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Abstract

In this thesis, we present new results on the complexity of classical linear programming
on the one hand, and of tropical linear programming and mean payo games on the other
hand. Our contributions lie in the study of the interplay between these two problems
provided by the dequantization process. This process tranforms classical linear programs
into linear programs over tropical semirings, such as theR [f 1g endowed with max
as addition and + as muliplication.

Concerning classical linear programming, our rst contribution is a tropicalization
of the simplex method. More precisely, we describe an implementation of the simplex
method that, under genericity conditions, solves a linear program over an ordered eld.
Our implementation uses only the restricted information provided by the valuation map,
which corresponds to the \orders of magnitude" of the input. Using this approach, we
exhibit a class of classical linear programs over the real numbers on which the simplex
method, with any pivoting rule, performs a number of iterations which is polynomial
in the input size of the problem. In particular, this implies that the corresponding
polyhedra have a diameter which is polynomial in the input size.

Our second contribution concerns interior point methods for classical linear program-
ming. We disprove the continuous analog of the Hirsch conjecture proposed by Deza,
Terlaky and Zinchenko, by constructing a family of linear programs with 3r +4 inequali-
ties in dimension 2 +2 where the central path has a total curvature which is exponential
in r. We also point out suprising features of the tropicalization of the central path. For
example it has a purely geometric description, while the classical central path depends
on the algebraic representation of a linear program. Moreover, the tropical central path
may lie on the boundary of the tropicalization of the feasible set, and may even coincide
with a path of the tropical simplex method.

Concerning tropical linear programming and mean payo games, our main result is
a new procedure to solve these problems based on the tropicalization of the simplex
method. The latter readily applies to tropical linear programs satisfying genericity
conditions. In order to solve arbitrary problems, we devise a new perturbation scheme.
Our key tool is to use tropical semirings based on additive groups of vectors ordered
lexicographically.

Then, we transfer complexity results from classical to tropical linear programming.
We show that the existence of a polynomial-time pivoting rule for the classical simplex
method, satisfying additional assumptions, would provide a polynomial algorithm for
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tropical linear programming and thus for mean payo games. By transferring the analysis
of the shadow-vertex rule of Adler, Karp and Shamir, we also obtain the rst algorithm
that solves mean payo games in polynomial time on average, assuming the distribution
of the games satis es a symmetry property.

We establish tropical counterparts of the notions of basic points and edges of a
polyhedron. This yields a geometric interpretation of the tropicalization of the simplex
method. As in the classical case, the tropical algorithm pivots on the graph of an
arrangement of hyperplanes associated to a tropical polyhedron. This interpretation
is based on a geometric connection between the cells of an arrangement of classical
hyperplanes and their tropicalization. Building up on this geometric interpretation, we
present algorithmic re nements of the tropical pivoting operation. We show that pivoting
along an edge of a tropical polyhedron de ned bym inequalities in dimensionn can be
done in time O(n(m + n)), a complexity similar to the classical pivoting operation.
We also show that the computation of reduced costs can be done tropically in time
O(n(m + n)).



Resune

Cette trese pesente de nouveaux esultats de complexie concernant d'un coe la pro-
grammation lireaire classique, et de l'autre la programmation lireaire tropicale, cette
dernereetant relee aux jeux epees. Les contributions proviennent de letude du pro-
cessus de cequantisation qui relie ces deux probemes. La dequantisation transforme
les programmes lireaires classiques en programmes lireaires sur des semi-anneaux trop-
icaux, comme l'ensembleR [f 1g muni de max en tant qu'addition, et de + en tant
gue multiplication.

Concernant la complexie de la programmation lireaire, notre premere contribu-
tion est la tropicalisation de la nethode du simplexe. Plus peciement, nous decrivons
une impementation de la nethode du simplexe qui, sous des conditions de cerericie,
esoud un programme lireaire sur un corps ordonre. Cette impementation utilise seule-
ment l'information partielle donree par la valuation, ce qui correspond aux \ordres de
grandeur" des coe cients du probeme. Cette approche permet de construire une classe
de programmes lireaires eels sur lesquels la nmethode du simplexe termine en un nom-
bre d'ierations qui est polynomial en la taille de I'encodage binaire du probeme, et ce
incependamment du choix de la egle de pivotage.

Notre deuxeme contribution concerne les nmethodes de points inerieurs pour la pro-
grammation lireaire classique. Nous efutons l'analogue continu de la conjecture de
Hirsch propoe par Deza, Terlaky et Zinchenko, en construisant une famille de pro-
grammes lireaires decrits par 3r + 4 iregalies sur 2 r + 2 variables pour lesquels le
chemin central a une courbure totale qui est exponentielle em. La tropicalisation du
chemin central pesente des proprees inattendues. Par exemple, le chemin central trop-
ical peut etre cecrit de manere purement geonetrique, alors que de manere classique le
chemin central cepend de la repesentation des contraintes. De plus, le chemin central
tropical peut rencontrer la frontere de la tropicalisation de I'ensemble ealisable, et peut
méme concider avec un chemin suivi par la nethode du simplexe tropical.

