1 ;m+2 g.

The indices of m + 1 and m + 2 in the ordered set f l1; : : : ; ln+1 g are respectivelyn
and n + 1. Thus the terms of (6.7) for la = m + 1 and la = m + 2 are respectively:

(� 1)nPI nf i g[f m+1 gPI nf kg[f m+2 g and (� 1)n+1 PI nf i g[f m+2 gPI nf kg[f m+1 g :

Finally, we obtain the equality:

(� 1)n+1 PI PI nf i;k g[f m+1 ;m+2 g + ( � 1)nQi Rk � (� 1)n+1 QkRi = 0 :

This concludes the proof.

The main result of this section is the following:

Theorem 6.3. The shadow vertex rule� (A ; u ; v) is a semi-algebraic pivoting rule that
uses only the signs of the maximal minors of(A > u v ). The tropical shadow vertex rule
� T(A; u; v ) returns the leaving variable in O(n4) operations and in space polynomial in
the input size of A; u; v .

Proof. By Proposition 6.1, the shadow-vertex rule can be implemented using only the
signs ofz I , and the signs ofy I

i =z I
i � y I

k=z I
k for all i; k 2 I .

The reduced costs vectorz I is given by the Cramer's formul� for the system A >
I y = v

Hence, the signs ofz I can be determined by computing the determinant ofA I and of�
A I nf i g

v >

�
for i 2 I . Hence, 2n + 1 determinants of size n � n.

This allows to determine the set� = f i 2 I j z I
i > 0g. Then, the leaving variable i out

that minimizes the ratio y I
i =z I

i for i 2 � can be found by performingO(n) comparisons
y I

i =z I
i < y I

k=z I
k . By Lemma 6.2, each of these comparisons can be done by computing

four n � n determinants.
To summarize, we need to computeO(n) determinants of sizen � n. By Lemma 3.11,

a determinant is tropically tractable. Moreover, a n � n tropical determinant can be
computed tropically in O(n3) operations. This concludes the proof.
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In the next section, we will use the shadow-vertex rule with the objective vector
u = ( � ; � 2; : : : ; � n ) for � > 0 small enough. In that case, there is no need to choose or
manipulate � explicitely. We present a proof which is comparable to the \lexicographic"
treatment described in [AKS87, Section 6.1]. When such an objective vectoru is used,
we will denote the pivoting rule � (A ; u ; v) by � � (A ; v).

Corollary 6.4. The pivoting rule � � (A ; v) is a semi-algebraic pivoting rule that uses
only the signs of the minors of(A > v). The tropical pivoting rule � T

� (A; v) returns the
leaving variable in O(n5) operations and in space polynomial in the input size ofA; v.

Proof. Let M be a n � n submatrix of (A > u v ) 2 Kn� (m+2) that contains the column
u. By Theorem 6.3, we only need to show that the sign of det(M ) can be computed
from the signs of the minors of (A > v). Up to exchange of columns, we can assume that
M = ( u M 0), where M 0 is a submatrix of (A > v). Expanding the determinant of M
along its �rst column, we obtain:

det(M ) =
nX

i =1

� i (� 1)1+ i det(M 0
[n]nf i g) :

If det( M 0
[n]nf i g) = 0 for all i 2 [n], then clearly the determinant of M vanishes. Other-

wise, let i � be the smallesti 2 [n] such that det(M 0
[n]nf i g) 6= 0. Then, if we choose� > 0

small enough, the sign of det(M ) will be given by the sign of (� 1)1+ i �
det(M 0

[n]nf i � g).
Consequently, the sign of det(M ) can be obtained by computing the signs of then
determinants det(M 0

[n]nf i g), that are all of size (n � 1) � (n � 1).
We have seen in the proof of Theorem 6.3 that we only need to compute the signs

of O(n) minors of (A > u v ), including n minors that involves the column u. By the
discussion above, the sign of each minor involvingu can be computed fromn minors
of (A > v) of size (n � 1) � (n � 1). Since a tropical determinant can be computed in
O(n3) operations, we obtain O(n5) operations for the tropicalization of � � .

6.2 The Parametric Constraint-by-Constraint algorithm

The average-case analysis of [AKS87] applies to theParametric Constraint-by-Constraint
algorithm (denoted PCBC ). We restrict the presentation to polyhedral feasibility prob-
lems, following our motivation to their tropical counterparts and mean payo� games.
This algorithm applies to polyhedra P (A ; b) that satisfy the following assumption.

Assumption C. The matrix ( A b ) 2 K (m+ n)� (n+1) is of the form
�

Id 0
A 0 b0

�
, where Id

is the n � n identity matrix.

Equivalently, we consider polyhedra of the form:

P (A ; b) = f x 2 Kn j x � 0; A 0x + b0 � 0g :

We denote by P (k) := P (A [k]; b[k]) the polyhedron de�ned by the �rst k inequalities of
the systemAx + b � 0. Under Assumption C, the polyhedronP (n) is the positive orthant
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Algorithm 3: The parametric constraint by constraint algorithm PCBC (A ; b)

Data : A 2 K (m+ n)� n and b 2 Km satisfying Assumption C.
Input : None
Output : Either Feasibleor Infeasible

1 k  n
2 I  [n]
3 while k < m do
4 if I is a feasible basis forP (A [k+1] ; b[k+1] ) then
5 k  k + 1

6 else
7 if SignRedCosts(A [k]; A k+1 )( I ) are all non-negative then
8 return Infeasible

9 i out  � � (A [k]; u ; A k+1 )( I )
10 if I n f i outg [ f k + 1g is a feasible basis forP (A [k+1] ; b[k+1] ) then
11 I  I n f i outg [ f k + 1g
12 k  k + 1

13 else
14 i ent  Pivot(A [k]; b[k])( I; i out)
15 I  I n f i outg [ f i entg

16 return Feasible

Kn
+ . The PCBC algorithm consists ofm stages, that we index byk 2 f n; : : : ; m + n � 1g.

At stage k, the algorithm determines whether the polyhedronP (k+1) is empty. At each
stage, the simplex algorithm equipped with the pivoting rule � � is used,i.e., throughout
the whole execution ofPCBC , the shadow-vertex rule is used with the objective vector
u = ( � ; : : : ; � n ), for � > 0 small enough. On the other hand, the co-objective vectorv will
change at each stage. The vector (0; : : : ; 0)> is a basic point of P (n) = Kn

+ minimizing
x 7! u > x . This provides an initial basis which is compatible with the shadow-vertex
rule at the �rst stage k = n.

At stage k, the co-objective vector is set to A >
k+1 . The simplex algorithm thus

follows a path in P (k) consisting of basic points and the edges between them. We stop
it as soon as it discovers a pointx 0 2 P (k) such that A k+1 x 0+ bk+1 � 0 on the path.
This point is obviously a basic point of P (k+1) . It follows from the de�nition of the
shadow-vertex rule that x 0 minimizes the objective function x 7! u > x over P (k+1)

(see [AKS86, Section 4]). Then,x 0 can be used as a starting point for the execution of
the simplex algorithm during the ( k + 1)-th iteration. If no such point x 0 is discovered,
then the maximum of x 7! A kx + bk over P (k) is negative, which shows that the system
Ax + b � 0 is infeasible.

We now explain how to tropicalize the PCBC algorithm. As for the simplex method,
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Algorithm 4: The tropical parametric constraint by constraint algorithm
TropPCBC (A; b)

Data : A 2 Tm� n
� and b 2 Tm

� such that (A b) =
�

Id 0
A 0 b0

�
where Id is the n � n

identity matrix.
Output : Either Feasibleor Infeasible.

1 k  n
2 I  [n]
3 while k < m do
4 if I is a feasible basis forP(A [k+1] ; B [k+1] ) then
5 k  k + 1

6 else
7 if SignRedCostsT(A [k]; Ak+1 )( I ) are all non-negative then
8 return Infeasible

9 i out  � T
� (A [k]; u; Ak+1 )( I )

10 if I n f i outg [ f k + 1g is a feasible basis forP(A [k+1] ; b[k+1] ) then
11 I  I n f i outg [ f k + 1g
12 k  k + 1

13 else
14 i ent  PivotT(A [k]; b[k])( I; i out)
15 I  I n f i outg [ f i entg

16 return Feasible

it is su�cient to show that PCBC (A ; b) can be implemented using only the signs of
polynomials evaluated on (A b ). Such an implementation is presented in Algorithm 3.

Proposition 6.5. For any A 2 K (m+ n)� n , b 2 Km , satisy�ng Assumption C, Algo-
rithm 3 is an implementation of the Parametric Constraint by Constraint algorithm in
the arithmetic model of computation with an oracle that returns the signs of the minors
of (A b ).

Proof. Obviously, I = [ n] is a basis of the initial basic point x = (0 ; : : : ; 0) at the �rst
stagek = n.

Now suppose that we are the beginning of stagek of the algorithm, with basis I . If
A k+1 x I + bk+1 � 0, then the algorithm should go to stagek + 1. Clearly, this happens
if and only if I is a feasible basis forP (A [k+1] ; b[k+1] ) and this is detected at Line 4.
Consequently, we can assume that at Line 7, we haveA k+1 x I + bk+1 < 0. If the sign
of the reduced costs are non-negative, thenx I maximizes x 7! A k+1 x + bk+1 over
P (A [k]; b[k]) and thus the linear program is infeasible. Otherwise, the shadow-vertex
pivoting rule returns a leaving variable i out . The edge de�ned by (I; i out) may contain
a point such that A k+1 x I + bk+1 = 0, in that case, the algorithm go to stage k + 1.
This happens if and only if I n f i outg [ f k + 1g is a feasible basis forP (A [k+1] ; b[k+1] ).
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If no such point is encountered, the algorithm pivots along the edge de�ned by (I; i out)
and reaches a new basic point. Clearly, this point must satis�esA k+1 x + bk+1 < 0.
Consequently, when the body of loop at Line 3 is executed again, the test at Line 4 fails
and the algorithm goes directly to Line 7. This shows that Algorithm 4 does implement
the Parametric Constraint by Constraint algorithm.

By Lemma 3.16, the feasibility of a basis can be tested at Line 10 using the signs
of the minors of (A b ). By Proposition 3.22 and Corollary 6.4, the other operations in
Algorithm 4 can also be implemented with the signs of the minors of (A b ).

As an immediate consequence of Proposition 6.5, thePCBC algorithm has a tropical
counterpart, TropPCBC , which is described in Algorithm 4.

Theorem 6.6. Let A 2 T(m+ n)� n
� and b 2 Tm

� be such that(A b) is sign-generic for the
minor polynomials and (A b) =

�
Id 0
A 0 b0

�
, where Id is then � n identity matrix. Then, the

algorithm TropPCBC correctly determines whether P(A; b) is feasible.
For all (A b ) 2 sval� 1(A b), the total number of bases visited by TropPCBC(A; b)

and by PCBC(A ; b) are equal.
Between two bases, TropPCBC performsO(n5 + m2n3) operations and uses a space

bounded by a polynomial in the input size ofA; b.

Proof. Observe that Algorithm 4 is exactly Algorithm 3 where we have replaced the
oracle giving the signs of the minors by its tropical counterpart. By Lemma 3.8 and
Proposition 6.5, it follows that TropPCBC (A; b) and PCBC (A ; b) produce the same
sequence of bases for any (A b ) 2 sval� 1(A b). The correctness ofTropPCBC then
follows from the correctness ofPCBC and Proposition 4.7.

Pivoting from one basis to the next consists of performing once the operations in
the loop between Lines 3 and 15. CallingSignRedCostsT and PivotT requires O(n4)
and O(m2n3) operations respectively by Proposition 3.22. The pivoting rule� T

� returns
after O(n5) operations by Corollary 6.4. Checking the feasibility of a basis requires
the computation of O(m) determinants of size n � n (see Lemma 3.16), and each of
these determinants can be computed tropically inO(n3) operations by Lemma 3.11.
Hence, we needO(mn3) operations to test the feasibility of a basis. In total, we use
O(n5 + n4 + m2n3 + mn3) = O(n5 + m2n3) operations. Moreover, these operations use
a polynomial space.

6.2.1 Average-case analysis

Given (A b ) =
�

Id 0
A 0 b0

�
2 K (m+ n)� (n+1) such that no minor of the matrix ( A 0 b0) is null,

the probabilistic analysis of [AKS87] applies to polyhedra of the form

P S;S0(A ; b) = f x 2 Kn j x � 0; (SA 0S0)x + Sb0 � 0g ;

where S = diag( s1; : : : ; sm ), S0 = diag( s0
1; : : : ; s0

n ), and the si and s0
j are i.i.d. entries

with values in f +1 ; � 1g such that each of them is equal to +1 (resp.� 1) with probability
1=2. Equivalently, the 2m+ n polyhedra of the form P S;S0(A ; b) are equiprobable.
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Theorem 6.7 ([AKS87]). For any �xed choice of (A b ) =
�

Id 0
A 0 b0

�
2 Km� (n+1) such

that no minor of the matrix (A 0 b0) is null, the total number of basic points visited by
the PCBC algorithm on P S;S0(A ; b) is bounded byO(min( m2; n2)) on average.

Proof. This result is proved in [AKS87] for matrices (A b ) with entries in R. We now
show that it holds for matrices (A b ) with entries in an arbitrary real closed �eld K .

Let (A b ) be a matrix with entries in K that satis�es the conditions of the theorem.
By Proposition 6.5, the number of basic points visited by PCBC on the polyhedron
P (A ; b) depends only on the sign pattern signMinors(A ; b) of the minors of (A b ).
By completeness of the theory of real closed �eld (Theorem 2.2, there exists a matrix
(A b) with entries in R that realizes the sign pattern signMinors(A ; b) (see the proof of
Proposition 5.2 for details). Clearly, (A b) satis�es the conditions of the theorem.

Observe that the signs of the minors of
�

Id 0
SAS 0 Sb

�
are entirely determined by S; S0

and the signs of the minors of (A b ). Consequently, the signs of the minors of
�

Id 0
SAS 0 Sb

�

and
�

Id 0
SAS0 Sb

�
coincides. It follows that the PCBC algorithm visits the same the number

of basic points on P S;S0(A ; b) and P S;S0(A; b). Since the theorem holds onR, it also
holds on K .

As a consequence of Theorems 6.6 and 6.7, the algorithmTropPCBC also visits a
quadratic number of tropical basic points on average. The tropical counterpart of the
probabilistic model of [AKS87] can be described as follows. Given (A b) =

�
Id 0
A 0 b0

�
2

T(m+ n)� (n+1)
� , and s 2 f 1; 	 1gm , s0 2 f 1; 	 1gn , we de�ne

PS;S0(A; b) = f x 2 Tn j x � 0; (S� A0� S0)+ � x� (S� b0)+ � (S� A0� S0) � � x� (S� b0) � g;

where S = diag( s1; : : : ; sm ), S0 = diag( s0
1; : : : ; s0

n ). As above, we assume that thesi ; s0
j

are i.i.d random variables with value equal to 1 (resp. 	 1) with probability 1 =2.

Corollary 6.8. Suppose that(A b) =
�

Id 0
A 0 b0

�
2 T(m+ n)� (n+1)

� is generic for the minor
polynomials and that every square submatrix of(A0 b0) has a non0 tropical determinant.

The total number of basic points visited by the TropPCBC algorithm onPS;S0(A; b)
is bounded byO(min( m2; n2)) on average.

Proof. Let us pick any (A b ) 2 sval� 1(A b). Since (A b) is generic for the minor
polynomials, it is also sign-generic, and thusTropPCBC (A; b) and PCBC (A ; b) visits
the same number of basic points by Theorem 6.6. It also follows from the genericity of�

Id 0
A 0 b0

�
that, for any S; S0, the matrix

�
Id 0

S � A0� S0 S � b0

�
(6.10)

is also generic for the minor polynomials. LetS 2 sval� 1(S) and S0 2 sval� 1(S0).
Clearly,

�
Id 0

SA 0S0 Sb0

�
is a lift of (6.10). Consequently, TropPCBC applied to PS;S0(A; b)

visits as many basic points asPCBC applied to P S;S0(A ; b) by Theorem 6.6. We
conclude with Theorem 6.7.
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6.3 Application to mean payo� games

Via the tropical parametric constraint by constraint algorithm, we translate the result
of Adler et al. to mean payo� games. The probability distribution of games is expressed
over their payments matricesA; B , and must satisfy the following requirements:

Assumption D. (i) for all i 2 [m] (resp. j 2 [n]), the distribution of the matrices
A; B is invariant by the exchange of the i -th row (resp. j -th column) of A and B .

(ii) almost surely, A ij and B ij are distinct and not equal to 0 for all i 2 [m], j 2 [n].
In this case, we introduce the signed matrix W = ( Wij ) 2 Tm� n

� , de�ned by
Wij := A ij if A ij > B ij , and 	 B ij if A ij < B ij .

(iii) almost surely, the matrix W is generic for all minor polynomials.

Let us brie
y discuss the requirements of Assumption D. Condition (i) corresponds
to the 
ip invariance property. It handles discrete distributions (see Figure 6.1) as well
as continuous ones. In particular, if the distribution of the payment matrices admits a
density function f , Condition (i) can be expressed as the invariance off by exchange
operations on its arguments. For instance, ifm = 1 and n = 2, the 
ip invariance
holds if, and only if, for almost all aij ; bij , f (a1;1; a1;2; b1;1; b1;2) = f (b1;1; b1;2; a1;1; a1;2) =
f (b1;1; a1;2; a1;1; b1;2) = f (a1;1; b1;2; b1;1; a1;2).

The requirements A ij ; B ij 6= 0 for all i; j in Condition (ii) ensure that the 
ip oper-
ations always provide games in which the two players have at least one action to play
from every position. The matrix W can be thought of as a tropical subtraction \A 	 B ",
and the conditions A ij 6= B ij ensure that W is well de�ned. Then, the following result
holds:

Lemma 6.9. If A ij 6= B ij for all i; j , and W is de�ned as in Condition (ii) of As-
sumption D, then the initial state j 2 [n] is winning in the game with matricesA; B if,
and only if the tropical polyhedron P(Wbj ; W[m]� j ) is not empty, whereWbj is the matrix
obtained from W by removing the columnj , and W[m]� j is the j th column of W .

Proof. By Theorem 1.3, the initial state j is winning if, and only if, the system

x j = 0 ; A � x � B � x ; (6.11)

admits a solution. Given a; b; c; d2 T such that a 6= c, it can be easily proved that the
inequality max(a + x1; b) � max(c + x1; d) over x1 is equivalent to b � max(c + x1; d)
if a < c, and max(a + x1; b) � d if a > c. Using this principle, we deduce that the
system (6.11) is equivalent to

x j = 0 ; W + � x � W � � x :

Clearly, the latter system admits a solution if and only if the tropical polyhedron
P(Wbj ; W[m]�f j g) is not empty.
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Finally, Condition (iii) is the tropical counterpart of the non-degeneracy assumption
used in [AKS87] to establish the average-case complexity bound.

We point out that the set of matrices A; B that do not satisfy the requirements stated
in Conditions (ii) and (iii) has measure zero. As a consequence, these two conditions do
not impose important restrictions on the distribution of A; B , and they can rather be
understood as genericity conditions.

We are now ready to establish our polynomial bound on the average-case complexity
of mean payo� games.

Theorem 6.10. Under a distribution satisfying Assumption D, the algorithm TropPCBC
determines in polynomial time on average whether an initial state is winning for Player
Max in the mean payo� game with payment matricesA; B .

Proof. Without loss of generality, we assume that the initial state is the noden of Player
Min.

Let us �x two payment matrices A; B satisfying Conditions (ii) and (iii) of Assump-
tion D, and let W be de�ned as in Condition (ii). Starting from the pair ( A; B ) of
matrices, the successive applications of row/column exchange operations precisely yield
2m+ n� 1 di�erent pairs of matrices. In particular, without loss of generality, we can as-
sume that the n-th columns of A and B have not been switched. Then, the pair of matri-
ces that we obtained are of the form (As;s0

; B s;s0
), where s 2 f 1; 	 1gm , s0 2 f 1; 	 1gn� 1,

and As;s0
and B s;s0

are the matrices obtained fromA and B respectively, by exchanging
the rows i and the columnsj such that si = 	 1 and s0

j = 	 1. The (i; j )-entries of As;s0

and B s;s0
are distinct, and so we can de�ne a matrix W s;s0

in the same way we have
built W from A and B . Observe that W s;s0

bn = S � Wbn � S0 and W s;s0

[m]� n = S � W[m]� n ,
where S = tdiag( s1; : : : ; sm ) and S0 = tdiag( s0

1; : : : ; s0
n� 1). Thus, by Lemma 6.9, the

noden is winning in the game with payment matrices As;s0
; B s;s0

if and only if the trop-
ical polyhedron PS;S0(Wbn ; W[m]� n ) is not empty. By Theorem 6.6 and Corollary 6.8,
the TropPCBC algorithm solves the 2m+ n� 1 games obtained by the successive 
ipping
operations in O(2m+ n� 1 min(m2; n2)(n5 + m2n3)) operations and in polynomial space.

Let T be the random variable corresponding to the time complexity of our method
to solve the game with payment matrices A; B drawn from a distribution satisfying
Assumption D. Similarly, given s 2 f 1; 	 1gm , s0 2 f 1; 	 1gn� 1, let T s;s0

be the random
variable representing the time complexity to solve the game with matricesAs;s0

; B s;s0
,

where A; B are drawn from the latter distribution. Thanks to Condition (i), E[T] =
E[T s;s0

] for all s; s0, and so:

E[T] =
1

2m+ n� 1 E
hX

s;s0

T s;s0
i

�
1

2m+ n� 1 (K 2m+ n� 1 min(m2; n2)(n5 + m2n3))

for a certain constant K > 0. This concludes the proof.
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Chapter 7

Algorithmics of the tropical
simplex method

In this chapter, we present e�cient implementations of the tropical pivoting procudure,
and of the tropical computation of the signs of reduced costs. We show that these two
prodecures can be done usingO(n(m + n)) tropical operations for a linear program
described by m inequalities in dimension n. The algorithms presented in this chapter
have been implemented in the library Simplet [Ben14].