Concernant la programmation lireaire tropicale et les jeux epees, notre esultat
principal est une nouvelle methode pour esoudre ces probemes, base sur la trop-
icalisation de la nmethode du simplexe. Cette dernere esoud directement les pro-
grammes lireaires tropicaux satisfaisant des conditions de gerericies. A n de esoudre
les probemes ne satisfaisant pas ces conditions, une technique de perturbation est
utiliee. L'icke principale est d'utiliser des semi-anneaux tropicaux bases sur des groupes
de vecteurs ordonrees lexicographiguement.
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Nous transtrons des esultats de complexie de la programmation lireaire classique
vers la programmation lireaire tropicale. Nous montrons que I'existence d'une egle de
pivotage polynomiale pour la nethode du simplexe classique fournirai un algorithme
polynomial pour la programmation lireaire tropicale, et donc pour les jeux egees. En
transkrant I'analyse de Adler, Karp et Shamir de la egle de pivotage dite du \shadow-
vertex”, nous obtenons le premier algorithme qui esoud les jeux epees en temps poly-
nomial en moyenne, en supposant que la distribution des jeux satisfait une propret
d'invariance.

Nous etablissons une correspondance ggonetrique entre les cellules d'un arrange-
ment d'hyperplans classiques et leur tropicalisation. Ceci donne une interpetation
geonetrique a la tropicalisation de la methode du simplexe. Comme dans le cas clas-
sique, l'algorithme tropical pivote sur le graphe d'un arrangement d'hyperplans assoce
au poledre. Ce point de vue geonetrique nous permet detablir des ra nements al-
gorithmigues de l'operation de pivotage tropical. Nous pesentons un algorithme qui
pivote le long d'une aréte d'un polyedre tropical e ni par m iregalies en dimension n
en tempsO(n(m + n)). Nous montrons aussi que le calcul des signes des coats eduits
peut se faire tropicalement en tempsO(n(m + n))



Remerciements

First and foremost, | am grateful to my advisors, Sehane Gaubert, Xavier Allamigeon
and Michael Joswig, for their wonderful guidance. This work has greatly bene ted
from Sephane's numerous ideas, and his exaltation in sharing his impressively broad
mathematical knowledge. | am indebted to Xavier for his unwavering support, abundant
suggestions, and his availability for my random appearances in his o ce. | am really
thankful for Michael's sharp advices, his dedication to drive this research forward, and
his warm hospitality during my visits in Darmstadt and Berlin.

| want to thank Thorsten Theobald and Paco Santos for the great honor they have
conferred upon me by reviewing this manuscript. | sincerely appreciate the participation
of llia Itenberg, Antoine Deza and kréme Bolte to my thesis committee.

This work has been co-funded by the \Dekgation Gererale de I'Armement" (DGA)
and a Monge fellowship from theEcole Polytechnique. | also had the chance to attend
several conferences thanks to funds from INRIA and its MaxPlus team. | am grateful
to these institutions for their nancial support.

This work has unfolded at CMAP, a very enjoyable work place. The administrative
team (Nassra, Alexandra, Jessica Gameiro, Wallis) has always been cheerful and helpful.
| really appreciated the nice co ee breaks, meals, beers, and moments | spent with my
fellow PhD students. Thank you Laurent, L titia, Manon, Gwenael, Michael, Etienne,
Antoine, Heene, Charline, Matthieu, and all the others that | forgot to cite. | also
spent a wonderful time with people from the adjacents laboratory. | am thinking of
Claire, Cecile and Victor from the LIX, Marine from LMD, Pascale from the CMLS and
Pascaline and réme from LPP.

| have many friends to thank for the great moments we have shared during the last
three years. Thank you Cyril, Geraldine, Emmanuel, Vincent, Guillaume, Sabrina or
Adeline, Pierre-Alain, Sbastien, Bastien, Fabien, for the various evenings and holidays
we shared. | always enjoy seeing the friends | made in Montreal, CGecile and Cecile,
Sylvain, Melanie, Julien, Chlee, Hubert, Raphael, with a special thanks to my best
roommate, lleana.

I am deeply and truly grateful to my parents and my brothers for their unconditional
love and support, as well as to my family.



CONTENTS




Chapter 1

Introduction

1.1 Context

1.1.1 Linear programming and its complexity

Linear programming is a foundation of mathematical optimization, in both its theoretical
and practical aspects. A linear program seeks a minimizer of a linear form satisfying
linear constraints (see Figure[ 1.1, left for an illustration). Several kinds of problems
in operations research can be modelled within this framework. The ability to solve
linear programs also serves as a building block for more general optimization problems,
such as convex programming, integer programming or non-linear programming. From
a more theoretical point of view, linear programming is related to the geometry and
combinatorics of polyhedra.