The content of this chapter appeared in [ABGJ13b].

7.1 Pivoting between two tropical basic points

In this section, we show how to pivot from a tropical basic point to another, i.e., to move
along a tropical edge between the two basic points of a tropical polyhedronP(A; b), where
A 2 Tm� n

� and b 2 Tm
� , and T = T(G) is an arbitrary tropical semiring. The complexity

of this tropical pivot operation will be shown to be O(n(m + n)), which is analogous to
the classical pivot operation.

Pivoting is more easily described in homogeneous terms. ForW = ( A b) we consider
the tropical cone C = P(W; 0). This cone is de�ned as the intersection of the half-spaces
H �

i := f x 2 Tn+1 j W +
i � x � W �

i � xg for i 2 [m]. Similarly, we denote by H i the
s-hyperplanef x 2 Tn+1 j W +

i � x = W �
i � xg. We also let CI := PI (W; 0) for any subset

I � [m].
Throughout this section, we make the following assumptions.

Assumption E. The matrix W is generic for the minor polynomials.

Assumption F. Every point in C n f(0; : : : ; 0)g has �nite coordinates.

Assumption E is is strictly stronger than the sign-genericity of W = ( A b) for the
minor polynomials, and hence, in particular, we can make use of Theorem 4.22. Under
Assumption F, the tropical polyhedron P(A; b) is a bounded subset ofGn . Indeed, asC
is a closed set, Assumption F implies that there exists a vectorl 2 Gn+1 such that x � l

103
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for all x 2 C. Let tconv( P) � tpos(R) be the internal description of P(A; b) provided by
Theorem 4.11. If R contains a point r , then it is easy to verify that ( r; 0) 2 C, which
contradicts Assumption F. Since everyp 2 P belongs toP(A; b), the point ( p;1) belongs
to C, and thus pj � l j for all j 2 [n]. It follows that P(A; b) = tconv( P) is a bounded
subset ofGn .

In rest of this section, we identify the conesC, H i and CI of Tn+1 with their image
in the tropical projective space TPn (see Section 4.1.2). Through the bijection given
in (4.12), the tropical basic point associated with a suitable subsetI � [m] is identi�ed
with the unique projective point x I 2 TPn in the intersection CI . Besides, when pivoting
from the basic point x I , we move along a tropical edgeEK := CK de�ned by a set
K = I n f i outg for somei out 2 I .

A tropical edge EK is a tropical line segment tconv(x I ; x I 0
). The other endpoint

x I 0
2 TPn is a basic point for I 0 = K [ f i entg, where i ent 2 [m] n I . So, the notation i out

and i ent refers to the indices leaving and entering the set of active constraintsI which
is maintained by the algorithm. Notice that the latter set corresponds to the non-basic
indices in the classical primal simplex method, so that the indices entering/leavingI
correspond to the indices leaving/entering the usual basis, respectively.

As a tropical line segment,EK is known to be the concatenation of at mostn ordinary
line segments.

Proposition 7.1 ([DS04, Proposition 3]). Let EK = tconv( x I ; x I 0
) be a tropical edge.

Then there exist an integerq 2 [n] and q + 1 points � 1; : : : ; � q+1 2 EK such that

EK = [ � 1; � 2] [ � � � [ [� q; � q+1 ] where � 1 = x I and � q+1 = x I 0
:

Every ordinary segment is of the form:

[� p; � p+1 ] = f xp + �e Jp j 0 � � � � pg ;

where the length of the segment� p is a positive real number,Jp � [n + 1] , and the j -th
coordinate of the vector eJp is equal to 1 if j 2 Jp, and to 0 otherwise. Moreover, the
sequence of subsetsJ1; : : : ; Jq satis�es:

; ( J1 ( � � � ( Jq ( [n + 1] :

The vector eJp is called the direction of the segment [� p; � p+1 ]. The intermediate
points � 2; : : : ; � q are called breakpoints. In the tropical polyhedron depicted in Figure
4.3, breakpoints are represented by white dots.

Note that, in the tropical projective space TPn , the directions eJ and � e[n+1] nJ

coincide. Both correspond to the direction ofTn obtained by removing the (n + 1)-th
coordinate of either � e[n+1] nJ if ( n + 1) 2 J , or eJ otherwise.

7.1.1 Overview of the pivoting algorithm

We now provide a sketch of the pivoting operation along a tropical edgeEK . Geomet-
rically, the idea is to traverse the ordinary segments [� 1; � 2]; : : : ; [� q; � q+1 ] of EK . At
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each point � p, for p 2 [q], we �rst determine the direction vector eJq , then move along
this direction until the point � p+1 is reached. As the tangent digraph at a pointx 2 C
encodes the local geometry of the tropical coneC around x, the direction vectors can
be read from the tangent digraphs. Moreover, the tangent digraphs are acyclic under
Assumption E. This imposes strong combinatorial conditions on the tangent digraphs,
which, in turn, allows to easily determine the feasible directions.

We introduce some additional basic notions and notations on directed graphs. Two
nodes of a digraph are said to beconnected if they are connected in the underlying
undirected graph. A connected componentis a set of nodes that are pair-wise connected.
Given a directed graph ~G and a set A of arcs between some nodes of~G, we denote by
~G [ A the digraph obtained by adding the arcs ofA . Similarly, if A is a subset of arcs of
~G, we denote by~G nA the digraph where the arcs ofA have been removed. By extension,
if N is a subset of nodes of~G, then ~G nN is de�ned as the digraph obtained by removing
the nodes inN and their incident arcs. The degreeof a node of ~G is de�ned as the pair
(p1; p2), where p1 and p2 are the numbers of incoming and outgoing arcs incident to the
node.

For the sake of simplicity, let us suppose that the tropical edge consists of two
consecutive segments [�; � 0] and [� 0; � 00], with direction vectors eJ and eJ 0

respectively.
Let us start at the basic point � = xK [f i outg. We shall prove below that, at every basic

point, the tangent digraph is spanning tree where every hyperplane node is of degree
(1; 1). In other words, for every i 2 K [ f i outg, the sets arg(W +

i � � ) and arg(W �
i � � )

are both reduced to a singleton, sayf j +
i g and f j �

i g. We want to \get away" from the
s-hyperplaneH i out . Since the direction vector eJ is a 0=1 vector, the only way to do so
is to increase the variable indexed byj +

i out
while not increasing the component indexed

by j �
i out

. Hence, we must havej +
i out

2 J and j �
i out

62J . While moving along eJ , we also
want to stay inside the s-hyperplaneH i for i 2 K . Hence, if j +

i 2 J for some i 2 K ,
we must also havej �

i 2 J . Similarly, if j +
i 62J , then we must also havej �

i 62J .
Removing the hyperplane nodei out from the tangent digraph ~G� provides two connected
components, the �rst one, ~C+ , contains j +

i out
, and the second one,~C� contains j �

i out
. From

the discussion above, it follows that the setJ consists of the coordinate nodes in~C+ .
When moving along eJ from � , we leave the s-hyperplaneH i out . Consequently, the

hyperplane nodei out \disappears" from the tangent digraph. It turns out that this is the
only modi�cation that happens to the tangent digraph. More precisely, at every point in
the open segment ]�; � 0[, the tangent digraph is the graph obtained from ~G� by removing
the hyperplane node i out and its two incident arcs. We shall denote this digraph by
~G]�;� 0[. By construction, ~G]�;� 0[ is acyclic, consists of two connected components, and
every hyperplane node has one incoming and one outgoing arc.

We shall move from � along eJ until \something" happens to the tangent digraph.
In fact only two things can happens, depending whether� 0 is a breakpoint or a basic
point. As we supposed� 0 to be a breakpoint, a new arc anew will \appear" in the
tangent digraph, i.e., ~G� 0 = ~G]�;� 0[ [ f anewg. Let us denoteanew = ( j new; k), where j new is
a coordinate node andk 2 K is a hyperplane node. We shall see thatj new must belong
to J , while k must belong to the component ~C� . Hence, the arcanew \reconnects" the
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two components ~C+ and ~C� . Sincek had one incoming and one outgoing arc in~G]�;� 0[,
it has exactly three incident arcs in ~G� 0. One of them is anew = ( j new; k); a second one,
aold = ( j old; k), has the same orientation asanew; and the third one, a0 = ( k; l ), has an
orientation opposite to anew and aold.

Let us now �nd the direction vector eJ 0
of the second segment [� 0; � 00]. Consider the

hyperplane nodek with the three incidents arcs anew; aold and a0. By Proposition 7.1, we
know that J � J 0, hence we must increase the variablej new. Since we want to stay inside
the hyperplane H k , we must also increase the variable indexed byl. On the other hand,
we do not increase the variablej old. As before, all hyperplane nodesi 2 K n f kg are of
degree (1; 1). Removing the arcaold from the graph provides two connected components,
the �rst one ~C0

+ contains the coordinate nodesj new; l as well as the hyperplane nodek,
while the second one~C0

� contains j old. The new direction setJ 0 is given by the coordinate
nodes in ~C0

+ .
The tangent digraph in the open segment ]� 0; � 00[ is again constant, and de�ned by

~G]� 0;� 00[ = ~G� 0 n f aoldg. Hence, ~G]� 0;� 00[ is an acyclic graph, with two connected components
~C0

+ and ~C0
� , where every hyperplane node has one incoming and one outgoing arc.

The basic point � 00is reached when a new s-hyperplanei ent 62K is hit. This happens
when the hyperplane nodei ent \appears" in the tangent digraph, along with one incoming
(j + ; i ent) and one outgoing arc (i ent; j � ). Observe that we must havej � 2 J and j + 62J .
It follows that the two components ~C0

+ and ~C0
� are reconnected by addingi ent and its

two incident arcs.

7.1.2 Directions of ordinary segments

Given a point x in a tropical cone D, we say that the direction eJ , with ; ( J ( [n + 1],
is feasible from x in D if there exists � > 0 such that the ordinary segment f x + �e J j
0 � � � � g is included in D. The following lemma will be helpful to prove the feasibility
of a direction.

Lemma 7.2. Let x 2 Tn+1 with no 0 entries. Then, the following properties hold:

(i) if x belongs toH �
i n H i , every direction is feasible fromx in H �

i .

(ii) if x belongs toH i , the direction eJ is feasible from x in the half-spaceH �
i if, and

only if, arg(W +
i � x) \ J 6= ; or arg(W �

i � x) \ J = ; .

(iii) if x belongs toH i , the direction eJ is feasible fromx in the s-hyperplaneH i if, and
only if, the sets arg(W +

i � x) \ J and arg(W �
i � x) \ J are both empty or both

non-empty.

Proof. The �rst point is immediate. To prove the last two points, observe that if x 2 H i ,
then W +

i � x = W �
i � x > 0, thanks to Assumption A and the fact that x has no 0

entries. Then, for � > 0 su�ciently small, we have:

W +
i � (x + �e J ) =

(
(W +

i � x) + � if arg(W +
i � x) \ J 6= ; ;

W +
i � x otherwise ;
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and the same property holds forW �
i � x.

We propose to determine feasible directions with tangent graphs. It turns out that
tangent graphs in a tropical edge have a very special structure. Indeed, under Assump-
tion E, these graphs do not contain any cycle by Lemma 4.26. In other words, they are
forests: each connected component is a tree. For such graphs, the following is known:

number of nodes = number of edges + number of connected components: (7.1)

Proposition 7.3. Let x be a point in a tropical edgeEK . Then, exactly one of the
following cases arises:

(C1) x is a basic point for the basisK [ f i outg, where i out 2 [m] n K . The tangent
graph Gx at x is a spanning tree, and the set of hyperplane nodes isK [ f i outg. In the
tangent digraph ~Gx , every hyperplane node has degree(1; 1). Let J be the set of coordinate
nodes weakly connected to the unique node inarg(W +

i out
� x) in the digraph ~Gx n f i outg.

The only feasible direction from x in EK is eJ .
(C2) x is in the relative interior of an ordinary segment. The tangent graphGx is

a forest with two connected components, and the set of hyperplane nodes isK . In the
tangent digraph ~Gx , every hyperplane node has degree(1; 1). Let J be the set of coordinate
nodes in one of the components. The two feasible directions fromx in EK are eJ and
� eJ = e[n+1] nJ .

(C3) x is a breakpoint. The tangent graphGx is a spanning tree, and the set of
hyperplane nodes isK . In the tangent digraph ~Gx , there is exactly one hyperplane node
k� with degree(2; 1) or (1; 2), while all other hyperplane nodes have degree(1; 1). Let a
and a0 be the two arcs incident tok� with same orientation. Let J and J 0 be the set of
coordinate nodes weakly connected tok in ~Gx n f ag and ~Gx n f a0g, respectively. The two
feasible directions from x in EK are eJ and eJ 0

.

Proof. Sincex has �nite entries, the graph Gx contains exactly n + 1 coordinate nodes.
Let n0 be the number of hyperplane nodes inGx . Consider any i 2 K . Since x is
contained in the s-hyperplaneH i and x 2 Rn+1 , we haveW +

i � x = W �
i � x > 0. Thus

K is contained in the set of hyperplane nodes. Thereforen0 � n � 1. As there is at
least one connected component, there is at mostn + n0 edges by (7.1). Besides, each
hyperplane node is incident to at least two edges, so that there is at least 2n0 edges in
Gx . We deduce that n0 � n. As a result, by using (7.1), we can distinguish three cases:

(i) n0 = n, in which case there is only one connected component inGx , and exactly 2n
edges. Besides, all the hyperplane nodes have degree (1; 1) in ~Gx .

(ii) n0 = n � 1, the graph Gx contains precisely two connected components and 2n0� 2
edges. As in the previous case, every hyperplane node has degree (1; 1) in ~Gx .

(iii) n0 = n � 1 and Gx has one connected component. In this case, there are 2n0 � 1
edges. In~Gx , there is exactly one hyperplane node with degree (2; 1) or (1; 2), and
all the other hyperplane nodes have degree (1; 1).
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We next show that these cases correspond to the ones described in Proposition 7.3.
Case (i): Since n0 = n, the set of hyperplanes nodes is of the formK [f i outg for some

i out 62K . Moreover, Gx is a spanning tree. As a consequence, it contains a matching
between the coordinate nodes [n] and the hyperplanes nodesK [f i outg. Such a matching
can be constructed as follows. Let~G0 be the digraph obtained by directing the edges of
Gx towards the coordinate noden + 1. In this digraph, every coordinate node j 2 [n]
has exactly one outgoing arc to a hyperplane node� (j ), as there is exactly one path
from j to n + 1 in the spanning tree Gx . Moreover, every hyperplane nodei has exactly
one incoming arc and one outgoing arc in~G0. Indeed, i is incident to two arcs in ~G0,
and exactly one of them leads to the path to coordinate noden + 1. We conclude that
� (j ) 6= � (j 0) when j 6= j 0. Thus the set of edgesf (j; � (j )) j j 2 [n]g forms the desired
matching. Then by Lemma 4.25, the submatrix W 0 of W made with columns in [n]
and rows in K [ f i outg satis�es tper( jW 0j) > 0. Furthermore, W 0 = AK [f i outg. As a
consequence,x is a basic point for the setK [ f i outg.
Since the graph Gx is a spanning tree where the hyperplane nodei out is not a leaf,
removing i out from Gx provides two connected componentsC+ and C � , containing the
coordinate nodes in arg(W +

i out
� x) and in arg(W �

i out
� x), respectively. Let J be the set

of the coordinate nodes inC+ .
We claim that the direction eJ is feasible fromx in EK . Indeed, if the hyperplane node
i 2 K belongs to C+ , then arg(W +

i � x) � J and arg(W �
i � x) � J . In contrast, if

the node i 2 K belongs to C � , we have arg(W +
i � x) \ J = arg( W �

i � x) \ J = ; .
By Lemma 7.2, this shows that the direction eJ is feasible in all s-hyperplanesH i with
i 2 K . It is also feasible in the half-spaceH �

i out
, sincex 2 H i out and arg(W +

i out
� x) � J .

Finally, for all i 62K [ f i outg, the point x belongsH �
i n H i . Indeed, if x 2 H i , then i

would be a hyperplane node. Thus, by Lemma 7.2, the directioneJ is feasible inH �
i .

As EK = ( \ i 2 K H i ) \ (\ i 62K H �
i ), this proves the claim.

Since x is a basic point it admits exactly one feasible direction inEK . Thus eJ is the
only feasible direction from x in EK .

Case (ii): In this case, Gx is a forest with two components C1 and C2, and K is
precisely the set of hyperplane nodes. LetJ be the set of coordinate nodes inC1. Then
Lemma 7.2 shows that the direction eJ is feasible from x in EK . Indeed, the point x
belongs to H �

i n H i for i 62K . Besides, for all i 2 K , the sets arg(W +
i � x) \ J and

arg(W �
i � x) \ J are both non-empty if i belongs toC1, and both empty otherwise.

Symmetrically, the direction e[n+1] nJ = � eJ is also feasible inEK , as [n + 1] n J is the
set of coordinate nodes in the componentC2. It follows that x is in the relative interior
of an ordinary segment.

Case (iii): The graph Gx is a spanning tree. Letk� be the unique half-space node of
degree (2; 1) or (1; 2) in ~Gx and a; a0 the two arcs incident to k� with the same orientation.
Then ~Gx n f ag consists of two weakly connected componentsC1 and C2. Without loss
of generality, we assume thatk� belongs to C1. Let J be the set of coordinate nodes
in C1. We now prove that eJ is feasible fromx in EK , thanks to Lemma 7.2. Indeed,
x 2 H �

i n H i for i 62K . Besides, ifi 2 K , the sets arg(W +
i � x) \ J and arg(W �

i � x) \ J
are both non-empty if i 2 C1, and both empty if i 2 C2. Thus, eJ is feasible in the
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s-hyperplaneH i .
Similarly, let J 0 be the set of coordinate nodes weakly connected tok� in ~Gx nf a0g. Then
the direction eJ 0

is also feasible. Note thatJ and J 0are neither equal nor complementary.
Thus, there are two distinct and non-opposite directions which are feasible fromx in
EK , which implies than x is a breakpoint.

Example 7.4. Figure 4.7 depicts the tangent digraphs at every point of the tropical edge
EK for K = fH 1,H 2g, and this illustrates Proposition 7.3. The set I = fH 1,H 2,H 3g
of constraints determines the basic pointx I = (1 ; 0; 0). From its tangent digraph, we
deduce that the initial ordinary segment of the edgeEK is directed by ef 2g.

The tangent digraph at a point in ](1 ; 1; 0); (1; 0; 0)[ has exactly two weakly connected
components. They yield the feasible directionsef 2g and ef 1;3;4g, which correspond to the
vectors (0; 1; 0) and (0; � 1; 0) of T3.

At the breakpoint (1 ; 1; 0), the tangent digraph is weakly connected, and the hy-
perplane nodeH 1 has degree (2; 1). Removing the arc from coordinate node 4 toH 1

provides two weakly connected components, respectivelyf 1; 2g[fH 1g and f 3; 4g[fH 2g.
The coordinate nodes of the component containingH 1 yields the feasible directionef 1;2g.
Similarly, it can be veri�ed that the other feasible direction, obtained by removing the
arc from coordinate node 2, is the vectoref 1;3;4g.

7.1.3 Moving along an ordinary segment

We now characterize the length� of an ordinary segment [�; � 0] = f � + �e J j 0 � � � � g
of a tropical edge EK . We shall see that the tangent digraph is constant in ]�; � 0[ and
that it \acquires" a new arc or a new hyperplane node when the endpoint� 0 is reached.
Modi�cations to the tangent digraph are determined by the following scalars. For all
i 2 [m], we de�ne:

� +
i (�; J ) := ( jWi j � � ) � max

j 2 J
(W +

ij + � j ) ;

� �
i (�; J ) := ( jWi j � � ) � max

j 2 J
(W �

ij + � j ) ;

where W = ( Wij ).
By Assumptions A and F, we haveW +

i � � > 0. In contrast, max j 2 J (W +
ij + � j ) and

maxj 2 J (W �
ij + � j ) may be equal to0, in which case we use the convention� +

i = + 1 and
� �

i = + 1 , respectively. When maxj 2 J (W +
ij + � j ) and maxj 2 J (W �

ij + � j ) are di�erent
from 0, the scalars � +

i (�; J ) and � �
i (�; J ) are non-negative elements of the groupG,

where T = T(G). When it is clear from the context, � +
i (�; J ) and � �

i (�; J ) will be
simply denoted by � +

i and � �
i .

The scalars � +
i and � +

i tells us when the tangent digraph changes,i.e., when the
set arg(jWi j � x � ) is modi�ed. Indeed, let us denote x � = � + �e J , and observe how
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0 � +
i

�� �
i

0 � �
i

�

W +
i � �

W �
i � �

0 � +
i

�� �
i

0 � �
i

�

W +
i � �

W �
i � �

Figure 7.1: Evolution of W +
i � (� + �e J ) (in red) and W �

i � (� + �e J ) (in black) with
� � 0 when � �

i < � +
i (left) or � �

i > � +
i (right).

arg(jWi j � x � ) varies with � � 0. For any i 2 [m], we have:

arg(jWi j � x � ) =

8
>>><

>>>:

arg(jWi j � � ) for � < min( � +
i ; � �

i )

arg(jWi j � � ) [ arg max
j 2 J

(jWij j + � j ) for � = min( � +
i ; � �

i )

arg max
j 2 J

(jWij j + � j ) for � > min( � +
i ; � �

i )

(7.2)

When min(� +
i ; � �

i ) > 0, then arg max j 2 J (jWij j + � j ) \ arg(jWi j � � ) = ; . Hence,
arg(jWi j � x � ) is constant for � < min( � +

i ; � �
i ), and gains at least one new element at

� = min( � +
i ; � �

i ). Otherwise, when min(� +
i ; � �

i ) = 0, the set arg max j 2 J (jWij j + � j ) is
included in arg(jWi j � � ). In fact, arg max j 2 J (jWij j + � j ) = arg( jWi j � � ) \ J . In this
case, arg(jWi j � x � ) is constant for all � > 0.

The distinction between � +
i and � +

i will tell us whether the elements j that will
enter arg(jWi j � x � ) corresponds to tropically positive entriesWij 2 T+ or to tropically
negative entriesWij 2 T � . This distinction is crucial in order to detect when x � saturate
a new inequality.

Indeed, the interpretation of � +
i and � �

i di�ers when one looks at the evolution of
W +

i � x � and W �
i � x � with � � 0 (see Figure 7.1). We have:

W +
i � x � =

(
W +

i � � if 0 � � � � +
i

(W +
i � � ) + � � � +

i if � � � +
i

W �
i � x � =

(
W �

i � � if 0 � � � � �
i

(W +
i � � ) + � � � �

i if � � � �
i

(7.3)

where � �
i = � �

i + ( W �
i � � ) � (W +

i � � ). In particular � �
i � � �

i and equality holds when
i 2 K .

The endpoint � 0 of the segment [�; � 0] = f � + �e J j 0 � � � � g is either a breakpoint
or a basic point. We will prove that it is a basic point if a new hyperplane nodei ent 62K
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\appears" in the tangent digraph. In that case the index i ent must belong to the following
set:

Ent(�; J ) := f i 2 [m] n K j arg(W +
i � � ) \ J = ;g :

Note that Ent(�; J ) can also be de�ned as the set ofi 2 [m] n K such that � +
i > 0.

We shall see that � 0 is a breakpoint if a hyperplane nodek� 2 K \acquires" a new
arc, and thus become of degree (2; 1) or (1; 2). Such a nodek� must be an element of
the following set:

Br(�; J ) := f i 2 K j arg(W +
i � � ) \ J = ; and arg(W �

i � � ) \ J = ;g :

Alternatively, i 2 K belongs toBr(�; J ) if and only if min( � +
i ; � �

i ) > 0.
We already mentioned that the notation i ent (and so, Ent(�; J )) and i out is chosen by

analogy with the entering or leaving indices in the classical simplex method. Note that
the set Br(�; J ) does not have any classical analog. It represents intermediate indices
which shall be examined before a leaving index is found.

When this does not bear the risk of confusion, we simply use the notationsBr and
Ent.

Proposition 7.5. Let f � + �e J j 0 � � � � g be an ordinary segment of a tropical edge
EK . The following properties hold:

(i) the length � of the segment is the greatest scalar� � 0 satisfying the following
conditions:

� � min( � +
i ; � �

i ) for all i 2 Br ;

� � � �
i for all i 2 Ent such that � �

i � � +
i :

(7.4)

(ii) if � = � �
i ent

for somei ent 2 Ent, then � + �e J is a basic point for the basisK [f i entg.

(iii) if � = min( � +
k ; � �

k ) for some k 2 Br, then � + �e J is a breakpoint.

Proof. Let x � := � + �e J for all � � 0. First, We claim that x � belongs to EK if
� satis�es (7.4).To that end, we shall use repeatedly the evolution ofW +

i � x � and
W +

i � x � with � described in (7.3). We need to show thatx � 2 H i for i 2 K and
that x � 2 H �

i for i 2 [m] n K . Consider an i 2 Br. Then � �
i = � �

i . Therefore, for all
0 � � � min( � +

i ; � �
i ) we havex � 2 H i since:

W +
i � x � = W +

i � � = W �
i � � = W �

i � x � :

Let i 2 K n Br. Then by Lemma 7.2, arg(W +
i � � ) \ J and arg(W �

i � � ) \ J are both
non-empty. Thus � +

i = � �
i = � �

i = 0. Therefore, x � 2 H i for all � � 0 since in this
case:

W +
i � x � = ( W +

i � � ) + � = W �
i � x � :

We now examine the half-spacesH �
i wherei 2 [m]nK . If i 62Ent then arg(W +

i � � ) \ J 6=
; . Consequently, � +

i = 0. Thus x � 2 H �
i for all � � 0 as we have:

W +
i � x � = ( W +

i � � ) + � � max(W �
i � �; (W +

i � � ) + � � � �
i ) = W �

i � x � :
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If i 2 Ent and 0 � � � min( � +
i ; � �

i ), then x � 2 H �
i . Indeed :

W +
i � x � = W +

i � � � max(W �
i � �; (W +

i � � ) + � � � �
i ) = W �

i � x � :

Now if furthermore � +
i < � �

i , then, for � � � +
i , we have

W +
i � x � = ( W +

i � � ) + � � � +
i � max(W �

i � �; (W +
i � � ) + � � � �

i ) = W �
i � x � :

We conclude that if i 2 Ent and � +
i < � �

i then x � 2 H �
i for all � � 0.

Second, we claim that the solution set of the inequalities (7.4) admits a greatest
element� � 2 R. By contradiction, suppose that x � 2 EK for all � � 0. Recall that eJ and
� e[n+1] nJ coincide as elements ofTPn . Consequently the half-ray f � � �e [n+1] nJ j � � 0g
is contained in EK , and thus in C. Since C is closed, it contains the point y 2 Tn+1

de�ned by yj = � j if j 2 J and yj = 0 otherwise. As J ( [n + 1], this contradicts
Assumption F.

Third, we claim that � � = � . To prove the claim is su�cient to show that x � �
is

either a breakpoint or a basic point of EK . We distinguish two cases:

(a) � � = � �
i ent

� � +
i ent

for some i ent 2 Ent. Then W +
i ent

� x � �
= W �

i ent
� x � �

by (7.3).
Moreover, W +

i ent
� � > 0 by Assumptions A and F. As a consequence,i ent 62K is a

hyperplane node in the tangent graphGx � � . By Proposition 7.3, we conclude that
x � �

is a basic point for the setK [ f i entg.

(b) � � = min( � +
k ; � �

k ) for some k 2 Br. In that case, by (7.2), we have:

arg(jWi j � x � �
) = arg( jWi j � � ) [ arg max

j 2 J
(jWij j + � j ) :

The hyperplane nodek 2 K has at least two incident arcs in ~G� by Proposition 7.3.
Consequently, the set arg(jWi j � � ) contains at least two elements. Moreover,
arg max j 2 J (jWij j + � j ) contains at least one element. Hence, the set arg(jWi j � x � �

)
contains at least three elements,i.e., in the tangent digraph ~Gx � � , the hyperplane
node k 2 K has at least three incident arcs. By Proposition 7.3, the pointx � �

must
be a breakpoint.

Note that the cases (a) and (b) above also prove (ii) and (iii).

Example 7.6. We now have all the ingredients required to perform a tropical pivot. Fea-
sible directions are given by Proposition 7.3, while Proposition 7.5 provides the lengths
of ordinary segments and the stopping criterion.

Let us illustrate this on our running example. We start from the basic point (4; 4; 2)
(i.e., the point (4; 4; 2; 0) in TP3) given by I = fH 1; H 2; H 5g, and we move along the
edge EK , where K = fH 1; H 2g. The tangent digraph at (4; 4; 2) is depicted in the
bottom right of Figure 4.7. By Proposition 7.3 (C1), the initial direction is � ef 1;2;3g,
i.e., J = f 4g. By de�nition, Br is formed by the hyperplane nodes which are not adjacent
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to the coordinate node 4 in the tangent digraph. Hence,Br = fH 1; H 2g. Moreover, in
the homogenous setting, the inequalitiesH 3 and H 4 read

x2 � x4

x1 � max(x4; x2 � 3)

In both of them, the maximum in the left-hand side is reduced to one term, and it does
not involve x4. Thus, Ent = fH 3; H 4g. The reader can verify that:

� +
H 1

= 3 � 0 = 3 � �
H 1

= 3 � (�1 ) = + 1

� +
H 2

= 2 � (�1 ) = + 1 � �
H 2

= 2 � 0 = 2

� +
H 3

= 4 � (�1 ) = + 1 � �
H 3

= 4 � 0 = 4

� +
H 4

= 4 � (�1 ) = + 1 � �
H 4

= 4 � 0 = 4

As a result, the length of the initial ordinary segment is � = 2, given by � = � �
H 2

� � +
H 2

.
As H 2 2 Br, the point (4; 4; 2) � 2ef 1;2;3g = (2 ; 2; 0) is a breakpoint.

The next feasible direction is � ef 1;2g as J = f 3; 4g. We still have Ent = fH 3; H 4g
but now Br = fH 1g. The length of this ordinary segment is� = 1 = � +

H 1
. Consequently,

we reach the breakpoint (1; 1; 0) = (2 ; 2; 0) � 1ef 1;2g, where the next feasible direction,
� ef 2g, is given by J = f 1; 3; 4g. The set Br is now empty and Ent = fH 4g. Clearly,
� = 1 = � �

H 4
. As H 4 2 Ent, the next endpoint (1; 0; 0) = (1 ; 1; 0) � 1ef 2g is a basic point.

7.1.4 Incremental update of the tangent digraph

Our implementation of the pivoting operation relies on the incremental update of the
tangent digraph along the tropical edge. This avoids computing from scratch the tangent
digraph at each breakpoint, in which case the time complexity of the pivoting operation
would be naively in O(n2m).

Proposition 7.7. Let [�; � 0] = f � + �e J j 0 � � � � g be an ordinary segment ofEK .

(i) every point in ]�; � 0[ has the same tangent digraph~G]�;� 0[, which is a subgraph of
both ~G� and ~G� 0.

(ii) if � is a basic point, i.e., � = xK [f i outg for a given i out 62K , then

~G]�;� 0[ = ~G� n f i outg :

(iii) if � 0 is a breakpoint, then there exists a uniquek� 2 Br such that � = min( � +
k � ; � �

k � ),
and the setarg max j 2 J (jWk � j j + � j ) is reduced to a singletonf l � g. Moreover,

~G� 0 = ~G]�;� 0[ [ f anewg ;

where anew is an arc betweenk� and l � , oriented from l � to k� if � +
k � < � �

k � , and
from k� to l � otherwise.
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k

aold anew

~G� 0

k

aold

~G]�;� 0[

J k

anew

~G]� 0;� 00[

J 0

Figure 7.2: Illustration of Proposition 7.7 (iii) and (iv), with a sequence of tangent
digraphs around a breakpoint � 0 between two consecutive segments [�; � 0] [ [� 0; � 00]. The
direction of [�; � 0], from � to � 0, is given by the set of coordinate nodesJ , indicated in
green. The direction of the second segment, from� 0 to � 00, is governed byJ 0 depicted in
orange.

(iv) if [� 0; � 00] is the next ordinary segment inEK , then

~G]� 0;� 00[ = ~G� 0 n f aoldg :

where aold is the unique arc incident to k� with the same orientation as anew in
~G� 0.

An illustration of (iii) is given in Figure 7.2.

Proof. Let x � := � + �e J .
(i) Any point in ] �; � 0[ is of the form x � for some 0< � < � . Consider such a� . By

Proposition 7.3, the tangent digraph ~Gx � admits [n + 1] as its set of coordinate nodes,
and the set of hyperplane nodes always containsK .
We now prove that the set of arcs is constant,i.e., we show that for any i 2 K , the
set arg(jWi j � x � ) does not depend on� 2 ]0; � [. Consider a i 2 Br. We have � < � ,
then in particular � < min( � +

i ; � �
i ) by Proposition 7.5. Hence, we have arg(jWi j �

x � ) = arg( jWi j � � ) by (7.2). Otherwise, let i 2 K n Br. Then, arg(W +
i � � ) \ J and

arg(W �
i � � ) \ J are both non-empty, by Lemma 7.2. Consequently, min(� +

i ; � �
i ) = 0

by de�nition of � +
i ; � �

i . It follows that � > min( � +
i ; � �

i ). Hence, arg(jWi j � x � ) =
arg max j 2 J (jWij j + � j ) by (7.2).

(ii) By Proposition 7.3 (C2), ~G]�;� 0[ does not contain the hyperplane nodei out . As
~G]�;� 0[ is a subdigraph of~G� by (i), we deduce that it is also a subdigraph of~G� nf i outg. By
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Proposition 7.3 again, the only subdigraph of~G� n f i outg that can be a tangent digraph
at a point in EK is ~G� n f i outg.

(iii) Since � 0 is a breakpoint, we have� = min( � +
k ; � �

k ) for some k 2 Br by Propo-
sition 7.5. First assume that � = � +

k < � �
k for some k 2 Br. In that case, observe

that
arg max

j 2 J
(jWkj j + � j ) = arg max

j 2 J
(W +

kj + � j ) :

Let l 2 arg max j 2 J (W +
lj + � j ). Then for all 0 < � < � , we haveW +

kl + x �
l < W +

k � x � ,

while W +
kl + x �

l = W +
k � x � . It follows that the arc ( l; k ) does not belong to~G]�;� 0[, whereas

it appears in ~G� 0, oriented from l to k. We deduce that ~G]�;� 0[ [ f (l; k )g is a subgraph
of ~G� 0 by (i). Both are equal by Proposition 7.3. Moreover, if arg max j 2 J (W +

k � j + � j )

contains two distincts elementsl; l 0. Then, by the argument above, ~G]�;� 0[ [ f (l; k ); (l0; k)g
is a subdigraph of ~G� 0. This contradicts Proposition 7.3.
Second, If � = � �

k � < � +
k � , then the arguments above show that ~G� 0 = ~G]�;� 0[ [ f (k; l )g,

where l is the unique element in the set

arg max
j 2 J

(jWk � j j + � j ) = arg max
j 2 J

(W �
k � j + � j )

Third, if � �
k = � +

k , then, by the arguments above, the hyperplane nodek would have at
least two incoming and two outgoing arcs in the tangent digraph at � 0, a contradiction
with Proposition 7.3.
Finally, suppose that � = min( � +

k ; � �
k ) = min( � +

k0; � �
k0) for two distincts k; k0 2 Br. Then,

the hyperplane nodesk and k0 would both have at least three adjacent arcs in~G� 0, again
a contradiction with Proposition 7.3.

(iv) By applying i to the segment [ � 0; � 00], we know that ~G]� 0;� 00[ is a subdigraph of
~G� 0. By Proposition 7.3, the hyperplane nodek� has degree (1; 1) in ~G]� 0;� 00[. Thus, the
digraph ~G]� 0;� 00[ is either equal to ~G� 0 n f anewg or ~G� 0 n f aoldg. As the former corresponds
to the tangent digraph ~G]�;� 0[, we deduce that ~G]� 0;� 00[ = ~G� 0 n f aoldg. Indeed, the segment
[� 0; � 00] is directed by J 0. By Proposition 7.3, the set J 0 correspond to the coordinate
nodes in one of the connected components of~G]� 0;� 00[. Similarly, the set J governing the
direction of [�; � 0] correspond to a connected component in~G]�;� 0[. By Proposition 7.1,
we haveJ 6= J 0. Consequently, the graphs~G]�;� 0[ and ~G]� 0;� 00[ must be distinct.

Proposition 7.8. Let [�; � 0] [ [� 0; � 00] be two consecutive ordinary segments ofEK , where
[�; � 0] = f � + �e J j 0 � � � � g and [� 0; � 00] = f � 0+ �e J 0

j 0 � � � � 0g. Moreover, let k�

be the unique hyperplane node of~G� 0 of degree(2; 1) or (1; 2) and let aold; anew be the two
arcs incident to k� with the same orientation. Denote by~D the connected component of
~G� 0 n f aold; anewg that contains k� . Then:

(i) J 0 = J [ f j 2 [n + 1] j j is a coordinate node in ~Dg

(ii) Br(� 0; J 0) = Br(�; J ) n f i 2 [m] j i is a hyperplane node in~Dg
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(iii) arg(W +
i � � 0) = arg( W +

i � � ) for all i 2 Ent(� 0; J 0).

(iv) Ent(� 0; J 0) = f i 2 Ent(�; J ) j � < � +
i (�; J ) and arg(W +

i � � ) \ (J 0n J ) = ;g .

(v) for all i 2 Ent(� 0; J 0) [ Br(� 0; J 0), we have:

W +
i � � 0 = W +

i � �

� +
i (� 0; J 0) = min

�
� +

i (�; J ) � � ; (W +
i � � ) � max

j 2 �
(W +

ij + � j )
�

;

� �
i (� 0; J 0) = min

�
� �

i (�; J ) � � ; (W +
i � � ) � max

j 2 �
(W �

ij + � j )
�

:

Proof. (i) According to Proposition 7.3 (C2), the digraph ~G]� 0;� 00[ consists of two
weakly connected components,~C+ and ~C� , and J is the set of coordinate nodes in one
of these components, say~C+ .
Let l � 2 J be the coordinate node incident toanew, as described in Proposition 7.7 (iii).
The tangent digraph at � 0 is equal to ~G� 0 = ~C+ [ ~C� [ f anewg. Since ~G� 0 is connected,
and l � 2 ~C+ , the hyperplane nodek� belongs to ~C� . Thus the arc aold also belongs to
~C� . Observe that ~D is a subgraph of ~C� . In fact, ~C� n f aoldg can be decomposed into
two connected components~C0

� and ~D, where ~D contains k� .
In the next segment, the tangent digraph is ~G]� 0;� 00[ = ~C+ [ ~C� [ f anewg n faoldg. It
consists of two connected components. Let~C0

+ denote the component that contains the
hyperplane nodek� . Then observe that ~C0

+ = ~C+ [ ~D [ f anewg. Moreover, the second
connected component of~G]� 0;� 00[ is ~C0

� .
The two feasible directions in ]� 0; � 00[, are eJ 0

and � eJ 0
� e[n+1] nJ . The set J 0 is set of

coordinate nodes in either~C0
+ or ~C0

� , by Proposition 7.3 (C2). We know that J � J 0 by
Proposition 7.1. HenceJ 0 is the set of coordinate nodes in~C0

+ and thus J 0 = J [ � .
(ii) By de�nition of Br, we have min(� +

i (�; J ); � �
i (�; J )) > 0 for all i 2 Br(�; J ).

Using (7.2), it follows that arg( jWi j � (� + �e J )) = arg( jWi j � � ) for all � > 0 small
enough. Consequently,Br(�; J ) = Br(� + �e J ; J ) for � > 0 small enough. Hence,Br(�; J )
is exactly the set of hyperplane nodes in the connected component~C� of ~G]�;� 0[, where
~C� is de�ned above. Similarly, Br(� 0; J 0) is exactly the set of hyperplane nodes in the
connected component~C0

� of ~G]� 0;� 00[. The di�erence between these two sets corresponds
to the hyperplane nodes in ~D.

(iii) First observe that Ent(� 0; J 0) � Ent(�; J ). Indeed, consider ani 2 K nEnt(�; J ).
Then arg(W +

i � � ) \ J 6= ; , which implies arg(W +
i � � 0) � J . Using the inclusion J � J 0,

we obtain that arg(W +
i � � 0) \ J 0 6= ; , and therefore i 62Ent(� 0; J 0).

Second if i 2 Ent(�; J ) satis�es � � � +
i (�; J ) then arg(W +

i � � 0) intersects J � J 0, thus
i 62Ent(� 0; J 0). As a consequence:

Ent(� 0; J 0) � f i 2 Ent(�; J ) j � < � +
i (�; J )g : (7.5)

Finally for any i 2 Ent(� 0; J 0), we have � < � +
i (�; J ) and therefore arg(W +

i � � 0) =
arg(W +

i � � ).
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(iv) Using (7.5) let us consider an i 2 Ent(�; J ) such that � < � +
i (�; J ). Then, as

above, arg(W +
i � � 0) = arg( W +

i � � ). Moreover, i 2 Ent(�; J ) implies arg(W +
i � � ) \ J = ; .

Thus arg(W +
i � � 0) \ J 0 = ; if and only if arg( W +

i � � ) \ (J 0n J ) = ; .
(v) Consider i 2 Ent(� 0; J 0) [ Br(� 0; J 0). If i 2 Ent(� 0; J 0) then � < � +

i (�; J ) by (7.5).
Otherwise, if i 2 Br(� 0; J 0), then i 2 Br(�; J ) by (ii) and thus � � � +

i (�; J ) by (7.4). In
both cases, we obtainW +

i � � 0 = W +
i � � .

Let us rewrite � +
i (� 0; J 0) as follows:

� +
i (� 0; J 0) = min

�
(W +

i � � 0) � max
j 2 J

(W +
ij + � 0

j ) ; (W +
i � � 0) � max

j 2 J 0nJ
(W +

ij + � 0
j )

�
:

We saw that W +
i � � 0 = W +

i � � . Furthermore, � 0
j = � j + � if j 2 J and � 0

j = � j otherwise.
Thus the �rst term of the minimum above is equal to:

(W +
i � � ) � max

j 2 J
(W +

ij + � + � ) = � +
i (�; J ) � �:

The second term satis�es:

(W +
i � � 0) � max

j 2 J 0nJ
(W +

ij + � 0
j ) = ( W +

i � � ) � max
j 2 J 0nJ

(W +
ij + � j ) :

The same argument holds for� �
i (� 0; J 0).

7.1.5 Linear-time pivoting

We now present an algorithm (Algorithm 5) allowing to move along an ordinary segment
[�; � 0] = f � + �e J j 0 � � � � g of the tropical edge EK . This algorithm takes as input
the initial endpoint � , together with some auxiliary data, including the set J encoding
the direction of the segment [�; � 0], the tangent digraph in ]�; � 0[, the setsEnt(�; J ) and
Br(�; J ), etc. We also de�ne, for j 2 [m], the sets

� j (�; J ) := f i 2 Ent(�; J ) j j 2 arg(W +
i � � )g :

It also uses a Boolean matrix M , such that M ij = true for the pairs (i; j ) 2
Ent(�; J ) � [n + 1] if and only if j 2 arg(W +

i � � ). We shall see in the main pivot-
ing algorithm that we will not need to update this matrix when pivoting over the whole
tropical edge.