One of the main open questions concerns the precise complexity of linear program-
ming. The well-known simplex method, introduced by Dantzig [Dan98], moves on the
vertex/edge graph (Figure , middle) of the feasible set until an optimal solution is
reached. At each iteration, the next vertex is chosen by givoting rule. The number of
iterations depends on the choice of the pivoting rule. The method is extremely e ective
in practice. However, pathological examples show that, for most known pivoting rules,
the method can be compelled to visit exponentially many vertices.

The ellipsoid method of Khachiyan [Kha80] was a theoretical breakthrough. It proved
that linear programs can be solved in polynomial-time. More precisely, the ellipsoid
method solves a linear program within a time bounded by a polynomial inL, where
L is the number of bits required to describe the problem. In a nutshell, the method
determines the emptyness of a polyhedron using a sequence of ellipsoids, whose volumes
shrink exponentially fast. The ellipsoid method extends to arbitrary convex problems,
provided that a separation oracle is known [[GLS88]. Despite its theoretical appeal, the
ellipsoid method is not e cient in practice.

The interior-point methods, initiated by Karmakar [Kar84]] combine good practical
performances with a polynomial-time worst-case complexity. These methods are driven
to an optimal solution by a trajectory, called the central path, that goes through the

1



2 Chapter 1. Introduction

Figure 1.1: Left: alinear program; the feasible set (the gray shaded area) is a polyhedron
de ned by the halfspaces represented by hashed lines; the objective function is displayed
by the dotted arrow; three level sets are depicted in blue; the red dot is the unique
optimal solution. Middle: the vertex/edge graph of this polyhedron. Right: the central
path for this linear program.

interior of the feasible set (see Figurl, right).

Yet, it is unknown whether linear programs can be solved instrongly polynomial
time. An algorithm is strongly polynomial if, given a problem described by n rational
numbers, it peforms a number of arithmetic operations which is polynomial inn, and the
space used by the algorithm is polynomial in the bit length of the input. The existence of
a strongly polynomial algorithm for linear programming has been recognized by Smale
as one of the mathematical problems of the 21st century [Sma98].

Since the invention of the simplex method, linear programming has been an active
eld of research. We mention a few signi cant results, and we refer to [[DL11] for an
overview of recent advances.

The simplex method and the diameter of polyhedra

Klee and Minty [KM72] showed that the simplex method with the pivoting rule originally
proposed by Dantzig visits all vertices of a \tilted" cube, and thus performs a number
of iterations which is exponential in the dimension. The same behavior occurs with the
\steepest" edge rule [GS79], the \best improvement" rule [Jer73b] or Bland's rule[[AC78].
These worst-case examples are subsumed by the deformed products of Amenta and
Ziegler [AZ96]. More recently, superpolynomial behavior was also proved for randomized
pivoting rule [FHZ11], or \history-based" rules that take into account the previously
visited vertices [AF13, [Fri1l].

On the other hand, for linear programs with special properties, several positive results
are known. The simplex method is strongly polynomial for linear programs that arise
from network ow problems [Orl97], from Markov Decision Problems (MDP) with a
xed discount rate [Yell], or from deterministic MDP with any discount rate [HKZ14]
Kitahara and Mizuno showed that, with any pivoting rule that selects improving pivots,
the number of iterations is bounded by a polynomial in the value of entries of the vertices
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of the problem [KM13a, [KM13b]. In particular, this proves strong polynomiality for
linear programs on polyhedra with O=1 vertices.

The shadow-vertex pivoting rule, introduced by Gass and Saaty[[GS55], was used in
several noteworthy results. First, it proved that the simplex method is polynomial on
average for certain distributions of instances [Sma83| Bor87, AKS87]. Second, Spielman
and Teng [ST04] proved that the simplex method has polynomialsmoothed complexity
when the shadow vertex rule is used. Third, it was used by Kelner and Spielman [KS06]
to obtain a randomized algorithm with polynomial expected running time. Note however
that superpolynomial worst-case examples are known for this rule_ [Gol94, Mur&0Q].

The complexity of the simplex method is tightly linked to the combinatorics of poly-
hedra, in particular, to the diameter of their vertex/edge graph. Hirsch conjectured
that the diameter of a polytope described by m inequalities in dimension n does not
exceedm n. In a recent breakthrough, Santos disproved this conjecture[ [Sanl2]. Yet,
whether the diameter is bounded by a polynomial inm and n remains an open question.
Kalai and Kleitman obtained a general bound of m'°9(M+2 [KK92], that was improved
recently by Todd [Tod14] to (m n)'°9(") Bonifas et al. obtained a bound that depends
on the value of the subdeterminants of the input matrix [BDSE™ 12] (see also[[BR14]
for a constructive version). The Hirsch conjecture holds in special cases, such asi0
polytopes [Nad89] or transportation polytopes [DLKOS09]. For a thorough survey on
the diameter of polyhedra, we refer to [KS10].

Interior point methods, and the curvature of the central path

Interior point methods performs a piece-wise linear approximation of the central path
to reach an optimal solution. The curvature measures how far a path diers from
a straight line. Intuitively, a central path with high curvature should be harder to
approximate with line segments, and thus this suggests more iterations of the interior
point methods. Dedieu and Shub/[DS05] conjectured that the total curvature of a linear
program in dimensionn is bounded by O(n). This conjecture holds when averaged over
all regions of an arrangement of hyperplanes. It was proved by Dedieu, Malajovich and
Shub [DMSO05] via the multihomogeneous Bezout Theorem and by De Loera, Sturmfels
and Vinzant [DLSV10] using matroid theory. However, the redundant Klee-Minty cube
of [DTZ09] and the \snake" in [DTZ08] are instances which show that the total curvature
can be in (m) for a linear program described bym inequalities. By analogy with the
classical Hirsch conjecture, Deza, Terlaky and Zichencko made the following conjecture.

Conjecture 1.1 (Continuous Hirsch conjecture [DTZ08]). The total curvature of the
central path of a linear program de ned by m inequalites is bounded byD(m).

Besides the redundant Klee-Minty cube [DTZ09] and the \snake" [DTZ08], Gilbert,
Gonzaga and Karas[[GGKO04] also exhibited ill-behaved central paths. They showed that
the central path can have a \zig-zag" shape with in nitely many turns, on a problem
de ned in R? by non-linear but convex functions. In terms of iteration-complexity of
interior-point methods, several worst-case results have been proposed [Ans9l, KY91,
JY94, Pow93, [TY96, [BL97]. In particular, Stoer and Zhao [ZS93] showed that the
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iteration-complexity of a certain class of path-following methods is governed by an inte-
gral along the central path. This quantity, called the Sonnevend's curvaturewas intro-

duced in [SSZ91]. The tight relationship between the total Sonnevend's curvature and
the iteration-complexity of interior-points methods have been extended to semi-de nite

and symmetric cone programs|[[KOT13]. Monteiro and Tsuchiya [MTQ08] proved that

a central path in dimension n consists of O(n?) \long" parts where the Sonnevend's

curvature is small, while the remaining part of the path is relatively small. This was

also observed by Vavasis and Ye [VY96] using a notion ofrossover events

Note that Sonnevend's curvature is a di erent notion than the geometric curvature
we study in this manuscript. To the best of our knowledge, there is no explicit relation
between the geometric curvature and the iteration-complexity of interior-point methods.
However, these two notions of curvature share similar properties. In particular, the
total geometric curvature and the total Sonnevend's curvature are maximal when the
number of inequalities is twice the dimension [[DTZ08,[ MT13b]. On the redundant
Klee-Minty cube, both the total geometric curvature and the Sonnevend's curvature are
large [MT134,/DTZ09].

Sonnevend's curvature relates to another iteration-complexity bound expressed in
terms of a condition number associated with the matrix describing a linear program,
see [MTO08].

We also mention that Megiddo and Shub [MS89], as well as Powell [Pow93], showed
that interior point methods may exhibit a simplex-like behavior. For more litterature
on interior points methods, we refer to [Wri05, [Gon12] and the references therein.

1.1.2 Tropical geometry

Tropical geometry is the (algebraic) geometry on the max-plus semiring (Rmax; ; )
where the setRnax = R[f1lg is endowed with the operationsa b = max(a;b)
anda b= a+ b The max-plus, or min-plus semirings, are now dubbedtropical
semirings in honor of pioneering work of the mathematician and computer scientist
Imre Simon. Tropical semirings were studied under various names in relation with
optimization [CG79], graph algorithms [GM84], or discrete event systems|[CMQV89,
BCOQ92,/[CGQ99,[HOvdWOE]. Tropical algebra has a strong combinatorial avor. For
example, determinants correspond to optimal assignments, and eigenvalues corresponds
to cycles of maximum mean in a graph/([But03].