Algorithm 5 returns the other endpoint � 0. On top of that, if � 0 is a breakpoint of EK ,
it provides the set J 0 corresponding to the direction of the next ordinary segment [� 0; � 00]
of EK , some additional data corresponding to� 0, J 0 (for instance the setsEnt(� 0; J 0) and
Br(� 0; J 0)), and the digraph ~G]� 0;� 00[.

Several kinds of data structures are manipulated in Algorithm 5, and we need to
specify the complexity of the underlying operations. Arithmetic operations over T are
supposed to be done in timeO(1). Tangent digraphs are represented by adjacency lists.
They are of sizeO(n), and so they can be visited in timeO(n). Matrices are stored as
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two dimensional arrays, so an arbitrary entry can be accessed inO(1). Vectors and the
values W +

i � � , � +
i (�; J ) and � �

i (�; J ) for i 2 [m] are stored as arrays of scalars.
Apart from � = J 0 n J , sets are represented as Boolean arrays, so that testing

membership takesO(1). The set � is stored as a list, thus iterating over its elements
can be done inO(j� j).

Proposition 7.9. Algorithm 5 is correct, and its time complexity is bounded byO(n +
mjJ 0n J j).

Proof. The correctness of the highlighted parts of the algorithm straightforwardly follows
from the corresponding results given in annotations.

Complexity: At Lines 8 and 10, the operations of removing or adding an arc can be
performed in O(n) by visiting the digraphs. Identifying the arc aold at Line 9 amounts to
iterate over the arcs incident to k� , and there is exactly 3 such arcs by Proposition 7.3.

Computing the sets � and � between Lines 11 and 14 usesO(n) operations, as the
graph ~G� 0 contains O(n) nodes and edges. Moreover, the sets� � [n + 1] and � � K
are of sizeO(n), thus updating J and Br usesO(n) operations.

At Line 15, we visit the O(m) elements Ent(�; J ). For each i 2 Ent(�; J ), we �rst
test in O(1) whether � < � +

i (�; J ). Second, we iterate over the elementsj 2 � and test
whether j 2 arg(W +

i � � ) using the Boolean matrix M . Since there isjJ 0n J j elements
in � , and since any entry ofM can be accessed inO(1), we obtain an overall complexity
of O(mjJ 0n J j).

Computations at Lines 18 and 19 are done by iterating over elementsj 2 � and
then retrieving the values of W +

i � � , W +
ij , W �

ij and � j . Since these values are stored
in arrays, they can be accessed to in constant time. Therefore,� +

i (� 0; J 0) and � �
i (� 0; J 0)

are computed in time O(j� j) = O(jJ 0nJ j). The complexity of other operations is easily
obtained. In total, the complexity of the algorithm is O(n + mjJ 0n J j).

Theorem 7.10. Algorithm 6 allows to pivot from a basic point along a tropical edge in
time O(n(m + n)) and spaceO(nm).

Proof. First observe that the matrix M initially de�ned at Line 6 does not need to be
updated during the iterations of the loop from Lines 8 to 11. Indeed, let [�; � 0] and
[� 0; � 00] be two consecutive ordinary segments of directioneJ and eJ 0

respectively. By
Proposition 7.8, we have the inclusionEnt(� 0; J 0) � Ent(�; J ) and the equality arg(W +

i �
� 0) = arg( W +

i � � ) for all i 2 Ent(� 0; J 0) . It follows that if M ij determines whether
j 2 arg(W +

i � � ) for all i 2 Ent(�; J ), it can be used as well to determine whether
j 2 arg(W +

i � � 0) for all i 2 Ent(� 0; J 0).
Then, the correctness of the algorithm follows from Proposition 7.7 (ii) (for the

computation of ~G]� 1 ;� 2 [ at Line 2), Proposition 7.3 (for the computation of J at Line 3)
and Proposition 7.9.

The complexity of the operations from Lines 1 to 7 can easily be veri�ed to be in
O(mn). Let q � n be the number of iterations of the loop from Lines 8 and 11, and let
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Algorithm 5: Traversal of an ordinary segment of an tropical edge
Input : An endpoint � of an ordinary segment [�; � 0] of a tropical edge EK and:
� the set J encoding the direction eJ of [�; � 0] = f � + �e J j 0 � � � � g
� the tangent digraph ~G]�;� 0[ in the relative interior of [ �; � 0]
� the sets Ent(�; J ) and Br(�; J )
� the scalars W +

i � � , � +
i (�; J ) and � �

i (�; J ) for i 2 Br(�; J ) [ Ent(�; J )
� a Boolean matrix M such that M ij = true only for the i 2 Ent(�; J ) and j 2 [n + 1] such that
j 2 arg(W +

i � � )

Output : The other endpoint � 0 and,
if � 0 is a basic point, the integer i ent 62K such that � 0 = xK [f i entg ;
if � 0 is a breakpoint:
� the set J 0 encoding the direction eJ 0

of the next ordinary segment [ � 0; � 00]
� the tangent digraph ~G]� 0;� 00[

� the sets Ent(� 0; J 0) and Br(� 0; J 0)
� the scalars W +

i � � 0, � +
i (� 0; J 0) and � �

i (� 0; J 0) for i 2 Br(� 0; J 0) [ Ent(� 0; J 0)

1 �  minf min( � +
i (�; J ); � �

i (�; J )) j i 2 Br(�; J ) or ( i 2 Ent(�; J ) and � �
i (�; J ) � � +

i (�; J ))g O(m)
2 � 0  � + �e J O(n)
3 if � = � �

i ent
(�; J ) for some i ent 2 Ent(�; J ) then

4 return (� 0; i ent) ( � 0 is a basic point)

5 k �  the unique element of Br(�; J ) such that � = min( � +
k � (�; J ); � �

k � (�; J )) ( � 0 is a breakpoint)
6 l �  the unique element in arg max j 2 J jWk � j j + � j O(n)
7 anew  the arc from l to k � if � +

k � (�; J ) < � �
k � (�; J ), the arc from k � to l otherwise O(1)

8 ~G� 0  ~G]�;� 0[ [ f anewg O(n)

9 aold  the only arc incident to k � in ~G� 0 with the same orientation as anew O(1)

10 ~G]� 0;� 00[  ~G� 0 n f aoldg O(n)

11 �  coordinate nodes of ~G� 0 n f aold; anewg connected to k � O(n)

12 �  hyperplane nodes of ~G� 0 n f aold; anewg connected to k � O(n)
13 J 0  J [ � O(n)
14 Br(� 0; J 0)  Br(�; J ) n � O (n)

15 Ent(� 0; J 0)  f i 2 Ent(�; J ) j � < � +
i (�; J ) and arg(W +

i � � ) \ � = ;g O(mjJ 0 n J j) using the
matrix M

16 for i 2 Ent(� 0; J 0) [ Br(� 0; J 0) do O(m) iterations
17 W +

i � � 0 := W +
i � � O (1)

18 � +
i (� 0; J 0) := min

�
� +

i (�; J ) � � ; (W +
i � � ) � max

j 2 �
(W +

ij + � j )
�

O(jJ 0 n J j)

19 � �
i (� 0; J 0) := min

�
� +

i (�; J ) � � ; (W +
i � � ) � max

j 2 �
(W �

ij + � j )
�

O(jJ 0 n J j)

20 return � 0; J 0; ~G]� 0;� 00[ ; Ent(� 0; J 0); Br(� 0; J 0); (W +
i � � 0) i ; (� +

i (� 0; J 0)) i ; (� �
i (� 0; J 0)) i

Proposition 7.5 (i){(ii)

Proposition 7.7(iii){(iv)

Proposition 7.8 (iv){(v)

Proposition 7.8 (i){(ii)
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Algorithm 6: Linear-time tropical pivoting algorithm
Input : A basic point x I of P (A; b), the associated set I , and an integer i out 2 I
Output : The other basic point x I 0

of the edgeEI nf i out g , and the integer i ent 2 I n f i outg such that
I 0 = ( I n f i outg) [ f i entg

1 compute ~Gx I O(mn)

2 ~G]� 1 ;� 2 [  ~Gx I n f i outg O(n)

3 J  coordinate nodes weakly connected to the element of arg(W +
i out

� x I ) in ~G]�;� 0[ O(n)
4 compute E  Ent(x I ; J ) and B  Br(x I ; J ) O(mn)
5 compute W +

i � x I , � +
i (x I ; J ) and � �

i (x I ; J ) for all i 2 E [ B O (mn)

6 M  a m � (n + 1) matrix de�ned by M ij =

(
true if j 2 arg(W +

i � x I )

false otherwise
O(mn)

7 input  x I ; J; ~G]� 1 ;� 2 [ ; E; B; (W +
i � x) i 2 E [ B ; (� +

i (x I ; J )) i 2 E [ B ; (� �
i (x I ; J )) i 2 E [ B ; M

8 while true do at most n iterations
9 call Algorithm 5 on ( input ; M ) and stores the result in output

10 if output is of the form ( � 0; i ent) then return (� 0; i ent)
11 else input  output

eJ1 ; eJ2 ; : : : ; eJq be the directions of the ordinary segments followed during the successive
calls to Algorithm 5. By Proposition 7.9, the total complexity of the loop is

O(nq + mjJ2 n J1j + mjJ3 n J2j + � � � + mjJq n Jq� 1j) ;

which can be bounded byO(n(m + n)). Finally, the space complexity is obviously
bounded by O(nm).

7.2 Computing reduced costs

In this section, we introduce the concept of tropical reduced costs, which are merely
the signed valuation of the reduced costs over Puiseux series. Then, pivots improving
the objective function and optimality over Puiseux series can be determined only by the
signs of the tropical reduced costs. We show that, under some genericity assumptions,
the tropical reduced costs can be computed using only the tropical entriesA and c in
time O(n(m + n)). This complexity is similar to classical simplex algorithm, as this
operation corresponds to the update of the inverse of the basic matrixA I .

7.2.1 Symmetrized tropical semiring

To de�ne the tropical reduced costs, we need a signed tropical version of the system
of linear equations (3.22). To that end, we use a semiring extension of signed tropical
numbers called thesymmetrized tropical semiring, introduced in [Plu90]. It is denoted
by T � , and is de�ned as the union ofT � with a third copy of T, denoted T � . The latter
is the set of balanced tropical numbers. Its elements are written a� , where a 2 T. The
numbersa, 	 a and a� are pairwise distinct unlessa = 0. Sign and modulus are extended
to T � by setting sign(a� ) = 0 and ja� j = a.
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The addition of two elementsx; y 2 T � , denoted byx � y, is de�ned to be max(jxj; jyj)
if the maximum is attained only by elements of positive sign, 	 max(jxj; jyj) if it is
attained only by elements of negative sign, and max(jxj; jyj) � otherwise. For instance,
(	 1) � 1 � (	 3) = 1 � � (	 3) = 	 3. The multiplication x � y of two elementsx; y 2 T �

yields the element with modulus jxj + jyj and with sign sign(x) sign(y). For example,
(	 1) � 2 = 	 3 and (	 1) � (	 2) = 3 but 1 � � (	 2) = 3 � . An element x 2 T � not equal
to 0 has a multiplicative inverse x � 1 which is the element of modulus�j xj and with the
same sign asx. The addition A � B and multiplication A � B of two matrices are the
matrices with entries A ij � B ij and

L
k A ik � Bkj , respectively.

The set T � also comes with the re
ection map x 7! 	 x which sends a balanced
number to itself, a positive number a to 	 a and a negative number	 a to a. We will
write x 	 y for x � (	 y). Two numbers x; y 2 T � satisfy the balance relation x r y when
x 	 y is a balanced number. Note that

x r y =) x = y for all x; y 2 T � :

The balance relation is extended entry-wise to vectors inTn
� . In the semiring T � , the

relation r plays the role of the equality relation; in particular the next result shows that
a version of Cramer's Theorem is valid in the tropical setting, up to replacing equalities
by balances.

The tropical determinant of the square matrix M 2 Tn� n
� is given by

tdet( M ) =
M

� 2 Sym(n)

tsign(� ) � M 1� (1) � � � � � M n� (n)

Observe that this de�nition of the tropical determinant extends the de�nition given in
Section 3.2.1 Also observe that a square matrix ofTn� n

� is sign-generic for the determi-
nant polynomial if and only if tdet( M ) is a balanced number.

Theorem 7.11 (Signed tropical Cramer Theorem [Plu90]). Let M 2 Tn� n
� and d 2 Tn

� .
Every solution y 2 Tn

� of the system of balances

M � y r d (7.6)

satis�es
tdet( M ) � yj r (	 1) � n+ j � tdet( Mbj d); for all j 2 [n] :

Conversely, if the tropical determinants tdet( M ) and tdet( Mbj d) for j 2 [n] are
not balanced elements, then the vector with entriesyj = ( 	 1) � n+ j � tdet( Mbj d) �
(tdet( M )) �� 1 is the unique solution of (7.6) in Tn

� .

This result was proved in [Plu90]; see also [AGG09] for a more recent discussion. A
di�erent tropical Cramer theorem (without signs) was proved by Richter-Gebert, Sturm-
fels and Theobald [RGST05]; their proof relies on the notion of a coherent matching �eld
introduced by Sturmfels and Zelevinsky [SZ93].

Remark 7.12. The quintuple (T � ; max; + ; 	 0; T � ) is an example of a \fuzzy ring" in the
sense of [Dre86, De�nition 1.1]. In the notation of that reference,T � is \the group of
units" and T � is the set denoted \K 0".
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	 (� 1)0
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� 2� 1

Figure 7.3: The Cramer digraph for the system of balances in (7.7). Column nodes are
squares and row nodes are circles. Arcs with weight�1 are omitted. The maximizing
permutation � is given by the red arcs. Arcs of the digraph of longest paths from the
column nodey4 are solid. The coordinateyj of the signed solutiony of (7.7) is obtained
by the multiplication (in T � ) of the weight on the longest path from y4 to yj .

7.2.2 Computing solutions of tropical Cramer systems

The Jacobi iterative algorithm of [Plu90] allows one to compute a signed solutiony of
the system M � y r d; see also [AGG14] for more information. We next present a
combinatorial instrumentation of this algorithm, in the special case in which the entries
of M and d are in T � .

Suppose that tdet(M ) 6= 0, and let � be a maximizing permutation in j tdet( M )j. The
Cramer digraph of the system associated with� is the weighted bipartite directed graph
over the \column nodes" f 1; : : : ; n +1g (the index n +1 represents the a�ne component)
and \row nodes" f 1; : : : ; ng de�ned as follows: every row nodei 2 [n] has an outgoing
arc to the column node� (i ) with weight M � 1

i� ( i ) , and an incoming arc from every column
node j 6= � (i ) with weight 	 M ij when j 2 [n], and weight di when j = n + 1.

Example 7.13. The maximizing permutation for the system of balances (7.7) below is
� (1) = 1 ; � (2) = 3 and � (3) = 2. The Cramer digraph is represented in Figure 7.3.
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@
� 2
0

� 1

1

A (7.7)

Note that all the coe�cients M i� ( i ) are di�erent from 0. In the sequel, it will be
convenient to consider the longest path problem in the weighted digraph obtained from
the Cramer digraph associated with� by forgetting the tropical signs, i.e., by taking the
modulus of each weight. Note in particular that there is no directed cycle the weight
of which has a positive modulus (otherwise� would not be a maximizing permutation
in the tropical determinant of M ). Consequently, the latter longest path problem is
well-de�ned (longest weights being either �nite or �1 , but not + 1 ).
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The digraph of longest pathsfrom a node v refers to the subgraph of the Cramer
digraph formed by the arcs belonging to a longest path from nodev. This digraph is
acyclic and every of its nodes is reachable from the nodev (possibly with a path of
length 0). As a result, it always contains a directed tree rooted atv. Such a directed
tree can be described by a map which sends every node (except the root) to its parent
node. Note that by construction of the Cramer digraph, a column nodej has only one
possible parent node� � 1(j ). Consequently, we will describe a directed tree of longest
paths by a map 
 that sends every row node to its parent column node.

Proposition 7.14. Let M 2 Tn� n
� such that tdet( M ) 6= 0 and d 2 Tn

� . Let � be a
maximizing permutation in the tropical determinant of M . In the Cramer digraph of
the systemM � y r d associated with� , consider the digraph of longest paths from the
column noden + 1 . In this digraph of longest paths, choose any directed subtree
 rooted
at the column noden + 1 . Then, the following recursive relations

y� ( i ) =

(
di � M � 1

i� ( i ) when 
 (i ) = n + 1 ;

	 M i
 ( i ) � M � 1
i� ( i ) � y
 ( i ) otherwise

(7.8)

provide a solution in Tn
� of the systemM � y r d.

Proof. Since the column noden +1 reaches all column nodes in the directed tree de�ned
by 
 , Equation (7.8) de�nes a point y in Tn

� . The modulus jyj j is the weight of a longest
path from the column node n + 1 to the column node j . By the optimality conditions
of the longest paths problem, for anyi 2 [n], we have:

jM i� ( i ) j + jy� ( i ) j � j di j ;

jM i� ( i ) j + jy� ( i ) j � j M ij j + jyj j for all j 2 [n] :

Furthermore, we havejM i� ( i ) j + jy� ( i ) j = jM i
 ( i ) j + jy
 ( i ) j when 
 (i ) 6= n+1 and jM i� ( i ) j +
jy� ( i ) j = jdi j otherwise.

Thus, if 
 (i ) 6= n + 1, the terms M i� ( i ) � y� ( i ) and M i
 ( i ) � y
 ( i ) have maximal
modulus among the terms of the sumM i 1 � y1 � � � � � M in � yn 	 di . Moreover, (7.8)
ensures that M i� ( i ) � y� ( i ) � M i
 ( i ) � y
 ( i ) is balanced. Similarly, if 
 (i ) = n + 1, then
M i� ( i ) � y� ( i ) 	 di is balanced and the termsM i� ( i ) � y� ( i ) and di have maximal modulus
in M i 1 � y1 � � � � � M in � yn 	 di . In both cases, we conclude thatM i � y r di .

A digraph of longest paths for Example 7.13 is shown in Figure 7.3. From the
relations (7.8), we obtain the signed solutiony = ( 	 (� 1); � 1; 0).

Complexity analysis

We now discuss the complexity of the method provided by Proposition 7.14. First, a
maximizing permutation � can be found in time O(n3) by the Hungarian method; see
[Sch03,x17.2]. Second, the digraph of longest paths, as well as a directed tree of longest
paths, can be determined in timeO(n3) using the Bellman{Ford algorithm; see [Sch03,
x8.3]. Last, the solution x can be computed in timeO(n).



124 Chapter 7. Algorithmics of the tropical simplex method

However, we claim that the complexity of the second step can be decreased toO(n2).
The idea is to consider a variant of the Cramer digraph with non-positive weights, and
then to apply Dijkstra's algorithm to solve the longest paths problem. We exploit the
fact that the Hungarian method is a primal-dual method, which returns, along with a
maximizing permutation � , a pair of vectors u; v 2 Tn such that

jM ij j � ui + vj for all i; j 2 [n] ;

jM i� ( i ) j = ui + v� ( i ) for all i 2 [n] :
(7.9)

The pair (u; v) is in fact an optimal solution to the dual assignment problem:

min
u;v

nX

i =1

ui +
nX

j =1

vj

jM ij j � ui + vj for all i; j 2 [n] :

Suppose we have a pair (u; v) satisfying (7.9). We make the diagonal change of
variables yj = vj � zj , for all j 2 [n], where the zj are the new variables. We consider
the matrix M 0 = ( M 0

ij ) obtained from M by the following diagonal scaling, M 0
ij =

� � 1 � u� 1
i � mMij � v� 1

j , where � is a real number to be �xed soon, together with the
vector d0 with entries d0

i = � � 1 � u� 1
i � di for all i 2 [n]. Then, dividing (tropically)

every row i of the system M � y r d by � and by ui , and performing the above
change of variables, we arrive at the equivalent systemM 0 � z r d0. By choosing
� := max(max i (jdi j � ui ); 0), we get that jd0

i j � 0, and jM 0
ij j � 0 for all i; j 2 [n]. The

longest path problem to be solved in order to apply the construction of Proposition 7.14
to M 0� z r d0 now involves a digraph with non-positive weights.

It follows that the latter problem can be solved by applying Dijkstra's algorithm
to the digraph with modi�ed costs. Moreover, the directed tree provided by Dijkstra's
algorithm is also valid in the original problem.

7.2.3 Tropical reduced costs as a solution of a tropical Cramer system

In the rest of this section, we suppose that Assumption F holds, so we only consider
basic points x I with �nite entries. We also make the following assumption.

Assumption G. The matrix ( AT cT ) is sign-generic for the minor polynomials.

Let I be a feasible basis of the tropical linear program LP(A; b; c). Consider the
system of balances:

A>
I � y r c> : (7.10)

By Assumption G and Theorem 7.11, the system of balances (7.10) admits a unique
solution yI in TI

� , and this solution coincides with the tropical reduced costs by Propo-
sition 4.34 and. So applying to this system the algorithm described in Section 7.2.2 does
provides the vector reduced costs of LP(A; b; c) for the basis I .
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Algorithm 7: Computing tropical reduced costs
Input : A basic point x I of P (A; b), the associated set I , the objective function c
Output : The tropical reduced costs yI

1 Gx I  tangent graph at x I O(mn)
2 �  maximizing permutation in tdet( A I ) obtained by a traversal of Gx I O(n)
3 u  � x I O(n)
4 v  A+

I � x I O(mn)
5 �  max(max j 2 [n ] (cj � uj ); 0) O(n)
6 M 0  tropically signed matrix with entries m0

ij = � � 1 � u� 1
i � aji � v� 1

j O(n2)
7 d0  tropically signed vector with entries di = � � 1 � u� 1

i � ci O(n)

8 ~C  Cramer digraph of the system M 0 � y r d0 for the permutation � O (n2)

9 apply Dijkstra's algorithm to ~C from column node n + 1 O(n2 + n log(n))
10 
  the tree of longest paths returned by Dijkstra's algorithm
11 z  signed vector obtained by applying (7.8) to the tree 
 O (n)
12 return yI the signed vector with entries yI

j = vj � zj O(n)

Theorem 7.15. Algorithm 7 computes the tropical reduced costs. Its time complexity is
bounded byO(n(m + n)) .