The set Rpnax can be seen as the set of \orders of magnitude”. If one think of tropical
numbers a;b2 T as exponents of usual numberse.g., 107 and 1, then, the tropical
operations max and + re ect the usual addition and multiplication on the exponents,
ie., 108 + 10> 10m(&b) gnd 1* 10°P = 102*P. More formally, we can identify
a 2 Rmax with a class (t2) of real valued functions, wheref 2 (t3) when f satisfy
ct®  f(t) < c4? for some positive constantsc; ©2 R, and for any t large enough. Then,
f2 (td)andg2 (Y satisfyf+g2 (@™@D)yandf g2 (t2°P). Thus, the
valuation map

val: f 7! tI'ilm log, (f (1)) ;
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Figure 1.2: lllustration of the dequantization process on the family of polyhedra @ (1))
of Example[1.2. Left: a polyhedronP (t). Middle: its image under the logarithmic map
in baset. Right: the dequantization of the family (P (t));.

where log(x) = log( x)=log(t), is a semiring homomorphism from a certain set of pos-
itive real valued functions, equipped with addition and multiplication, to the max-plus
semiring. This logarithmic limit process is known as Maslov'sdequantization [Lit07], or
Viro's method [VirQ1]. It can be traced back to the work of Bergman [Ber71]. More gen-
erally, the tropical semiring can also be thought of as the image of a non-Archimedean
eld under its valuation map. The non-Archimedean elds typically used are the eld
of rational functions, formal Puiseux series [[EKLO6, DY07,[RGSTO05] or the eld of
generalized Puiseux series with real exponents [Marl0].

Example 1.2. Consider for example the eld R(t) of rational functions in the variable
t. We can order R(t) by setting f 2 R(t) to be positive when f (t) > 0 for all t large
enough. Now consider the following polyhedrorP over the ordered eld R(t):

X1+ X2 1
X1 t 1+tX2

X t 1+t2X1

X1 t2X2
X1 0 x2 O
X1 2 R(1); X2 2 R(t) :

When t is replaced by real numbers, we obtain a family of polyhedra  (t)); in R2.
One of these polyhedra is depicted in Figur2 (left). Applying the mapx 7! log,(x)
point-wise to P (t) provides the set displayed in Figurg 1.2 (middle). The dequantization
of the family (P (1)) is the logarithmic limit illustrated in Figure right).

Through the dequantization process, tropical geometry provides a piece-wise linear
\shadow" of classical geometry. The tropicalization of an algebraic varietyV, that is,
the joint vanishing locus of nitely many polynomials in d indeterminates over a eld
with a non-archimedian valuation, is a polyhedral complex in RY, the tropical variety



6 Chapter 1. Introduction

T(V), which is obtained by applying the valuation map coordinate-wise to all points in
V. For instance, if C is a planar algebraic curve over an algebraically closed eld, then
T(C) is a planar graph. Key features ofV are visible in T(V). For example, if V is
irreductible, then T (V) is connected [EKLO6].

Tropicalization has been succesfully applied in enumerative geometry. The Gromov-
Witten invariants count the number of planar complex algebraic curve passing through a
generic con guration of points. Mikhalkin showed that these numbers coincide with their
tropical counterparts (counted with multiplicities), that are easier to compute [Mik05].
The same technique also applies to real algebraic curves [IKS03]. Given a tropical curve,
one can construct real algebraic curves whose topology coincides with the tropical one.
This method, known as Viro's patchworking, produced curves with a rich topology.
In particular, patchworking was used to disprove the Ragsdale conjecture [IV96]. For a
more detailed description of tropical varieties, we refer to[[RGSTO05, EKLO6[ IMSQO7| MS].
Computational aspects are developped in [BJS07], and complexity issues are studied
in [The06]. An enlightning introduction is given in [Brul2].

The dequantization of semi-algebraic sets is a more recent subject of research. Speyer
and Williams [SWO05], studied the tropicalization of the positive part of the Grassman-
nian. Tabera explored the bases of real tropical varieties [Tab13], and Vinzant investi-
gated their real radical ideals [Vin12]. The tropicalization of polytopes, the most simple
class of semi-algebraic sets, was studied by Develin and YU _[DY07] and by Ardila and
Develin [AKWO06]. Alessandrini [Alel3] devised a framework to study the logarithmic

limit of families of semi-algebraic sets.

1.1.3 Tropical linear programming

We are interested in the tropical counterpart of linear programming. A tropical linear
program asks for a minimizerx 2 Ry, of a tropical linear form

max( 1+ X1;::, n+t Xn, ) max( 1+ X1iii ont+ Xn) )

where ; 2 R, and ; 2 Rmax. An example is depicted in Figure[1.3. The feasible
set of a tropical linear program forms a tropical polyhedra, the most basic example of
tropical convex sets.