Proof. The maximizing permutation � is computed from Gx I in Line 2 as follows. We
�rst determine a matching between the coordinate nodes 1; : : : ; n and the set I of hy-
perplane nodes using the technique described in the proof of Proposition 7.3, Case (i).
By Lemma 4.25, this matching provides a maximizing permutation in j tdet( A I )j. It can
be obviously computed by a traversal ofGx I starting from coordinate node n + 1. Since
Gx I contains 2n + 1 nodes and 2n edges (see the proof of Proposition 7.3), this traver-
sal requiresO(n) operations. The complexity of the other operations of this algorithm
are straightforward and are given in annotations. We conclude that the overall time
complexity is O(m(n + n)).

Let v = A+
I � x I . For any hyperplane nodej 2 I and any i 2 [n], we have vj �

jA ji j + x I
i . Moreover, equality holds for every edge (j; i ) in the tangent graph. In

particular with the permutation � , we havev� ( i ) = jA � ( i ) i j + x I
i . By Assumptions A and

F, we havev and x does not have0 entries. Thus u = � x I and v satisfy (7.9) M = A>
I .

It follows from the discussion in Section 7.2.2 that the operations between Line 3 and
12 compute the tropical reduced costs.
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Chapter 8

Tropicalizing the central path

In this chapter, we apply the tropicalization process to the central path in linear pro-
gramming.

We consider linear programs de�ned on the Hardy �eld K. SinceK is real closed, the
central path of a linear program on K is well-de�ned. The elements ofK are real-valued
functions. As a result, a linear program overK encodes a family of linear programs over
R, and the central path on K describes the central paths of this family. The tropical
central path is then de�ned as the image under the valuation map. Thus, the tropical
central path is a logarithmic limit of a family of classical central paths. We establish
that this convergence is uniform on closed intervals.

The tropical central path has a purely geometric characterization. We show that
the tropical analytic center is the greatest element of the tropicalization of the feasible
set, the tropical equivalent of a barycenter. Thus, the tropical analytic center does not
depend on the external representation of the feasible set. Similarly, any point on the
tropical central path is the tropical barycenter of the tropical polyhedron obtained by
intersecting the values of the feasible region with a tropical sublevel set induced by the
objective function. This is in stark contrast with the classical case, where the central path
depends on the halfspace description of the feasible set. In this way, Deza, Nematollahi,
Peyghami and Terlaky [DNPT06] bent the central path of the Klee-Minty cube by adding
redundant halfspaces in its representation, so that it visits a neighborhood of every vertex
of the cube.

A maybe surprising feature is that the tropical central path can degenerate to a path
taken by the tropical simplex method. We can even provide a quite general su�cient
condition under which the tropical central path coincides with the image of a path of the
classical simplex method under the valuation map. Consequently, the tropical central
path may have the same worst-case behavior as the simplex method.

A main contribution of this chapter comes from studying the total curvature of the
real central paths arising from lifting tropical linear programs to the Hardy �eld K. The
curvature measures how far a path di�ers from a straight line. Intuitively, a central
path with high curvature should be harder to approximate with line segments, and thus
this suggests more iterations of the interior point methods. We disprove the continuous

127
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analogue of the Hirsch conjecture proposed by Deza, Terlaky and Zinchencko by con-
structing a family of linear programs with 3r + 4 inequalities in dimension 2r + 2 where
the central path has a total curvature in 
 (2r ). This family arises by lifting tropical
linear programs introduced by Bezem, Nieuwenhuis and Rodr��guez-Carbonell [BNRC08]
to show that an algorithm of Butkovi�c and Zimmermann [BZ06] has exponential running
time. The tropical central path shows a fractal-like pattern, which looks like a staircase
shape with 
 (2r ) steps.

Most of the contents of this chapter are covered in [ABGJ14], but it includes an
improvement of the curvature analysis of the counter-example from
 (2r =r) to 
 (2r ).

8.1 Description of the tropical central path

In this chapter, LP (A; b; c) will denote linear programs of the form:

minimize c> x

subject to Ax + b � 0; x � 0; x 2 Rn ;
LP (A; b; c)

where A 2 Rm� n , b 2 Rm , and c 2 Rn . The dual linear program reads:

maximize � b> y

subject to � A> y + c � 0; y � 0; y 2 Rm :

In the following, we shall assume that the polyhedronf x 2 Rn j Ax � b; x � 0g is
bounded with non-empty interior. Given a positive � 2 R, the barrier problem is

minimize
c> x
�

�
nX

j =1

log(x j ) �
mX

i =1

log(wi )

subject to Ax + b = w; x > 0; w > 0:

(8.1)

The objective function in (8.1) is continuous, strictly convex, and it tends to in�nity
when (x; w) tends to the boundary of the bounded non-empty convex setf (x; w) 2
Rn+ m j Ax + w = b; x > 0; w > 0g. Hence, the problem (8.1) admits a unique optimum
(x � ; w� ) in the latter set. By convexity, this optimum is characterized by the �rst-order
optimality conditions:

Ax + b = w

� A> y + c = s

wi yi = � for all i 2 [m]

x j sj = � for all j 2 [n]

x; w; y; s > 0 :

(8.2)

Thus, for any positive real number � , there exists a unique solution (x � ; w� ; y� ; s� ) 2
Rn � Rm � Rm � Rn to the system of polynomial equations (8.2). Thecentral path is
the image of the mapCA;b;c : R> 0 ! R2m+2 n which sends a positive real number� to
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the vector (x � ; w� ; y� ; s� ). The primal central path is the projection of the central path
onto the (x; w)-coordinates. Similarly, the dual central path is gotten by projecting onto
the (y; s)-coordinates.

8.1.1 Dequantization of a de�nable family of central paths

Let K = H ( �RR) be the Hardy �eld of the o-minimal structure �RR. We consider A 2
Km� n ; b 2 Km and c 2 Kn . Throughout, we will make the following assumption.

Assumption H. The set f x 2 Kn j Ax + b � 0; x � 0g is bounded with non-empty
interior.

Clearly, the latter set is closed. However, inKn a closed and bounded set is not
necessarily compact.

Under Assumption H, the central paths of the linear programsLP (A (t); b(t); c(t))
over R are ultimately well-de�ned. For a �xed real number M let us de�ne the map
C : (M; + 1 ) � R ! R2m+2 n which sends t 2 (M; + 1 ) and � 2 R to C(t; � ) =
CA (t);b(t );c(t ) (t � ). For any t large enough, the map� 7! C(t; � ) is a parameterization
of the central path of LP (A (t); b(t); c(t)). Our goal is to investigate the logarithmic
limit

CT : � 7! lim
t ! + 1

logt C(t; � ) ;

where logt is applied component-wise. The mapCT is called the tropical central path of
LP (A ; b; c). We shall prove the following theorem.

Theorem 8.1. The family of maps (logt C(t; �)) t converges uniformly on any closed
interval [a; b] � R to the tropical central path CT .

Consider the following linear program over the ordered �eld K:

minimize c> x

subject to Ax + b � 0; x � 0; x 2 Kn :
LP (A ; b; c)

The problem LP (A ; b; c) encodes the family of linear programs (LP (A (t); b(t); c(t))) t .
The next lemma shows that the central path of LP (A ; b; c) is well-de�ned, and that

it describes the family of central paths of (LP (A (t); b(t); c(t))) t .

Lemma 8.2. For any � 2 R, the map t 7! C(t; � ) is de�nable in �RR. Its components
are given by the unique solution(x � ; w � ; y � ; s� ) 2 K2m+2 n of the system of polynomial
equations

Ax + b = w

A > y � c = s

w i y i = � for all i 2 [m]

x j sj = � for all j 2 [n]

x ; w ; y ; s > 0 ;

(8.3)

where � = t � .
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Proof. For an ordered �eld K and integersm and n, consider the following statement:

\For any A 2 K m� n ; b 2 K m and c 2 K n which satisfy Assumption H and
any positive � 2 K , there exists a unique solution (x 0; w 0; y 0; s0) 2 K 2m+2 n

to the system of polynomial equations (8.3)."

This is a �rst-order sentence, � , which is true in the structure �R, i.e., for K = R. As
�RR is an expansion of�R, we have �RR j= � . Thus, by Proposition 2.7, the sentence� is
also true in the structure H( �RR). This means that the induced statement holds in the
�eld K = K = H ( �RR). In particular, for any � 2 R, it holds for � = t � 2 K.

Let (x � ; w � ; y � ; s� ) 2 K2m+2 n be the unique solution of (8.3) for � = t � . Then,
for all t large enough, (x � (t); w � (t); y � (t); s� (t)) 2 R2m+2 n is a solution of (8.2) for
A = A (t), b = b(t), c = c(t), � = � (t). Since (8.2) admits a unique solution, we
conclude that C(t; � ) = ( x � (t); w � (t); y � (t); s� (t)) for all t large enough.

Sincet 7! C(t; � ) is de�nable in �RR, its image under the (component-wise) valuation
map is well-de�ned, which proves the point-wise convergence of the family (logt C(t; �)) t .
Furthermore, for any � 2 R we have

lim
t ! + 1

logt C(t; � ) = val( x � ; w � ; y � ; s� ) ;

where � = t � , and (x � ; w � ; y � ; s� ) is the unique solution of (8.3).
For �xed t, let zt be a component of the map� 7! logt C(t; � ). To prove uniform

convergence, we will use the fact that for all large enought, the maps zt are \almost"
1-Lipschitz.

Lemma 8.3. For t large enough and any�; � 0 2 R, we have:

jzt (� ) � zt (� 0)j � logt (2n + 2m) + j� � � 0j :

Proof. Let (x ; w ; y ; s) 2 K2m+2 n and (x 0; w 0; y 0; s0) 2 K2m+2 n be two solutions of (8.3)
obtained for two parameters� = t � and � 0 = t � 0

. As in [VY96, Lemma 16], by combining
the de�ning equations, we obtain:

nX

j =1

x j s0
j +

nX

j =1

x 0
j sj +

mX

i =1

w i y 0
i +

mX

i =1

w 0
i y i = ( n + m)( t � + t � 0

) (8.4)

Since the summands on the left-hand side of (8.4) are all positive, every summand
is smaller than (n + m)( t � + t � 0

). In particular, for any j 2 [n], we have x j s0
j �

(n + m)( t � + t � 0
) and x 0

j sj � (n + m)( t � + t � 0
). Since x j sj = t � and x 0

j s0
j = t � 0

, we
deduce that:

x j � (n + m)(1 + t � � � 0
)x 0

j

x 0
j � (n + m)(1 + t � 0� � )x j :
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To prove the lemma, it is su�cient to consider � � � 0. In this case, t � � � 0
� 1, which

implies:

x j � 2(n + m)t � � � 0
x 0

j

x 0
j � 2(n + m)x j :

Applying log t to these inequalities yields the conclusion for the componentsx 1; : : : ; x n .
The same proof readily applies to the other components.

Proof of Theorem 8.1. Let z be the point-wise limit of the functions zt as t approaches
in�nity. Consider any closed interval [ a; b] � R. Let " > 0, and choose a partition
a = a1 < a 2 < � � � < a k < a k+1 = b such that ai +1 � ai � " for all i 2 [k]. Now let
� 2 [a; b] and let i be the index such that � 2 [ai ; ai +1 ]. Then,

jzt (� ) � z(� )j � j zt (� ) � zt (ai )j + jzt (ai ) � z(ai )j + jz(ai ) � z(� )j :

By Lemma 8.3, we have:

jzt (� ) � zt (ai )j � logt (2n + 2m) + � � ai � logt (2n + 2m) + " :

Thus, there exists a t " such that jzt (� ) � zt (ai )j � 2" for all t � t " . Furthermore,
Lemma 8.3 also shows that:

jz(� ) � z(ai )j � � � ai � " :

Finally, since the functions zt converge pointwise toz, there exists at0
" such that jzt (ai ) �

z(ai )j � " for all t � t0
" and all i 2 [k]. We conclude that (zt )t converges uniformly on

[a; b].

8.1.2 Geometric description of the tropical central path

We now use barrier functions on the Hardy �eld H ( �RR) to characterize the central path.
In order to obtain de�nable barrier functions, we use the structure �Rexp which expands
the ordered real �eld structure �R by adding the exponential function. The structure �Rexp

is o-minimal [vdDMM94]. Note that every power function is de�nable in �Rexp, thus the
de�nable functions of �RR are also de�nable in �Rexp. As a consequence, the Hardy �eld
H ( �Rexp) contains K = H ( �RR). The exponential is de�nable in the structure H( �Rexp)
of the Hardy �eld H ( �Rexp), and thus the logarithm is also de�nable in this structure.
Hence, if f 2 K is positive, log(f ) belongs to the ordered �eld H ( �Rexp). Consequently,
given A 2 Km� n ; b 2 Km ; c 2 K and � 2 K; � > 0, the following optimization problem
on (x ; w ) 2 Kn � Km is well-de�ned if the objective function is interpreted in H ( �Rexp).

minimize
c> x

�
�

nX

j =1

log(x j ) �
mX

i =1

log(w i )

subject to Ax + b = w; x > 0; w > 0 :

(8.5)
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Lemma 8.4. Let (x � ; w � ; y � ; s� ) be the unique solution of (8.3). The point (x � ; w � )
is the unique solution of (8.5).

Proof. Let R be the expansion of the structure �Rexp in which we added a symbol log.
The latter is interpreted as the map x 7! log(x) for positive elements x and x 7! 0 for
non-positive elements. The structureR is still o-minimal, since the sets de�nable in R
and �Rexp are the same. Givenn; m, the following statement is a sentence in the language
of R.

\For any A 2 K m� n ; b 2 K m and c 2 K n which satisfy Assumption H and
any positive � 2 K , the optimization problem (8.5) has a unique solution.
It is given by the point ( x 0; w 0), where (x 0; w 0; y 0; s0) is the unique solution
of (8.3)."

We already noted that this sentence is true whenK = R, i.e., in the structure R. Since
the latter is o-minimal, by Proposition 2.7, this sentence is also true inH(R), i.e., when
K = H ( �Rexp). Now if A ; b; c and � have entries in K � H ( �Rexp), the system (8.3)
admits a unique solution with entries in K by Lemma 8.2.

Let P be a non-empty bounded tropical polyhedron inTn . Then, there is a unique
element in P which is the coordinate-wise maximum of all elements inP. We call it
the tropical barycenter of P. Indeed, P = tconv( V ) for some �nite set V � Tn by
Theorem 4.11. Hence,P contains the point

L
v2 V v, which is greater than any other

point in P with respect to the partial order of Tn . In particular if P is a non-empty
bounded Hardy polyhedron included in the positive orthant, then val(P ) is a bounded
tropical polyhedron. So val(P ) has a well-de�ned tropical barycenter.

Theorem 8.5. Let (x � ; w � ) be the point on the primal central path of the Hardy linear
program LP(A ; b; c) at � 2 K with � > 0, and let � be that LP's optimal value. Then
val(x � ; w � ) is the tropical barycenter of val(P � ) where

P � := f (x ; w ) 2 Kn+ m j Ax + b = w; cx � � + ( n + m)� ; x � 0; w � 0g :

Proof. Let (x � ; w � ; y � ; s� ) be a point on the central path. By (8.3), we have

c> x � = ( s� )> x � + ( y � )> Ax � = ( s� )> x � + ( y � )> (w � � b)

=
nX

j =1

s�
j x �

j +
mX

i =1

y �
i w �

i � b> y � = ( n + m)� � b> y � :

Furthermore, y � is a feasible solution of the dual linear program:

maximize � b> y

subject to � A > y + c � 0; y � 0; y 2 Km :

By weak duality (Theorem 3.6), we have� b> y � � � . Consequently,c> x � � � + ( n +
m)� .
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Now by Lemma 8.4, (x � ; w � ) is the unique solution of the barrier problem (8.5). By
the discussion above, we can add the constraintc> x � � +( n+ m)� to the problem (8.5)
without changing its optimal solution. Moreover, adding the constant � � =� to the
objective function still does not change the solution of the problem. Thus (x � ; w � ) is
the unique solution of

minimize
c> x � �

�
�

nX

j =1

log(x j ) �
mX

i =1

log(w i )

subject to Ax + b = w; c> x � � + ( n + m)� ; x > 0; w > 0 :

(8.6)

Let P �
> 0 be the feasible set of (8.6) and consider a feasible solution (x ; w ) 2 P �

> 0.
Since c> x � � � (n + m)� , the term (c> x � � )=� is the germ of a function which
is asymptotically ct� for some �; c 2 R with � � 0. On the other hand, log(x j ) is
asymptotically val( x j ) log(t) for any j 2 [n]. Since t � = o(log(t)) when � � 0, the
objective value of (8.6) is asymptotically

�

0

@
nX

j =1

val(x j ) +
mX

i =1

val(w i )

1

A log(t) :

As a consequence, val(x � ; w � ) is the supremum of
P n

j =1 x j +
P n

i =1 wi as (x; w) ranges
over the set val(P �

> 0). Now, let ( x � ; w� ) be the tropical barycenter of val(P � ). Then,
x �

j � val(x �
j ) and w�

i � val(w �
i ) for all i 2 [m], j 2 [n]. In particular, x �

j > �1 and
w�

i > �1 . It follows that ( x � ; w� ) 2 val(P �
> 0), and:

nX

j =1

val(x �
j ) +

mX

i =1

val(w �
i ) �

nX

j =1

x �
j +

mX

i =1

w�
i :

We conclude that val(x � ; w � ) = ( x � ; w� ).

The analytic center of the polyhedron

P := f (x ; w ) 2 Kn j Ax + b = w; x � 0; w � 0g

can be de�ned as the unique minimum point (x ; w ) of (8.6), when c = 0. Then, the
tropical analytic center is de�ned as the image of the analytic center by the valuation
map. By specializing the characterization of the tropical central path to c = 0, we get:

Corollary 8.6. The tropical analytic center of the polyhedron P coincides with the
tropical barycenter of the image of this polyhedron by the valuation map.

Hence, even if the analytic center is an algebraic notion (it depends on the external
representation of the set P ), the tropical analytic center is, suprisingly, completely
determined by the set P . We shall see that the whole tropical central path also has a
purely geometric description. We begin with a case where the geometric description can
be obtained explicitely from val(P ) and val(c).
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Corollary 8.7. Suppose that the optimal value ofLP (A ; b; c) is � = 0 and that c has
nonnegative entries. Then, the tropical central path at� 2 R is the tropical barycenter
of the set

P � := f (x; w) 2 val(P ) j max(x1 + val( c1); : : : ; xn + val( cn )) � � g :

Proof. Let � = t � . By Theorem 8.5, the tropical central path at � is the tropical
barycenter of val(P � ). Clearly, val( P � ) � P � . Thus, we only need to prove that
the tropical barycenter (x � ; w� ) of P � admits a pre-image by the valuation map which
belongs toP � .

By de�nition, there exists ( x � ; w � ) 2 P such that val(x � ; w � ) = ( x � ; w� ). If
cx � = 0, then cx � � (n + m)� and thus (x � ; w � ) 2 P � . Otherwise, the germ cx �

is asymptotically �t � for some �; � 2 R with � 6= 0. Since c and x � has nonnegative
entries, � > 0 and we have

� = val( cx � ) = max( x �
1 + val( c1); : : : ; x �

n + val( cn )) � � :

If � < n + m, then clearly cx � < (n + m)t � = ( n + m)� and thus x � 2 P � .
We now treat the case� � n+ m. Let (x � ; w � ) be an optimal solution of LP (A ; b; c).

Consider the point:

(x ; w ) =
1
�

(x � ; w � ) +
�

1 �
1
�

�
(x � ; w � ) :

As � > 1, we have (x ; w ) 2 P by convexity. Moreover, cx = 1
� cx � since cx � = 0 by

assumption. Thuscx is asymptotically t � . Since� � � , we obtain that cx � (n+ m)t � =
(n + m)� , hence that (x ; w ) 2 P � . It remains to show that val( x ; w ) = ( x � ; w� ).
To this end, observe that val(x ; w ) � (x � ; w� ) since (x � ; w � ) and (x � ; w � ) both have
nonnegative entries and � > 1. Furthermore, val(x ; w ) � (x � ; w� ) as val(x ; w ) 2
val(P � ) � P � . This concludes the proof.

In the general case, the tropical central path still admits a geometric description, but
this description involves an optimal solution of the dual of LP (A ; b; c).

Corollary 8.8. There exists a pair (y� ; s� ) 2 Tm � Tn such that the tropical central path
at any � 2 R is given by the tropical barycenter of the set:

f (x; w) 2 val(P ) j max(x1 + s�
1; : : : ; xn + s�

n ; w1 + y�
1; : : : ; wm + y�

m ) � � g :

Proof. Let (y � ; s� ) be an optimal dual solution and (x ; w ) 2 P . Then, we have:

c> x = � b> y � + ( s� )> x + ( y � )> w :

Furthermore, � b> y � = � by strong duality. Thus,

P � = f (x ; w ) 2 P j (s� )> x + ( y � )> w � (n + m)� g :

Since (y � ; s� ) � 0, applying the arguments of the proof of Corollary 8.7 provides the
result.
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� 4 � 3 � 2 � 1 0
� 4

� 3

� 2

� 1

0

x1

x2

� 4 � 3 � 2 � 1 0
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� 2

� 1

0

x1

x2

Figure 8.1: Tropical central paths on the Hardy polyhedron (8.7) for the objective
function min x 1 (left) and min tx 1 + x 2 (right).