The tropical analogues of convex sets have appeared in the work of several au-
thors. Motivated by discrete optimization problems, Zimmerman established a sepa-
ration result [Zim77]. Max-plus analogues of linear spaces were studied by Cuninghame-
Green [CG79]. They were also considered by Litvinov, Maslov, and Shpiz under the
name of idempotent spaces [LMSQ1]. Cohen, Gaubert, and Quadrat [CGQOL, CGQD4]
also studied them under the name of semimodules, for a geometric approach of discrete
event systems|[[CGQ99], further developed in[[Kat07, DLGKL10]. They were also con-
sidered by Singer for abstract convex analysid [Sin97]. Tropical convexity is similar to
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X2 /

1 2 3 4 5 6 7 8 9 X1

Figure 1.3: A tropical linear program. The feasible set is the union of the gray shaded
area with the black haline. Three level sets for the objective function (x1;x2) 7!
max(xy; X2) are depicted in blue. The red segment is the set of optima.

the B-convexity studied by Briec, Horvath, and Rubinov [BHO04, BHRO5]. Develin and
Sturmfels gave in [DS04] another approach of tropical convexity. They studied tropical
polyhedra as polyhedral complexes in the usual sense. Some more recent developments
include [Jos05%/JSYOV[ BY06/ BSSO7, GKC9, Jos09, GM10, AGG10].

1.1.4 From tropical linear programming to mean payo games

Akian, Gaubert and Guterman [AGG12] proved that mean payo games are equivalent
to tropical linear feasibility problems. We brie y recall this equivalence, and we refer
the reader to [AGG12] for more information. We shall describe a mean payo game
by a pair of payment matrices A;B 2 R.'. We also x an initial state | 2 [n]. The
corresponding game, with perfect information, is played by two players, called \Max"
and \Min". Their moves alternate as follows. We start from state jo := |. Player Min
chooses a statd; 2 [m] such that Bj,j, 6 1 , and receives a payment ofBjj, units
from Player Max. Then, Player Max chooses a statej; 2 [n] such that Aj;;, 6 1
and receives a payment ofA;,j, from Player Min. Now Player Min again chooses a state
i 2 [m] such that Bj,;, 6 1 , receives a payment ofB;,;, from Player Max, and so
on. If jo;i1;j1;i2;j2;::: is the in nite sequence of states visited in this way, the mean
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payo of Player Max is de ned to be
liminf p Y( Biyo+ Aijy Bisjy + Aigj, + Bipip 1t Aigjp) (1.1)
Conversely, themean payo for Player Min is

Iirpr'llsupp 1( Bitjo + Aiyji Biyjy t Apgj, + Bipip 1t Aipjp) : (1.2)

It is assumed that A has no identically 1 row, and that B has no identically 1
column, so that at each stage, Players Min and Max have at least one available action
with nite payment. Note that payments are algebraic, i.e., a negative payment is a
positive payment in the reverse direction. A strategy is positional if the next state is
selected as a deterministic function of the current state. A fundamental result established
independently by Liggett and Lippman [LL69] and by Ehrenfeucht and Mycielski [EM79]
shows that this game has a value and that it has optimal positional strategies. That is,
there is a real number = |, a positional strategy for Min, and a positional strategy
for Max, such that the following properties hold:

The mean payo for Min is at most , if Min plays according to her positional
strategy. This is independent of Max's play.

The mean payo for Max is at least , if Max plays according to his positional
strategy. This is independent of Min's play.

Hence, with optimal play of both players the mean payo for both players is exactly
and in this case the sequences i.l) an.2) converge to. We say that the initial
state | is winning for Player Max if | 0. It should be noted that mean payo games
can be thought of as limits of discounted zero-sum games as the discount rate tends to
0. To decide whether or not a given state is winning is the natural decision problem
MEAN-PAYOFF associated with a mean payo game. Zwick and Paterson showed
that MEAN-PAYOFF is in NP\ co-NP. It is a major open question in computational
complexity whether there is a polynomial time algorithm for MEAN-PAYOFF. The
following theorem characterizes the set of winning states in terms of a tropical version
of a linear programming feasibility problem.

Theorem 1.3 ([AGG12| Theorem 3.2]). The initial state | 2 [n] is winning for Player
Max, in the mean payo game with payment matricesA and B, if and only if there exists
a solution x 2 Rf,, With x| =0, to the system:

maxAj + Xj maxBj + X; forall i2[m]: (1.3)

i2[n] i2[n]
We next give more insight on this result as it is fundamental in the sequel. It relies
on xed point properties of the Shapley operator. The latter is a self-mapF of R",
preserving the standard partial order of R", which is such that [F"(O)]| gives the value
of the zero-sum game innite horizon k with initial state |, with the same instantaneous



1.1 Context 9

Figure 1.4: A mean payo game. The states in which Max plays are depicted by squares,
while the states in which Min plays are depicted by circles. Edges represents valid moves,
and are weighted by payments. An edge with no weight indicate a 0 payment.

payments. (We denote byF* the k-th iterate of F.) The limit of [ FK(0)=K]; ask ' 1 ,
i.e., the limit of the value per turn of the nite horizon game, is known to coincide with
the value of the mean payo game. The Shapley operato- does extend to a self-map
of RfLax- It is shown in [AGG12] that the value of the mean payo game is nonnegative
if and only if there exists a vectorx 2 Rfj,,, suchthatx; 6 1 andF(x) x, the latter
inequality being equivalent to (1.3). Due to the homogeneity of the constraints in [1.3)
there is a solution with x; 6 1 if and only if there is a solution with x| = 0. A feasible
point x serves as a certi cate that all initial states j with x; 6 1 are winning. Also,
if a feasible point x is known, a winning strategy for Player Max is obtained by moving
from every statei 2 [m] to a state j achieving the maximum in max »n(Ajj + Xj).