Example 8.9. Consider the Hardy polyhedron ofK2 de�ned by:

x 1 + x 2 � 2

tx 1 � 1 + t2x 2

tx 2 � 1 + t3x 1

x 1 � t2x 2

x 1; x 2 � 0 :

(8.7)

Its value val(P ) is the tropical set described by the inequalities:

max(x1; x2) � 0

1 + x1 � max(0; 2 + x2)

1 + x2 � max(0; 3 + x1)

x1 � 2 + x2 :

(8.8)

Tropical central paths on the polyhedron (8.7), for two objective functions, are depicted
in Figure 8.1. The hyperplanes associated with the �rst four halfspaces in (8.7) induce an
arrangement in the positive orthant K2

+ . Figure 8.2 depicts the tropical central paths on
the cells of this arrangement for the objective functions mintx 1 + x 2 and maxtx 1 + x 2.
Observe that the central paths trace the arrangement of tropical hyperplanes associated
with the tropical halfspaces in (8.8), as well as the linef (� 1 + 
; 
 ) j 
 2 Rg associated
with the objective function.
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x 1

x 2

t0t � 1

t � 1

t0

� 4 � 3 � 2 � 1 0
� 4

� 3

� 2

� 1

0

x1

x2

� 4 � 3 � 2 � 1 0
� 4

� 3

� 2

� 1

0

x1

x2

Figure 8.2: Illustration of the tropicalization of the central paths of the full-dimensional
cells included in the positive orthant induced by the arrangement of hyperplanes associ-
ated with (8.7), for the objective function min tx 1+ x 2 and maxtx 1+ x 2. Right: the real
central paths for a real parameter t. Middle: the image of real central paths under the
logarithmic map in base t. Right: the corresponding tropical central paths, where the
parts of the paths that lie on the boundaries are slightly shifted inside their respective
cell.

8.2 A tropical central path can degenerate to a tropical
simplex path

In this section, we will restrict our attention to the x components of the tropical
central path. To �x the notation, we consider a Hardy linear program LP (A ; b; c), and
the polyhedron P = f (x ; w ) 2 Kn j Ax + w = b; x � 0; w � 0g. From this viewpoint,
the tropical central path may visit the boundary of the (projection on the x-space) of
the set val(P ). We will show that under some assumptions, the tropical central path
lies on the image by the valuation map of the graph of the polyhedronP .

When the signed valuation of (A b ) is sign-generic for the minor polynomials, we
have a purely tropical description of the set val(P ) by Theorem 4.22. Furthermore, that
result also shows that the images of the faces ofP under the valuation map also have a
tropical description. In particular, this holds for the basic points and the edges ofP , see
Section 4.3. Using the notation of Theorem 4.22,x 2 val(P ) is the value of a basic point
(hence of a vertex by Proposition 3.14) if and only if it satis�es a system ofn equalities
A+

I � x � b+
I = A �

I � x � b�
I where tdet(A I ) 6= 0.

Proposition 8.10. Consider a Hardy polyhedron, P = f x 2 Kn j Ax + b � 0g,
contained in the positive orthant such thatsval(A b ) is sign-generic for the minor poly-
nomials, and A � = (min( A ij ; 0)) has at most one non-zero coe�cient in each row. Then
the tropical analytic center of P coincides with the value of a vertex ofP .

Proof. By Theorem 4.22, the tropical polyhedron val(P ) is described by f x 2 Tn j
A+ � x � b+ � A � � x � b� g. Since A � has at most one non-zero coe�cient in each



8.3 Central paths with high curvature 137

row, for every i 2 [m] the tropical inequality A+
i � x � b+

i � A �
i � x � b�

i is of the form;

max(A+
i 1 + x1; : : : ; A+

in + xn ; b+
i ) � max(A �

ik + xk ; b�
i ) ;

for somek 2 [n].
Let x � be the tropical analytic center of P . By Corollary 8.6, x � is the tropical

barycenter of val(P ). By Assumption H, x �
j �nite for each j 2 [n]. Thus, there must

exist an i 2 [m] such that A �
ij 6= �1 and

max(A+
i 1 + x �

1; : : : ; A+
in + x �

n ; b+
i ) = A �

ij + x �
j : (8.9)

Consequently, x � satis�es a set I of n equalities, one for each coordinatej 2 [n]. By
construction we have tdet(A �

I ) 6= 0, thus tdet( A I ) 6= 0. Consequently,x � is the value of
a vertex by Theorem 4.22.

Vertices ofP are connected by edges, which are sets of the formf x 2 P j A K x + bK =
0g where K � [m] is of cardinality n � 1 and A K is of rank n � 1. Under the conditions
of Theorem 4.22, the image of the edges under the valuation map are exactly the sets
described byf x 2 val(P ) j A+

K � x � b+
K = A �

K � x � b�
K g whereK � [m] is of cardinality

n � 1 and AK has a maximal square submatrix with non0 tropical determinant.

Proposition 8.11. Let P be a Hardy polyhedron which satis�es the conditions of Propo-
sition 8.10. Consider a linear program of the form:

min x k s.t. x 2 P ; LP

for some k 2 [n]. If the optimal value of LP is � = 0 , then the tropical central path of
LP is contained in the image by the valuation map of the graph ofP .

Proof. By Corollary 8.7, the point x � on the tropical central path at � 2 R is the
tropical barycenter of the tropical polyhedron f x 2 val(P ) j xk � � g. As in the proof
of Proposition 8.10, for eachj 2 [n] n f kg the point x � must satisfy an equality of the
form (8.9). Thus, x � satis�es a set K of n � 1 equalities and it is straightforward to
check that the minor of A �

K formed with the columns indexed by [n] n f kg has a �nite
tropical determinant.

The latter proposition is illustrated in Figure 8.1 (left).

8.3 Central paths with high curvature

Bezem, Nieuwenhuis and Rodr��guez-Carbonell [BNRC08] constructed a class of tropical
linear programs for which an algorithm of Butkovi�c and Zimmermann [BZ06] exhibits
an exponential running time. We lift each of these tropical linear programs to the
Hardy �eld K = H ( �RR) which then gives rise to a one-parameter family of ordinary
linear programs over the reals. The latter are interesting as their central paths have an
unusually high total curvature.
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Let r be any positive integer. We de�ne a linear program,LP r , over the Hardy �eld
K in the 2r + 2 variables u 0; v0; u 1; v1; : : : ; u r ; vr as follows.

min v0

s.t. u 0 � t

v0 � t2

v i � t1� 1
2i (u i � 1 + v i � 1) for 1 � i � r

u i � tu i � 1 for 1 � i � r

u i � tv i � 1 for 1 � i � r

u r � 0; vr � 0

LP r

Clearly, the optimal value of LP r is � = 0, and an optimal solution is u = v = 0. It
is straightforward to verify that the feasible set is bounded with a non-empty interior.
Moreover, the feasible set is contained in the positive orthant and the 3r + 4 inequalities
listed de�ne facets. In particular, the remaining non-negativity constraints u i � 0 and
v i � 0 for 0 � i < r are satis�ed but redundant. We will denote the feasible region of
LP r as P r .

Replacing t in LP r by any positive real number gives rise to an ordinary linear
program. For t su�ciently large the polytope of feasible points is combinatorially equiv-
alent to the polytope of feasible points of the Hardy linear program. Figure 8.3 shows
an example for r = 1 and t � 2, which is su�ciently large in this case.

(0 ; 0; 0; 0)

( t; 0; 0; 0)

( t;
t; t

2 ; 0)

(0 ; t 2 ; 0; 0)

( t; 0; 0; t 3= 2 )

( t; t 2 ; 0; 0)

( t;
t; t

2 ; 2t
3=2 )

(0 ; t 2 ; 0; t 3= 2 )

( t; t 2 ; t 2 ; 0)

( t; t 2 ; t 2 ; t 5= 2 + t 3= 2 )

( t; t 2 ; 0; t 5= 2 + t 3= 2 )

Figure 8.3: Schlegel diagram forr = 1 (and t � 2), projected onto the facet u1 = 0; the
points are written in ( u0; v0; u1; v1)-coordinates
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8.3.1 Tropical central path

We next compute the tropical central path arising from the linear program LP r over the
Hardy �eld K. To this end, we introduce slack variables:

min v0

s.t. u 0 + z0 = t

v0 + h0 = t2

v i + h i = t1� 1
2i (u i � 1 + v i � 1) for 1 � i � r

u i + z i = tu i � 1 for 1 � i � r

u i + z0
i = tv i � 1 for 1 � i � r

z0 � 0; h0 � 0

u i � 0; v i � 0; z i � 0; z0
i � 0; h i � 0 for 1 � i � r :

LP 0
r

For each positive parameter� 2 K, we denote by (u � ; v � ; z � ; (z0) � ; h � ) the point of
the primal central path with parameter � . Recall that the tropical central path CT is
such that CT(� ) is the image by the valuation of (u � ; v � ; z � ; (z0) � ; h � ) for � = t � . The
valuation of every point of the feasible setP 0

r of the program LP 0
r satis�es the following

equalites:
max(u0; z0) = 1

max(v0; h0) = 2

max(vi ; hi ) = 1 �
1
2i + max( ui � 1; vi � 1) for 1 � i � r

max(ui ; zi ) = 1 + ui � 1 for 1 � i � r

max(ui ; z0
i ) = 1 + vi � 1 for 1 � i � r

ui 2 T; vi 2 T; zi 2 T; hi 2 T for 0 � i � r

z0
i 2 T for 1 � i � r:

(8.10)

Proposition 8.12. For all � 2 R, the tropical central path at � , coincides with the
maximal point (u(� ); v(� ); z(� ); z0(� ); h(� )) satisfying the constraints (8.10) and v0 � � .
It is determined by:

u0 = z0 = 1

h0 = 2

v0 = min(2 ; � )

vi = hi = 1 �
1
2i + max( ui � 1; vi � 1) for 1 � i � r

ui = 1 + min( ui � 1; vi � 1) for 1 � i � r

(8.11)

Proof. By Corollary 8.7, CT(� ) is the maximal point of the intersection of val(P 0
r ) with

the tropical half-space

H � := f (u; v; z; z0; h) 2 (Tr +1 )3 � Tr � Tr +1 j v0 � � g :
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Using the homomorphism property of the valuation map, every point of H � \ val(P 0
r )

satis�es v0 � � as well as (8.10).
It is straightforward to verify that (8.11) de�nes the maximal vector satisfying v0 � �

and (8.10). Therefore,CT(� ) � (u(� ); v(� ); z(� ); z0(� ); h(� )). To show that the opposite
inequality holds, using Corollary 8.7 again, it su�ces to lift ( u(� ); v(� ); z(� ); z0(� ); h(� ))
to an element ofP 0

r . Such a lift can be obtained as the unique solution of the following
system:

u 0 = z0 =
1
2

t

v0 =
1
2

min( t2; t � )

h0 = t2 � v0

v i = h i =
1
2

t1� 1
2i (u i � 1 + v i � 1) for 1 � i � r

u i =
1
2

min( tu i � 1; tv i � 1) for 1 � i � r

z i = tu i � 1 � u i for 1 � i � r

z0
i = tv i � 1 � u i for 1 � i � r :

It follows from Proposition 8.12 that ( ui (� ); vi (� ))0� i � r completely determine the
other components of the tropical central path. Observe that vi (� ) is equal to the max-
imum of ui � 1(� ) and vi � 1(� ) translated by 1 � 1

2i , while ui (� ) follows the minimum of
these two variables shifted by 1; see Figure 8.4. Since the translation o�sets di�er by1

2i ,
the componentsui and vi cross each other
 (2i ) times. More precisely, our next result
shows that the curve (ui (� ); vi (� )) has the shape of a staircase with
 (2i ) steps.

Proposition 8.13. Let i 2 [r ] and k 2 f 0; : : : ; 2i � 1 � 1g. Then, for all � in the interval
[4k

2i ; 4k+2
2i ], we have

ui (� ) = i + � �
2k
2i and vi (� ) = i +

2k + 1
2i ;

while for all � 2 [4k+2
2i ; 4k+4

2i ] we have

ui (� ) = i +
2k + 2

2i and vi (� ) = i + � �
2k + 1

2i :

Proof. We proceed by a bounded induction oni 2 [r ]. Starting with i = 1 and k = 0 we
consider the tropical central path point at any � 2 [0; 2]. Our goal is to determine the
tropical analytic center. It follows from (8.11) that

u1 = 1 + min(1 ; � ); v1 =
1
2

+ max(1 ; min(2; � )) :

Thus for � 2 [0; 1], u1 = 1 + � and v1 = 1 + 1
2 . For � 2 [1; 2] we haveu1 = 1 + 2

2 and
v1 = 1 + � � 1

2 . Consequently, the claim holds fori = 1.



8.3 Central paths with high curvature 141

0 1 2
0

1

2

3

4

5

�

u1

v1

u2

v2

u3

v3

u4

v4

Figure 8.4: Evolution of the components of the tropical central path of LP 4 with � .

By induction, suppose the result is veri�ed for i < r . We will show that it is also
true for i +1. Consider any integer, k, in f 0; : : : ; 2i � 1g. If k is even, letk0 = k=2. Then,
for all � in the interval [ 4k

2i +1 ; 4k+4
2i +1 ] = [ 4k0

2i ; 4k0+2
2i ], we have by induction:

ui = i + � �
2k0

2i = i + � �
k
2i and vi = i +

2k0+ 1
2i = i +

k + 1
2i :

Thus,

ui +1 = i + 1 + min
�

k + 1
2i ; � �

k
2i

�
and vi +1 = i + 1 + max

�
k + 1

2i ; � �
k
2i

�
�

1
2i +1 :

Separating the cases� � 4k+2
2i +1 and � � 4k+2

2i +1 leads to the desired conclusion.
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If k is odd, k = 2k0+ 1, then for any � 2 [ 4k
2i +1 ; 4k+4

2i +1 ] = [ 4k0+2
2i ; 4k0+4

2i ] we have:

ui = i +
2k0+ 2

2i = i +
k + 2

2i

vi = i + � �
2k0+ 1

2i = i + � �
k + 1

2i :

Thus,

ui +1 = i + 1 + min
�

� �
k + 1

2i ;
k + 2

2i

�

vi +1 = i + 1 + max
�

� �
k + 1

2i ;
k + 2

2i

�
�

1
2i +1 :

As above, by separating the cases� � 4k+2
2i +1 and � � 4k+2

2i +1 we conclude that the inductive
claim holds for i + 1.

Remark 8.14. A similar induction shows that for � � 2 the tropical central path is at
the tropical analytic center, de�ned by u0 = 1 ; v0 = 2 and

ui = i + 1 and vi = i + 1 +
1
2i for all 1 � i � r :

For � � 0, the tropical central path is a tropical half-line towards an optimum. We have
u0(� ) = 1 ; v0(� ) = � as well as

ui (� ) = i + � and vi (� ) = i +
1
2i for all 1 � i � r :

We will now show that the tropical central path of LP r coincides with the image of
a path of the simplex method under the valuation map. Our proof is elementary and
independent of Proposition 8.11.

Proposition 8.15. Under projection on the (u; v)-components, the tropical central path
of LP r is contained in the image of the vertex-edge graph ofP r under the valuation
map. The tropical central path at � 2 R is the value of a vertex if and only if� � 2 or
� = 2k

2r for some k 2 f 1; : : : ; 2r g.

Proof. We prove the claim by induction on r . Suppose that r = 1. This situation in
four dimensions is depicted in Figure 8.3. For� � 2, the tropical central path is at the
tropical analytic center of LP 1:

u0 = 1 ; v0 = 2 ; u1 = 2 ; v1 = 5=2 :

This is the value of the vertex (t; t 2; t2; t5=2 + t3=2) of the Hardy polyhedron P 1 which is
uniquely de�ned by the conditions

u 0 = t; v0 = t2; u 1 = tu 0; v1 = t1=2(u 0 + v0) : (8.12)
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For � = 1 the tropical central path is at the point with coordinates

u0 = 1 ; v0 = 1 ; u1 = 2 ; v1 = 3=2 ;

which corresponds to the vertex (t; t; t 2; 2t3=2) of P 1, the unique solution of:

u 0 = t; v0 = t; u 1 = t; v0; v1 = t1=2(u 0 + v0) : (8.13)

It is straighforward to check that the tropical central path for � 2 [1; 2] is the image
by the valuation map of the edge between the vertices (8.12) and (8.13). Similarly, for
� 2 ] � 1 ; 1], the tropical central path:

u0 = 1 ; v0 = �; u 1 = 1 + �; v 1 = 3=2 :

is the value of the edge between the vertices (8.13) and (t; 0; 0; t3=2) of P 1 de�ned by

u 0 = t; v0 = 0 ; u 1 = tv0; v1 = t1=2(u 0 + v0) : (8.14)

Now suppose that the claim holds forr � 1. For � � 2, the tropical central path of
LP r +1 is at the analytic center (u0; v0; : : : ; ur ; vr ; ur +1 ; vr +1 ). By Proposition 8.13, we
havevr +1 = 1 � 1=2r +1 +max( ur ; vr ) and ur +1 = 1+ ur . By induction, ( u0; v0; : : : ; ur ; vr )
is the value of the vertex (u 0; v0; : : : ; u r ; vr ) of LP r . The system de�ning this vertex
of P r , along with the equalities vr +1 = t1� 1=2r +1

(u r + vr ) and u r +1 = tu r clearly have
a unique solution which is feasible forLP r +1 . Thus it de�nes a vertex of P r +1 . It is
straightforward to verify that the valuation map applied to this vertex yields the tropical
analytic center. Similarly, the argument above shows that the tropical central path of
LP r +1 is the value of a vertex when� = 2k

2r = 4k
2r +1 for somek 2 f 1; : : : ; 2r g.

Fix a k 2 f 1; : : : ; 2r � 1g. Then central path of LP r at � 2 [2k
2r ; 2k+2

2r ] = [ 4k
2r +1 ; 4k+4

2r +1 ]
is the value of a point on an edge ofP r . This edge inK2r +2 de�nes a 3-dimensional face
F of P r +1 in K2r +4 . The intersection of F with the three hyperplanes

vr +1 = t1� 1=2r +1
(u r + vr ); u r +1 = tu r and u r +1 = tu r (8.15)

yields a vertex ofP r +1 , and it can be checked that the value of this vertex is on the tropi-
cal central path of LP r +1 for � = 4k+2

2r +1 . It follows that the tropical central path of LP r +1

at � 2 [ 4k
2r +1 ; 4k+2

2r +1 ] and � 2 [4k+2
2r +1 ; 4k+4

2r +1 ] corresponds to points on two distinct edges of
P r +1 . These two edges are obtained by intersectingF with vr +1 = t1� 1=2r +1

(u r + vr )
and either u r +1 = tu r or u r +1 = tvr . It remains to consider � � 4

2r +1 . By induction,
the tropical central path of LP r for � � 4

2r +1 = 2
2r is the set of values of an edge of

P r . As above, this edge yields a 3-faceF of P r +1 . Intersecting F with the three
hyperplanes (8.15) yields a vertex whose value is the tropical central path ofLP r +1 at
� = 2

2r +1 . Intersecting F with vr +1 = t1� 1=2r +1
(u r + vr ) and u r +1 = tvr yields an edge

of P r +1 whose set of values is the tropical central path at� 2 [ 2
2r +1 ; 4

2r +1 ]. For � � 2
2r +1 ,

the tropical central path is the set of values of the edge obtained as the intersection of
F with vr +1 = t1� 1=2r +1

(u r + vr ) and u r +1 = tu r .
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8.3.2 Curvature analysis

Let [a; b] be an interval of R, and � : [a; b] ! Rd be the parametrization of a path in
Rd. Assume that � is twice continuously di�erentiable. For any � 2 [a; b], the arc length
of the path � between � (a) and � (� ) is `(� ) :=

R�
a jj

.
� (
 )jjd
 . Let � : [0; `(b)] ! Rd be

the parameterization of � ([a; b]) by its arc length, i.e., � (`(� )) := � (� ) for all � 2 [a; b].
As a consequence,

.
� (`(� )) =

.
� (� )=jj

.
� (� )jj . Thus,

.
� describes a path on the unit sphere

Sd� 1 � Rd. The length of the latter path,
R` (b)

0 jj
..
� (� )jjd� , is the total curvature of �

between� (a) and � (b).
The total curvature can also be de�ned in terms of angles. Given pointsU; V; W 2 Rd,

we shall denote by\ UV W the measure� 2 [0; � ] of the angle between the vectorsV � U
and W � V , so that

cos� = h
(V � U)
kV � Uk

;
(W � V )
kW � Vk

i ;

where h�; �i denotes the standard scalar product ofRd, and k � k denotes the associated
Euclidean norm.

If � : [a; b] ! Rd parametrizes a polygonal line [X 0; X 1][ [X 1; X 2][ : : : [X q; X q+1 ], the
total curvature � (�; [a; b]) is de�ned as the sum of angles between consecutive segments:

� (�; [a; b]) :=
qX

k=1

\ X k� 1X kX k+1 :

A polygonal line � : [a; b] ! Rd is inscribed in a path � : [a; b] ! Rd if there exists a
subdivision a = � 0 < � 1 < � � � < � q+1 = b such that X k = � (� k ) for all 0 � k � q + 1.

The total curvature � (�; [a; b]) can be de�ned for an arbitrary curve � , as the supre-
mum of � (�; [a; b]) over all polygonal curves � inscribed in � . When � is twice contin-
uously di�erentiable, this coincides with the previous de�nition of the total curvature,
see Chapter V of [AR89] for more background.

Tropical lower bounds on the curvature of a de�nable family of paths

Now consider an interval [a; b] of R and � : [a; b] ! Kd a path in Kd. Since the elements
of K are real valued functions, the path � parametrizes a family of paths in Rd. For a
�xed real number M let us de�ne the map � : (M; + 1 ) � [a; b] ! Rd by � (t; � ) = � (� )( t).
For each t large enough,� (t; �) parametrizes a path in Rd. We now derive lower bounds
on the total curvature of the paths � (t; �) using � T = val( � ).