Example 1.4 The mean payo game with the following payment matrices is depicted in
Figure (for the sake of readability, 1  entries are represented by the symbol \"):

1 1
1 2

0 0
0
3 0 0
A= 0 4 . B = 0 :
+1 00
0

0 +2

In this game, the only winning initial states for Max are 4 and 5. Indeed, the point
(1 ;1 ;1 ;0;0)is asolution of the system of tropical linear inequalities correspond-
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ing to the matrices A and B:

max(x, 1;x3 2) Xi
max(X; 3;X3) Xo
max(X1;X2  4) X3
Xa+1 max(Xs;Xa; Xs)
max(xi1;Xs+2) X :

Each solution x 2 R?,,, satises X1 = X = xz= 1

1.1.5 Algorithms for tropical linear programming

Several algorithms have been proposed for tropical linear programming or related prob-
lems. The alternating projection method introduce by Cuninghame-Green and Butkovc
in [CGBO3] determines the feasibility of a tropical polyhedra in pseudo-polynomial
time [BAO8], see also[[Butl0, Chapter 10]. This was extended ir [GS07] to cyclic pro-
jections (allowing one to determine a point in the intersection of more than two tropical
convex sets), and applied in[[AGNS11] to the situation in which a tropical convex set
is given as an intersection of halfspaces. The algorithm proposed in [BZ06] also solves
tropical linear feasibility problems, but exhibits an exponential behavior on a class of
examples found by Bezem, Nieuwenhuis and Rodrguez-Carbonell [BNRCO08]. Integers
points of tropical polyhedra can be found in strongly polynomial time under gener-
icity conditions [BM14a] BM14b]. The tropical double description method [AGG13]|
computes an internal representation of a tropical polyhedron described by inequalities.
Hence, it provides an algorithm for tropical linear programming. However, the size of
an internal representation grows exponentially with the dimension and the number of
inequalities [AGK11].

Since, as we saw in Section 1.11.4, tropical linear feasibility problems are equivalent to
mean payo games, every algorithm solving mean payo games can be applied to tropical
linear programming. These include in particular value iteration algorithms [ZP96] and
policy iteration algorithms [Pur95] CTGG99] JPZ06] DGO06, BVO7| (Cha09]

A tropical linear program always arises as the tropicalization of a classical linear
program over a non-Archimedean eld. Hence, tropical linear programming can be
thought of as an asymptotic version of linear programming [[Jer73R], and the approach
of Filar, Altman and Avrachenkov [FAAOZ]l should also solve tropical linear programs.

The more general problem of tropical factional linear programming can be solved by
the algorithms presented in [GKS12] and[[GMH14].

1.2 Contributions

In this thesis, we present new results on the complexity of classical linear programming
on the one hand, and of tropical linear programming and mean payo games on the other
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hand. Our contributions lie in the study of the interplay between these two problems
provided by the dequantization process.

Concerning classical linear programming, our rst contribution is a tropicalization
of the simplex method. More precisely, we describe an implementation of the simplex
method that, under genericity conditions, solves a linear program over an ordered eld.
Our implementation uses only the restricted information provided by the valuation map,
which corresponds to the \orders of magnitude” of the input. Consequently, the number
of iterations of the simplex method can be measured in terms of the value of these \orders
of magnitude". Using this approach, we exhibit a class of classical linear programs over
the real numbers on which the simplex method, with any pivoting rule, performs a
number of iterations which is polynomial in the input size of the problem. In particular,
this implies that the corresponding polyhedra have a diameter which is polynomial in
the input size.

Our second contribution to classical linear programming comes from the study of
the dequantization of the central path. We disprove the continuous analog of the Hirsch
conjecture proposed by Deza, Terlaky and Zinchenko, by constructing a family of linear
programs with 3r +4 inequalities in dimension 2r + 2 where the central path has a total
curvature which is exponential inr. Our counter-example is obtained as a deformation of
a family of tropical linear programs introduced by Bezem, Nieuwenhuis and Rodrguez-
Carbonell. We also point out suprising features of the tropical central path. For example
it has a purely geometric description, while the classical central path depends on the
algebraic representation of a linear program. Moreover, the tropical central path may
lie on the boundary of the tropicalization of the feasible set, and may even coincide with
a path of the tropical simplex method.