Lemma 8.16. Let � : [a; b] ! Kd be a path inKd and � 1 < � 2 < � 3 three scalars in the
interval [a; b]. Suppose that� T = val( � ) satis�es :

max
1� i � d

� T
i (� 1) < max

1� i � d
� T

i (� 2) < max
1� i � d

� T
i (� 3); and arg max

1� i � d
� T

i (� 2)\ arg max
1� i � d

� T
i (� 3) = ; :

Then,
lim

t !1
\ � (t; � 1)� (t; � 2)� (t; � 3) =

�
2

:
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Proof. By de�nition of the valuation map, for all " > 0 small enough, we have the
inequalities

t � T
i (� )� " � j � i (� )j � t � T

i (� )+ " for all i 2 [d] and � 2 [a; b] :

For k = 1 ; 2; 3, let mk be the maximum of the entries of � T(� k ), and denote I k :=
arg max 1� i � d � T

i (� k ). Also denote by

m0
k := max f � T

i (� k ) j i 2 [d] n I kg

the value of the second maximal coordinate of� T(� k ). We can choose" > 0 such that

m2 > m 1 + 3"

m2 > m 0
2 + 3" :

Consider the vector � := � (� 2) � � (� 1), and any i 2 I 2. By our choice of " , we have
m2 > � T

i (� 1) + 3 " . Consequently, we can bound the norm of� as follows:

jj � jj � j � i (� 2)j � j � T
i (� 1)j � t � T

i (� 2 )� " � t � T
i (� 1 )+ "

� tm2 � " (1 � t � m2+ � T
i (� 1 )+2 " )

� tm2 � " (1 � t � " ) :

Now consider the normalized vector�� := � =k� k. By our choice of " , for any j 2 [d] n I 2,
we have:

m2 > � T
j (� 1) + 3 "

m2 > � T
j (� 2) + 3 " :

Consequently, for any j 2 [d] n I 2 the component �� j of the normalized vector satis�es:

j�� j j �
t � T

j (� 2 )+ " + t � T
j (� 1 )+ "

tm2 � " (1 � t � " )
�

t � m2+ � T
j (� 2 )+2 " + t � m2+ � T

j (� 1 )+2 "

1 � t � " �
2t � "

1 � t � " =
2

t " � 1

Consequently, �� j (t) tends to 0 as t tends to in�nity for j 2 [d] n I 2. Observe that
the map t ! �� (t) is de�nable in the polynomially bounded structure �RR. Sincejj �� jj = 1,
we deduce that �� (t) has a limit �� (1 ) as t tends to in�nity. Clearly, �� j (1 ) = 0 for all
j 2 [d] n I 2.

Similarly, let � = � (� 3) � � (� 2) and �� = � =jj � jj . We deduce that �� j (1 ) = 0 for all
j 2 [d] nI 3, where �� (1 ) denotes the limit of t 7! �� (t) as t ! 1 . As I 2 \ I 3 = ; , we have
�� (1 ) � �� (1 ) = 0. We deduce that

lim
t !1

\ � (t; � 1)� (t; � 2)� (t; � 3) = lim
t !1

arccos(�� (t) � �� (t)) = arccos( �� (1 ) � �� (1 )) =
�
2

:
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We de�ne the combinatorial angle\ c� T(� 1)� T(� 2)� T(� 3) of the points � T(� 1), � T(� 2)
and � T(� 2) to be 1 if the conditions of Lemma 8.16 are satis�ed. Otherwise, the com-
binatorial angle is de�ned to be 0. Given a subdivisiona = � 0 < � � � < � q+1 = b of an
interval [ a; b] � R, we denote by� c(� T ; � 0; : : : ; � q+1 ) the sum of combinatorial angles

X

k2 [q]

\ c� T(� k� 1)� T(� k )� T(� k+1 ) :

Finally, we de�ne the total combinatorial curvature of � T over the interval [a; b], denoted
by � c(� T ; [a; b]), to be the supremum of � c(� T ; � 0; : : : ; � q+1 ) over all subdivisions of the
interval [ a; b].

Theorem 8.17. For all real numbers a < b, we have

lim
t !1

� (� (t; �); [a; b]) � � c(� T ; [a; b])
�
2

:

Proof. Consider any subdivision a = � 0 < � � � < � q+1 = b. By Lemma 8.16, for all
k 2 [q], we have:

lim
t !1

\ � (t; � k� 1)� (t; � k )� (t; � k+1 ) � \ c� T(� k� 1)� T(� k )� T(� k+1 )
�
2

:

It follows that,

lim
t !1

� (� (t; �); [a; b]) �
X

k2 [q]

lim
t !1

\ � (t; � k� 1)� (t; � k )� (t; � k+1 )

�
X

k2 [q]

\ c� T(� k� 1)� T(� k )� T(� k+1 ) :

Finally, the conclusion of the theorem is obtained by taking the maximum over all
subdivisions.

In general, the information provided by the valuation may not be enough to infer
the total curvature, and so, the bound of Theorem 8.17 is not expected to be tight in
general.

8.3.3 Application to the counter-example

Given any integer r � 1, the Hardy linear program LP r gives rise to a family real linear
programs LP r (t) for t large enough, that are parametrized byC(t; �). With the notation
of Lemma 8.2, we de�ne a path

C : R ! (K r +1 )3 � K r � K r +1

� 7!
�
u � ; v � ; z � ; (z0) � ; h � �

where � = t � :

Hence,C(t; �) = C(�)( t) parametrize the central path of LP r (t).
We �rst analyze the curvature of the ( u ; v) components of the central paths. We

de�ne � to be the projection of C on the (u ; v) components.
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Theorem 8.18. We have

lim
t !1

� (� (t; �); [0; 2]) � (2r � 1)
�
2

:

Proof. Consider the subdivision 0 = � 0 < � � � < � r = 2 given by � k = 4k=2r for
k = 0 ; : : : ; 2r . can readily check from Proposition 8.13 that the combinatorial angles
\ c� T(� 0)� T(� 1)� T(� 2), . . . , \ c� T(� 2r � 2)� T(� 2r � 1)� T(� 2r ) are all equal to one. Actu-
ally, the maximum of the coordinates of � T(� k ) is attained alternatively by the compo-
nents ur and vr , depending on the parity of k, and it is a strictly increasing function of
k. Then, the conclusion follows from Theorem 8.17.

We now turn to the whole central path C of LP r (t).

Theorem 8.19. We have

lim
t !1

� (C(t; �); [0; 2]) � (2r � 1 � 1)
�
2

:

Proof. De�ne now � k = 4k=2r , for k = 0 ; : : : ; 2r � 1. It easily follows from Proposi-
tions 8.12 and 8.13 that the combinatorial angles

\ cCT(� 0)CT(� 1)CT(� 2); : : : ; \ cCT(� 2r � 1 � 2)CT(� 2r � 1 � 1)CT(� 2r � 1 )

are all equal to one. The maximizing variables of the tropical central path at all these
points � 0; : : : ; � 2r � 1 are alternatively zr and z0

r . Then, the conclusion follows from The-
orem 8.17.
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Chapter 9

Conclusion and perspectives

In Chapter 3, we tropicalized the simplex method. The key idea is to compute the sign
of a polynomial by tropical means. This idea could lead to the tropicalitation of other
kinds of algorithms, even unrelated to linear programming. More precisely, one could
tropicalize in this way any semi-algebraicalgorithm, i.e., that rely only the signs of poly-
nomials evaluated on the input. However, in order to obtain a tropical algorithm which
runs in polynomial time, the polynomials must satisfy some conditions. In particular,
the \size" of the polynomials, measured by the magnitude of their exponents, should
not be too large.

It would also be interesting to consider the quantization of tropical algorithm, i.e., to
apply tropical algorithms to classical problems. Under which conditions does a tropical
semi-algebraic algorithm provide an algorithm for arbitrary classical problems? For
example, the policy iteration algorithm for mean payo� games could provide a new
algorithm for classical linear programming. This question is related to the realizability
of classical polyhedra as tropical polyhedra discussed below.

In Chapter 4, we used the tropicalization of the simplex method to solve arbitrary
tropical linear program. Our main tool is a perturbation scheme that rely on groups of
higher order rank. Our perturbation transforms an arbitrary problem into a problem
which is generic forany polynomial. Hence, this approach could be used with the tropi-
calization of other algorithms than the simplex method. This perturbation scheme could
have further applications in tropical geometry. In particular, it would be worthwhile to
compare it to the concept of stable intersection.

In Chapter 5, we obtain a transfer principle from classical linear programming to
tropical linear programming via the simplex method. We showed that a polynomial
time pivoting rule for the simplex method could yield a polynomial time algorithm
for tropical linear programming. The most natural question is whether the converse
statement holds. From our point of view, this question boils down to the realizability of
classical polyhedra as tropical polyhedra.

Question 9.1. Is any (non-degenerate) classical polyhedra combinatorially realizable as
a tropical polyhedra?
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A positive answer to the this question would entail a transfer principle from tropi-
cal linear programming to classical linear programming. This could show that Smale's
problem on the existence of a strongly polynomial algorithm for classical linear pro-
gramming somehow reduces to the NP\ co-NP problem of tropical linear programming
and mean-payo� games. Indeed, Theorem 5.4 indicates that polynomial algorithms for
tropical linear programming could provide strongly polynomial algorithms for classical
linear programming.

Chapter 5 also presents a class of classical linear programs on which the simplex
method is polynomial in the bit model. This class is obtained by quantization of edge-
improving tropical linear programs. However, it does not seem easy to decide whether a
classical linear program belongs to this class. It would be interesting to study alternative
characterizations of these problems. Since the simplex method is polynomial on this
class of instances, this suggests that polyhedra with large diameter donot belong to
it. Moreover, given such a classical instance, one can ask for a way to compute the
corresponding tropical problem. Indeed, this would permit to use the tropical simplex
method to solve these classical instances.

The tropicalization of the shadow-vertex rule in Chapter 6 allowed us to derive the
�rst algorithm with a polynomial average-case complexity for mean payo� games. The
shadow-vertex rule is used in several signi�cant results. Can we tropicalize the ran-
domized polynomial-time algorithm of Kelner and Spielman [KS06]? Or the smoothed-
complexity result of Spielman and Teng [ST04]?

In Chapter 7, we proposed an e�cient implementation for the tropical pivoting oper-
ation and the computation of tropical reduced costs. These procedures useO(n(m + n))
tropical operations for a linear program described bym inequalities on n variables. It
would be interesting to take advantage of sparsity. Preliminary results indicate that
these procedures could be implemented inO(k + m log(m) + n) operations, wherek is
the number of non 0 entries of the input.

Finally, in Chapter 8 we studied the tropicalization of the central path. We showed
that the tropical central path has a geometric description, and that it may coincide
with a run of the tropical simplex method. This could lead to a \central path" pivoting
rule for the simplex method. We also disproved the continuous analogue of the Hirsch
conjecture by exhibiting a family of real linear programs constrained by 3r +4 inequalities
in dimension 2r +2 with a total curvature of 
 (2r ). This family is parametrized by a real
number t that must be large enough. A necessary next step is to bound the minimal value
of t for which the total curvature is 
 (2r ). Preliminary results indicate that t = 2 r 2r

is
enough. An interesting question is also to what extent the total curvature can be worse
than 
 (2r )? Can we obtain a total curvature of 
 (22r

), or even of arbitrary tower of
exponentials? A step in this direction would be to carry the idea underlying the tropical
linear program used in Chapter 8 over to tropical semirings of higher rank, and then lift
to the Hardy �eld of the structure �Rexp.



Bibliography

[ABG14] X. Allamigeon, P. Benchimol, and S. Gaubert. The tropical shadow-vertex
algorithm solves mean payo� games in polynomial time on average. In
J. Esparza, P. Fraigniaud, T. Husfeldt, and E. Koutsoupias, editors, Au-
tomata, Languages, and Programming - 41st International Colloquium,
ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I,
volume 8572 ofLecture Notes in Computer Science, pages 89{100. Springer,
2014.

[ABGJ13a] X. Allamigeon, P. Benchimol, S. Gaubert, and M. Joswig. Combinatorial
simplex algorithms can solve mean payo� games. To appear in SIAM J. on
Optimization. E-print arXiv:1309.5925, 2013.

[ABGJ13b] X. Allamigeon, P. Benchimol, S. Gaubert, and M. Joswig. Tropical-
izing the simplex algorithm. To appear in SIAM Disc. Math. E-print
arXiv:1308.0454, 2013.

[ABGJ14] X. Allamigeon, P. Benchimol, S. Gaubert, and M. Joswig. Long and wind-
ing central paths. E-print arXiv:1405.4161, 2014.

[AC78] D. Avis and V. Chv�atal. Notes on Bland's pivoting rule. In Polyhedral
Combinatorics, pages 24{34. Springer, 1978.

[AF13] D. Avis and O. Friedmann. An exponential lower bound for Cunningham's
rule. E-print arXiv:1305.3944, 2013.

[AGG09] M. Akian, S. Gaubert, and A. Guterman. Linear independence over tropical
semirings and beyond. In G. Litvinov and S. Sergeev, editors,Proceedings
of the International Conference on Tropical and Idempotent Mathematics,
volume 495 ofContemporary Mathematics, pages 1{38. AMS, 2009.

[AGG10] X. Allamigeon, S. Gaubert, and �E. Goubault. The tropical double descrip-
tion method. In J.-Y. Marion and T. Schwentick, editors, Proceedings of the
27th International Symposium on Theoretical Aspects of Computer Science
(STACS 2010), volume 5 ofLeibniz International Proceedings in Informat-
ics (LIPIcs) , pages 47{58, Dagstuhl, Germany, 2010. Schloss Dagstuhl{
Leibniz-Zentrum fuer Informatik.

151



152 BIBLIOGRAPHY

[AGG12] M. Akian, S. Gaubert, and A. Guterman. Tropical polyhedra are equivalent
to mean payo� games. International Journal of Algebra and Computation,
22(1):125001, 2012.

[AGG13] X. Allamigeon, S. Gaubert, and E. Goubault. Computing the vertices of
tropical polyhedra using directed hypergraphs. Discrete & Computational
Geometry, 49(2):247{279, 2013. E-print arXiv:0904.3436v4.

[AGG14] M. Akian, S. Gaubert, and A. Guterman. Tropical Cramer determinants
revisited. In G. Litvinov and S. Sergeev, editors,Proceedings of the Interna-
tional Conference on Tropical and Idempotent Mathematics, volume 616 of
Contemporary Mathematics, pages 1{45. American Mathematical Society,
2014.

[AGK11] X. Allamigeon, S. Gaubert, and R. Katz. The number of extreme points of
tropical polyhedra. Journal of Combinatorial Theory, Series A, 118(1):162
{ 189, 2011.

[AGNS11] M. Akian, S. Gaubert, V. Nitica, and I. Singer. Best approximation in max-
plus semimodules.Linear Algebra and its Applications, 435(12):3261{3296,
2011.

[AK13] X. Allamigeon and R. Katz. Minimal external representations of tropical
polyhedra. Journal of Combinatorial Theory, Series A, 120(4):907{940,
2013.

[AKS86] I. Adler, R. Karp, and R. Shamir. A family of simplex variants solving an
m � d linear program in expected number of pivot steps depending ond
only. Mathematics of Operations Research, 11(4):570{590, 1986.

[AKS87] I. Adler, R. M. Karp, and R. Shamir. A simplex variant solving an m � d
linear program in O(min( m2; d2)) expected number of pivot steps.Journal
of Complexity, 3(4):372 { 387, 1987.

[AKW06] F. Ardila, C. Klivans, and L. Williams. The positive Bergman complex of
an oriented matroid. European Journal of Combinatorics, 27(4):577{591,
2006.

[Ale13] D. Alessandrini. Logarithmic limit sets of real semi-algebraic sets. Adv.
Geometry, 13(1):155{190, 2013.

[Ans91] K. Anstreicher. On the performance of Karmarkar's algorithm over a se-
quence of iterations. SIAM Journal on Optimization , 1(1):22{29, 1991.

[AR89] A. D. Alexandrov and Y. G. Reshetnyak. General theory of irregular curves.
Kluwer, 1989.



BIBLIOGRAPHY 153

[AZ96] N. Amenta and G. M. Ziegler. Deformed products and maximal shadows
of polytopes. In Advances in Discrete and Computational Geometry, Con-
temporary Mathematics 223, Providence, R.I., 1996. Amer. Math. Soc.

[BA08] P. Butkovi�c and A. Aminu. Introduction to max-linear programming. IMA
Journal of Management Mathematics, 20(3):233{249, 2008.

[BCOQ92] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization
and linearity: an algebra for discrete event systems. Wiley, 1992.

[BDSE+ 12] N. Bonifas, M. Di Summa, F. Eisenbrand, N. H•ahnle, and M. Niemeier.
On sub-determinants and the diameter of polyhedra. InProceedings of the
2012 symposuim on Computational Geometry, pages 357{362. ACM, 2012.

[Ben14] P. Benchimol. Simplet, a solver for tropical linear programming. Available
at http://simplet.gforge.inria.fr, 2014.

[Ber71] G. Bergman. The logarithmic limit-set of an algebraic variety. Transactions
of the American Mathematical Society, 157:459{469, 1971.

[BH84] P. Butkovi�c and G. Heged•us. An elimination method for �nding all solutions
of the system of linear equations over an extremal algebra.Ekonomicko-
matematicky Obzor, 20:203{215, 1984.

[BH04] W. Briec and C. Horvath. B-convexity. Optimization , 53:103{127, 2004.

[BHR05] W. Briec, C. Horvath, and A. Rubinov. Separation in B-convexity. Paci�c
Journal of Optimization , 1:13{30, 2005.

[BJS+ 07] T. Bogart, A. N. Jensen, D. Speyer, B. Sturmfels, and R. R. Thomas.
Computing tropical varieties. J. Symbolic Comput., 42(1-2):54{73, 2007.

[BL97] D. Bertsimas and X. Luo. On the worst case complexity of potential re-
duction algorithms for linear programming. Mathematical Programming,
77(2):321{333, May 1997.

[Bla77] R. G. Bland. New �nite pivoting rules for the simplex method. Mathematics
of Operations Research, 2(2):103{107, 1977.

[BM14a] P. Butkovic and M. MacCaig. A strongly polynomial method for solving
integer max-linear optimization problems in a generic case. Journal of
Optimization Theory and Applications, pages 1{23, 2014.

[BM14b] P. Butkovi�c and M. MacCaig. On the integer max-linear programming
problem. Discrete Applied Mathematics, 162:128{141, 2014.

[BNRC08] M. Bezem, R. Nieuwenhuis, and E. Rodr��guez-Carbonell. Exponential be-
haviour of the Butkovi�c-Zimmermann algorithm for solving two-sided linear
systems in max-algebra.Discrete Appl. Math., 156(18):3506{3509, 2008.



154 BIBLIOGRAPHY

[Bor87] K. H. Borgwardt. The simplex method: a probabilistic analysis, volume 1
of Algorithms and Combinatorics. Springer Verlag, 1987.

[BR14] T. Brunsch and H. R•oglin. Finding short paths on polytopes by the shadow
vertex algorithm. In J. Esparza, P. Fraigniaud, T. Husfeldt, and E. Kout-
soupias, editors,Automata, Languages, and Programming - 41st Interna-
tional Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014,
Proceedings, Part I, volume 8572 ofLecture Notes in Computer Science,
pages 279{290. Springer, 2014.

[Bru12] E. Brugall�e. Some aspects of tropical geometry.Newsletter of the European
Mathematical Society,(83), pages 23{28, 2012.

[BSS07] P. Butkovi�c, H. Schneider, and S. Sergeev. Generators, extremals and bases
of max cones.Linear Algebra Appl., 421(2-3):394{406, 2007.

[But03] P. Butkovi�c. Max-algebra: the linear algebra of combinatorics? Linear
Algebra and its applications, 367:313{335, 2003.

[But10] P. Butkovi�c. Max-linear systems: theory and algorithms. Springer, 2010.

[BV07] H. Bjorklund and S. Vorobyov. A combinatorial strongly subexponential
strategy improvement algorithm for mean payo� games. Discrete Appl.
Math., 155:210{229, 2007.

[BY06] F. Block and J. Yu. Tropical convexity via cellular resolutions. J. Algebraic
Combin., 24(1):103{114, 2006.

[BZ06] P. Butkovi�c and K. Zimmermann. A strongly polynomial algorithm for
solving two-sided linear systems in max-algebra.Discrete Applied Mathe-
matics, 154(3):437{446, 2006.

[CC58] A. Charnes and W. Cooper. The strong Minkowski-Farkas-Weyl theorem
for vector spaces over ordered �elds.Proceedings of the National Academy
of Sciences of the United States of America, 44(9):914, 1958.

[CD69] P. Conrad and J. Dauns. An embedding theorem for lattice-ordered �elds.
Paci�c Journal of Mathematics , 30(2):385{398, 1969.

[CG79] R. Cuninghame-Green. Minimax algebra, volume 166 ofLecture Notes in
Economics and Mathematical Systems. Springer-Verlag, Berlin, 1979.

[CGB03] R. Cuninghame-Green and P. Butkovi�c. The equation a 
 x = b
 y over
(max,+). Theoretical Computer Science, 293:3{12, 2003.

[CGQ99] G. Cohen, S. Gaubert, and J.-P. Quadrat. Max-plus algebra and system
theory: where we are and where to go now.Annual Reviews in Control,
23:207{219, 1999.



BIBLIOGRAPHY 155

[CGQ01] G. Cohen, S. Gaubert, and J. P. Quadrat. Hahn-Banach separation theorem
for max-plus semimodules. In J. L. Menaldi, E. Rofman, and A. Sulem,
editors, Optimal Control and Partial Di�erential Equations , pages 325{334.
IOS Press, 2001.

[CGQ04] G. Cohen, S. Gaubert, and J. Quadrat. Duality and separation theorem in
idempotent semimodules.Linear Algebra and Appl., 379:395{422, 2004.

[CGQS05] G. Cohen, S. Gaubert, J.-P. Quadrat, and I. Singer. Max-plus convex sets
and functions. In G. Litvinov and V. Maslov, editors, Idempotent Mathe-
matics and Mathematical Physics, volume 377 ofContemporary Mathemat-
ics, pages 105{129. Amer. Math. Soc., 2005.

[Cha09] J. Chaloupka. Parallel algorithms for mean-payo� games: an experimental
evaluation. In Algorithms|ESA 2009 , volume 5757 ofLecture Notes in
Comput. Sci., pages 599{610. Springer, Berlin, 2009.

[CMQV89] G. Cohen, P. Moller, J.-P. Quadrat, and M. Viot. Algebraic tools for the
performance evaluation of discrete event systems.Proceedings of the IEEE,
77(1):39{85, 1989.

[Cos00] M. Coste. An introduction to o-minimal geometry, 2000. Dip. Mat. Univ.
Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligra�ci
Internazionali, Pisa.

[CTGG99] J. Cochet-Terrasson, S. Gaubert, and J. Gunawardena. A constructive
�xed-point theorem for min-max functions. Dynamics and Stability of Sys-
tems, 14(4):407{433, 1999.

[Dan98] G. B. Dantzig. Linear programming and extensions. Princeton Landmarks
in Mathematics. Princeton University Press, Princeton, NJ, corrected edi-
tion, 1998.

[DG06] V. Dhingra and S. Gaubert. How to solve large scale deterministic games
with mean payo� by policy iteration. In Proceedings of the 1st interna-
tional conference on Performance evaluation methodolgies and tools (VAL-
UETOOLS) , volume 180, Pisa, Italy, 2006. article No. 12.

[DL11] J. A. De Loera. New insights into the complexity and geometry of linear
optimization. OPTIMA, Newsletter of the Math. Optim. Soc., 87:1{16,
2011.

[DLGKL10] M. Di Loreto, S. Gaubert, R. D. Katz, and J.-J. Loiseau. Duality between
invariant spaces for max-plus linear discrete event systems.SIAM Journal
on Control and Optimization, 48(8):5606{5628, 2010.



156 BIBLIOGRAPHY

[DLKOS09] J. A. De Loera, E. D. Kim, S. Onn, and F. Santos. Graphs of transportation
polytopes. Journal of Combinatorial Theory, Series A, 116(8):1306 { 1325,
2009.

[DLSV10] J. De Loera, B. Sturmfels, and C. Vinzant. The central curve in linear
programming. Arxiv preprint arXiv:1012.3978 , 2010.

[DMS05] J.-P. Dedieu, G. Malajovich, and M. Shub. On the curvature of the central
path of linear programming theory. Foundations of Computational Mathe-
matics, 5(2):145{171, 2005.

[DNPT06] A. Deza, E. Nematollahi, R. Peyghami, and T. Terlaky. The central path
visits all the vertices of the Klee{Minty cube. Optimisation Methods and
Software, 21(5):851{865, 2006.

[Dre86] A. Dress. Duality theory for �nite and in�nite matroids with coe�cients.
Adv. in Math. , 59(2):97{123, 1986.

[DS04] M. Develin and B. Sturmfels. Tropical convexity. Doc. Math., 9:1{27 (elec-
tronic), 2004. correction: ibid., pp. 205{206.

[DS05] J.-P. Dedieu and M. Shub. Newton 
ow and interior point methods in linear
programming. International Journal of Bifurcation and Chaos , 15(03):827{
839, 2005.

[DTZ08] A. Deza, T. Terlaky, and Y. Zinchenko. Polytopes and arrangements: di-
ameter and curvature. Operations Research Letters, 36(2):215{222, 2008.

[DTZ09] A. Deza, T. Terlaky, and Y. Zinchenko. Central path curvature and
iteration-complexity for redundant Klee-Minty cubes. In Advances in ap-
plied mathematics and global optimization, volume 17 ofAdv. Mech. Math.,
pages 223{256. Springer, New York, 2009.

[DW96] H. G. Dales and W. H. Woodin. Super-real �elds. Totally ordered �elds
with additional structure, volume 14 ofLondon Mathematical Society Mono-
graphs. New Series. The Clarendon Press, Oxford University Press, New
York, 1996.

[DY07] M. Develin and J. Yu. Tropical polytopes and cellular resolutions. Experi-
ment. Math., 16(3):277{291, 2007.

[EKL06] M. Einsiedler, M. Kapranov, and D. Lind. Non-Archimedean amoebas and
tropical varieties. J. Reine Angew. Math., 601:139{157, 2006.

[EM79] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payo�
games. International Journal of Game Theory, 8(2):109{113, 1979.



BIBLIOGRAPHY 157

[ER89] B. C. Eaves and U. G. Rothblum. A theory on extending algorithms for
parametric problems. Mathematics of Operations Research, 14(3):502{533,
1989.

[FAA02] J. Filar, E. Altman, and K. Avrachenkov. An asymptotic simplex method
for singularly perturbed linear programs. Oper. Res. Lett., 30(5):295{307,
2002.

[FHZ11] O. Friedmann, T. D. Hansen, and U. Zwick. Subexponential lower bounds
for randomized pivoting rules for the simplex algorithm. In Proceedings of
the Forty-third Annual ACM Symposium on Theory of Computing, STOC
'11, pages 283{292, New York, NY, USA, 2011. ACM.

[Fos10] T. Foster. Power functions and exponentials in o-minimal expansions of
�elds . PhD thesis, Oxford University, 2010.

[Fri11] O. Friedmann. A subexponential lower bound for Zadeh's pivoting rule
for solving linear programs and games. InInteger Programming and Com-
binatoral Optimization - 15th International Conference, IPCO 2011, New
York, NY, USA, June 15-17, 2011. Proceedings, pages 192{206, 2011.

[FT87] A. Frank and �E. Tardos. An application of simultaneous diophantine ap-
proximation in combinatorial optimization. Combinatorica, 7(1):49{65,
1987.

[Fuc63] L. Fuchs. Partially ordered algebraic systems. International series of mono-
graphs in pure and applied mathematics. Pergamon Press, 1963.

[GGK04] J. Gilbert, C. Gonzaga, and E. Karas. Examples of ill-behaved central
paths in convex optimization. Mathematical Programming, 103(1):63{94,
December 2004.

[GK09] S. Gaubert and R. D. Katz. The tropical analogue of polar cones.Linear
Algebra Appl., 431(5-7):608{625, 2009. E-print arXiv:0805.3688.

[GK11] S. Gaubert and R. Katz. Minimal half-spaces and external representation
of tropical polyhedra. Journal of Algebraic Combinatorics, 33(3):325{348,
2011.

[GKS12] S. Gaubert, R. Katz, and S. Sergeev. Tropical linear-fractional program-
ming and parametric mean payo� games.Journal of symbolic computation,
47(12):1447{1478, December 2012.

[GKZ94] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants,
Resultants, and Multidimensional Determinants. Mathematics: Theory &
Applications. Birkh•auser Boston, 1994.



158 BIBLIOGRAPHY

[GLS88] M. Gr•otschel, L. Lov�asz, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization , volume 2 of Algorithms and Combinatorics.
Springer, 1988.

[GM84] M. Gondran and M. Minoux. Linear algebra in dioids: a survey of recent
results. Annals of Discrete Mathematics, 19:147{164, 1984.

[GM10] S. Gaubert and F. Meunier. Carath�eodory, Helly and the others in the
max-plus world. Discrete and Computational Geometry, 43(3):648{662,
2010.

[GMH14] V. M. Gon�calves, C. A. Maia, and L. Hardouin. On tropical fractional linear
programming. Linear Algebra and its Applications, 459:384{396, 2014.

[Gol94] D. Goldfarb. On the complexity of the simplex method. In Advances in
optimization and numerical analysis, pages 25{38. Springer, 1994.

[Gon12] J. Gondzio. Interior point methods 25 years later. European Journal of
Operational Research, 218(3):587{601, 2012.

[GP97] S. Gaubert and M. Plus. Methods and applications of (max; +) linear
algebra. In Proceedings of the 14th Annual Symposium on Theoretical As-
pects of Computer Science, Lybeck, Germany February 17 { March 1, 1997
(STACS 97), volume 1200 ofLecture Notes in Comput. Sci., pages 261{282.
Springer-Verlag, 1997.

[GS55] S. Gass and T. Saaty. The computational algorithm for the parametric
objective function. Naval research logistics quarterly, 2(1-2):39{45, 1955.

[GS79] D. Goldfarb and W. Y. Sit. Worst case behavior of the steepest edge simplex
method. Discrete Applied Mathematics, 1(4):277 { 285, 1979.

[GS07] S. Gaubert and S. Sergeev. Cyclic projectors and separation theorems in
idempotent convex geometry.Fundamentalnaya i prikladnaya matematika,
13(4):33{52, 2007. Engl. translation in Journal of Mathematical Sciences
(Springer, New-York), Vol. 155, No. 6, pp.815{829, 2008.

[Hah07] H. Hahn. •Uber die nichtarchimedischen Gr•o�ensysteme. Wien. Ber. ,
116:601{655, 1907.

[HKZ14] T. D. Hansen, H. Kaplan, and U. Zwick. Dantzig's pivoting rule for shortest
paths, deterministic mdps, and minimum cost to time ratio cycles. In
SODA, pages 847{860. SIAM, 2014.

[HOvdW06] B. Heidergott, G. J. Olsder, and J. W. van der Woude. Max Plus at work:
modeling and analysis of synchronized systems: a course on Max-Plus al-
gebra and its applications, volume 13. Princeton University Press, 2006.



BIBLIOGRAPHY 159

[IKS03] I. Itenberg, V. Kharlamov, and E. Shustin. Welschinger invariant and
enumeration of real rational curves. International Mathematics research
notices, 2003(49):2639{2653, 2003.

[IMS07] I. Itenberg, G. Mikhalkin, and E. Shustin. Tropical algebraic geometry,
volume 35 ofOberwolfach Seminars. Birkh•auser Verlag, Basel, 2007.

[IV96] I. Itenberg and O. Viro. Patchworking algebraic curves disproves the rags-
dale conjecture. The Mathematical Intelligencer, 18(4):19{28, 1996.

[Jer73a] R. Jeroslow. Asymptotic linear programming. Operations Research,
21(5):1128{1141, 1973.

[Jer73b] R. G. Jeroslow. The simplex algorithm with the pivot rule of maximizing
criterion improvement. Discrete Mathematics, 4(4):367{377, 1973.

[Jos05] M. Joswig. Tropical halfspaces. InCombinatorial and computational geom-
etry, volume 52 ofMath. Sci. Res. Inst. Publ., pages 409{431. Cambridge
Univ. Press, Cambridge, 2005.

[Jos09] M. Joswig. Tropical convex hull computations. In G. L. Litvinov and S. N.
Sergeev, editors,Proceedings of the International Conference on Tropical
and Idempotent Mathematics, volume 495 ofContemporary Mathematics,
pages 193{212. American Mathematical Society, 2009.

[JPZ06] M. Jurdzi�nski, M. Paterson, and U. Zwick. A deterministic subexponen-
tial algorithm for solving parity games. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA 2006), January 2006.

[JSY07] M. Joswig, B. Sturmfels, and J. Yu. A�ne buildings and tropical convexity.
Albanian J. Math. , 1(4):187{211, 2007. E-print arXiv:0706.1918.

[JY94] J. Ji and Y. Yinyu. A complexity analysis for interior-point algorithms
based on Karmarkar's potential function. SIAM Journal on Optimization ,
4(3):512{520, 1994.

[Kap42] I. Kaplansky. Maximal �elds with valuations. Duke Mathematical Journal,
9(2):303{321, 1942.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373{395, 1984.

[Kat07] R. D. Katz. Max-plus ( A; B )-invariant spaces and control of timed discrete
event systems. IEEE Trans. Aut. Control , 52(2):229{241, 2007. E-print
arXiv:math.OC/0503448.

[Kha80] L. G. Khachiyan. Polynomial algorithms in linear programming. USSR
Computational Mathematics and Mathematical Physics, 20(1):53{72, 1980.



160 BIBLIOGRAPHY

[KK92] G. Kalai and D. J. Kleitman. A quasi-polynomial bound for the diameter
of graphs of polyhedra. Bull. Amer. Math. Soc, 26(2):315{316, 1992.

[KM72] V. Klee and G. J. Minty. How good is the simplex method? In Inequalities
III (Proceedings of the Third Symposium on Inequalities held at the Uni-
versity of California, Los Angeles, Calif., September 1{9, 1969, dedicated
to the memory of Theodore S. Motzkin), pages 159{175, 1972.

[KM13a] T. Kitahara and S. Mizuno. A bound for the number of di�erent basic
solutions generated by the simplex method. Mathematical Programming,
137(1-2):579{586, 2013.

[KM13b] T. Kitahara and S. Mizuno. An upper bound for the number of di�erent
solutions generated by the primal simplex method with any selection rule
of entering variables.Asia-Paci�c Journal of Operational Research, 30(03),
2013.

[KOT13] S. Kakihara, A. Ohara, and T. Tsuchiya. Information geometry and
interior-point algorithms in semide�nite programs and symmetric cone pro-
grams. Journal of Optimization Theory and Applications, 157(3):749{780,
2013.

[KS06] J. A. Kelner and D. A. Spielman. A randomized polynomial-time simplex
algorithm for linear programming. In Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing, pages 51{60. ACM, 2006.

[KS10] E. D. Kim and F. Santos. An update on the Hirsch conjecture.Jahresbericht
der Deutschen Mathematiker-Vereinigung, 112(2):73{98, 2010.

[KY91] J. Kaliski and Y. Ye. Convergence behavior of Karmarkar's projective
algorithm for solving a simple linear program. Operations research letters,
10(7):389{393, 1991.

[Lit07] G. Litvinov. Maslov dequantization, idempotent and tropical mathematics:
a brief introduction. Journal of Mathematical Sciences, 140(3):426{444,
2007.

[LL69] T. M. Liggett and S. A. Lippman. Stochastic games with perfect informa-
tion and time average payo�. SIAM Rev., 11:604{607, 1969.

[LMS01] G. L. Litvinov, V. P. Maslov, and G. B. Shpiz. Idempotent functional
analysis. An algebraic approach.Mat. Zametki, 69(5):758{797, 2001.

[Mar02] D. Marker. Model theory, volume 217 ofGraduate Texts in Mathematics.
Springer-Verlag, New York, 2002. An introduction.

[Mar10] T. Markwig. A �eld of generalised Puiseux series for tropical geometry.
Rend. Semin. Mat., Univ. Politec. Torino , 68(1):79{92, 2010.



BIBLIOGRAPHY 161

[Meg87] N. Megiddo. On the complexity of linear programming. Advances in eco-
nomic theory, pages 225{268, 1987.

[Mik05] G. Mikhalkin. Enumerative tropical algebraic geometry in R2. Journal of
the American Mathematical Society, 18(2):313{377, 2005.

[Mil94a] C. Miller. Expansions of the real �eld with power functions. Annals of
Pure and Applied Logic, 0072(93), 1994.

[Mil94b] C. Miller. Exponentiation is hard to avoid. Proceedings of the American
Mathematical Society, 122(1):257, September 1994.

[Mil12] C. Miller. Basics of o-minimality and Hardy �elds. In Lecture Notes on
O-minimal Structures and Real Analytic Geometry, pages 43{69. Springer,
2012.

[MS] D. Maclagan and B. Sturmfels. Introduction to tropical geometry. Draft of
a book, http://homepages.warwick.ac.uk/staff/D.Maclagan/papers/
TropicalBook.html .

[MS89] N. Megiddo and M. Shub. Boundary behavior of interior point algorithms
in linear programming. Mathematics of Operations Research, 14(1):97{146,
1989.

[MT08] R. D. Monteiro and T. Tsuchiya. A strong bound on the integral of the
central path curvature and its relationship with the iteration-complexity
of primal-dual path-following LP algorithms. Mathematical Programming,
115(1):105{149, 2008.

[MT13a] M. Mut and T. Terlaky. A tight iteration-complexity upper bound for the
MTY predictor-corrector algorithm via redundant Klee-Minty cubes. 2013.

[MT13b] M. Mut and T. Terlaky. An analogue of the Klee-Walkup result for Sonn-
evend's curvature of the central path. 2013.

[Mur80] K. G. Murty. Computational complexity of parametric linear programming.
Mathematical programming, 19(1):213{219, 1980.

[Nad89] D. Naddef. The Hirsch conjecture is true for (0, 1)-polytopes.Mathematical
Programming, 45(1):109{110, 1989.

[Orl97] J. B. Orlin. A polynomial time primal network simplex algorithm for min-
imum cost 
ows. Mathematical Programming, 78(2):109{129, 1997.

[Pas77] D. S. Passman.The algebraic structure of group rings. Pure and Applied
Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-
Sydney, 1977.



162 BIBLIOGRAPHY

[Plu90] M. Plus. Linear systems in (max,+) algebra. In Proceedings of the 29th
IEEE Conference on Decision and Control, pages 151{156. IEEE, 1990.

[Poo93] B. Poonen. Maximally complete �elds. Enseign. Math.(2), 39(1-2):87{106,
1993.

[Pow93] M. Powell. On the number of iterations of Karmarkar's algorithm for linear
programming. Mathematical Programming, 62(1-3):153{197, 1993.

[Pur95] A. Puri. Theory of hybrid systems and discrete event systems. PhD thesis,
University of California at Berkeley, Berkeley, CA, USA, 1995.

[RGST05] J. Richter-Gebert, B. Sturmfels, and T. Theobald. First steps in tropical
geometry. In Idempotent mathematics and mathematical physics, volume
377 ofContemp. Math., pages 289{317. Amer. Math. Soc., Providence, RI,
2005.

[Rob77] A. Robinson. Complete theories. North Holland, 1977.

[RS02] Q. I. Rahman and G. Schmeisser.Analytic theory of polynomials. London
Mathematical Society monographs. Oxford University Press, Oxford, 2002.

[San12] F. Santos. A counterexample to the Hirsch conjecture.Annals of mathe-
matics, 176(1):383{412, 2012.

[Sch03] A. Schrijver. Combinatorial optimization. Polyhedra and e�ciency. Vol.
A, volume 24 of Algorithms and Combinatorics. Springer-Verlag, Berlin,
2003. Paths, 
ows, matchings, Chapters 1{38.

[Sei54] A. Seidenberg. A new decision method for elementary algebra.Annals of
Mathematics, pages 365{374, 1954.

[Sin97] I. Singer. Abstract convex analysis. Wiley, 1997.

[Sma83] S. Smale. On the average number of steps of the simplex method of linear
programming. Mathematical Programming, 27(3):241{262, 1983.

[Sma98] S. Smale. Mathematical problems for the next century.Math. Intelligencer,
20(2):7{15, 1998.

[SSZ91] G. Sonnevend, J. Stoer, and G. Zhao. On the complexity of following the
central path of linear programs by linear extrapolation II. Mathematical
Programming, 52(1-3):527{553, 1991.

[ST04] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: why
the simplex algorithm usually takes polynomial time. Journal of the ACM
(JACM) , 51(3):385{463, 2004.



BIBLIOGRAPHY 163

[Ste10] S. A. Steinberg. Lattice-ordered rings and modules. Springer New York,
2010.

[SW05] D. Speyer and L. Williams. The tropical totally positive grassmannian.
Journal of Algebraic Combinatorics, 22(2):189{210, 2005.

[SZ93] B. Sturmfels and A. Zelevinsky. Maximal minors and their leading terms.
Adv. Math., 98(1):65{112, 1993.

[Tab13] L. Tabera. On real tropical bases and real tropical discriminants. E-print
arXiv:1311.2211, 2013.

[Tar51] A. Tarski. A decision method for elementary algebra and geometry. Re-
search report R-109, Rand Corporation, 1951.

[The06] T. Theobald. On the frontiers of polynomial computations in tropical ge-
ometry. Journal of Symbolic Computation, 41(12):1360{1375, 2006.

[Tod14] M. J. Todd. An improved Kalai-Kleitman bound for the diameter of a
polyhedron. E-print arXiv:1402.3579, 2014.

[TY96] M. Todd and Y. Ye. A lower bound on the number of iterations of long-
step primal-dual linear programming algorithms. Annals of Operations
Research, 62(1):233{252, 1996.

[Val79] L. G. Valiant. The complexity of computing the permanent. Theoretical
computer science, 8(2):189{201, 1979.

[vdD98] L. van den Dries. Tame topology and o-minimal structures, volume 248.
Cambridge University Press, 1998.

[vdDMM94] L. van den Dries, A. Macintyre, and D. Marker. The elementary theory
of restricted analytic �elds with exponentiation. Annals of Mathematics,
140(1):183{205, 1994.

[vdDS98] L. van den Dries and P. Speissegger. The real �eld with convergent gener-
alized power series.Trans. Amer. Math. Soc., 350(11):4377{4421, 1998.

[Vin12] C. Vinzant. Real radical initial ideals. Journal of Algebra, 352(1):392{407,
2012.

[Vir01] O. Viro. Dequantization of real algebraic geometry on logarithmic paper.
In European Congress of Mathematics, pages 135{146. Springer, 2001.

[VY96] S. Vavasis and Y. Ye. A primal-dual interior point method whose running
time depends only on the constraint matrix. Mathematical Programming,
74(1):79{120, 1996.



164 BIBLIOGRAPHY

[Wri05] M. Wright. The interior-point revolution in optimization: history, recent
developments, and lasting consequences.Bulletin of the American mathe-
matical society, 42(1):39{56, 2005.

[Ye11] Y. Ye. The simplex and policy-iteration methods are strongly polynomial
for the markov decision problem with a �xed discount rate. Mathematics
of Operations Research, 36(4):593{603, 2011.

[Zad80] N. Zadeh. What is the worst case behavior of the simplex algorithm?
Technical Report 27, Departement of Operations Research, Stanford, 1980.

[Zim77] K. Zimmermann. A general separation theorem in extremal algebras.
Ekonom.-Mat. Obzor, 13(2):179{201, 1977.

[ZP96] U. Zwick and M. Paterson. The complexity of mean payo� games on graphs.
Theoret. Comput. Sci., 158(1-2):343{359, 1996.

[ZS93] G. Zhao and J. Stoer. Estimating the complexity of a class of path-following
methods for solving linear programs by curvature integrals.Applied Math-
ematics and Optimization, 27(1):85{103, 1993.


	Contents