Concerning tropical linear programming and mean payo games, our main result is
a new procedure to solve these problems based on the tropicalization of the simplex
method. The latter readily applies to tropical linear programs satisfying genericity
conditions. In order to solve arbitrary problems, we devise a new perturbation scheme.
Our main tool is to use tropical semirings based on additive groups of vectors ordered
lexicographically.

Then, we transfer complexity results from classical to tropical linear programming.
We show that the existence of a polynomial-time pivoting rule for the classical simplex
method, satisfying additional assumptions, would provide a polynomial algorithm for
tropical linear programming and thus for mean payo games. By transferring the analysis
of the shadow-vertex rule of Adler, Karp and Shamir, we also obtain the rst algorithm
that solves mean payo games in polynomial time on average, assuming the distribution
of the games satis es an symmetry property.

We establish tropical counterparts of the notions of basic points and edges of a
polyhedron. This yields a geometric interpretation of the tropicalization of the simplex
method. As in the classical case, the tropical algorithm pivots on the graph of an
arrangement of hyperplanes associated to a tropical polyhedron. This interpretation
is based on a geometric connection between the cells of an arrangement of classical
hyperplanes and their tropicalization. Building up on this geometric interpretation, we
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present algorithmic re nements of the tropical pivoting operation. We show that pivoting
along an edge of a tropical polyhedron de ned bym inequalities in dimensionn can be
done in time O(n(m + n)), a complexity similar to the classical pivoting operation.
We also show that the computation of reduced costs can be done tropically in time
Oo(n(m + n)).

These algorithmics re nements, along with our perturbation scheme, have been im-
plemented in the library Simplet [Benl4]. Hence, this library provides a solver for
arbitrary tropical linear programs.

1.3 Organisation of the manuscript
This manuscript is organized as follows.

Chapter [2 presents the framework used throughout this manuscipt. It recalls the
de nitions of tropical semirings, non-Archimedean elds, and related notions.

Chapter [3 exposes the tropical implementation of the simplex method.

In Chapter @} we study tropical polyhedra and their relations with classical polyhe-
dra. We also devise the perturbation scheme that allows to solve arbitrary tropical
linear programs with the tropical simplex method

In Chapter B} we transfer complexity results based on the simplex method back
and forth between tropical and classical linear programming.

Chapter|[g concerns the tropicalization of the shadow-vertex rule, and of the average
case analysis of Adler, Karp and Shamir.

Chapter [7] exposes algorithmic re nements of the tropical simplex method.
Chapter [8 deals with the tropical analysis of the central path.

Most of the notions needed to read this manuscript are given in Chapter§]4,]3 and] 4.
The other chapters can mostly be read independently, even if the approach in Chaptér| 6
uses ideas already present in Chaptdr]5.

The tropicalization of simplex operations (pivoting and computing reduced costs) was
presented in [ABGJ13b]. In [ABGJ134d], the tropicalization of combinatorial pivoting
rules was presented (combinatorial pivoting rules rely only on the signs of the minors
of the input matrix). The study of the tropical shadow-vertex rule [ABG14] led to the
more general framework ofsemi-algebraic pivoting rules that we adopt in Chapter B]
Chapter [4 gathers results that appeared in [ABGJ13b] and [ABGJ13a]. Chapter|p
generalizes to semi-algebraic pivoting rules the transfer of complexity theorem presented
in [ABGJ13a], and also contains new results. Chaptef 6 is covered i [ABG14] and
Chapter [7] is included in [ABGJ13b]. Chapter [§ is mostly covered in [[ABGJ14], but
includes a slight improvement of the curvature analysis.



Chapter 2

Preliminaries

In this chapter, we recall the de nitions of (totally) ordered abelian groups and (totally)
ordered elds. Note that the orders on the structures that we consider will always be
total order. We also present basic notions of model theory. In particular, the notion
of completeness of a theory will play an important role. Indeed, the completeness of
the theory of ordered eld will allow us to transfer results that holds on the eld of
real numbers to other ordered elds. We also present the framework we shall work
with: tropical semirings and non-Archimedean elds. The tropical semirings we consider
are constructed from arbitrary ordered groups. They arise as the image under the
Archimedean valuation map of ordered elds, such as the eld of formal Hahn series.

2.1 Model theory

We recall some de nitions and results of model theory, referring the reader to[[Mar0OR2]
for more background.

2.1.1 Languages and rst-order formul

A languageL = ( R;F;C) consists of a set of relation symbolRR, a set of function symbols
F, and a set of constant symbolsC. Each relation symbol R 2 R is equipped with an

arity , nr, which is a positive integer. Similarly, each function symbolf 2 F also has
an arity, denoted asn; . For example, the language of ordered groups ikog = (<; +;0),

and the language of ordered rings id.or = (<; +; ;0;1). In these two languages, the
order relation symbol < and the arithmetic function symbols +; have arity two. We

shall now describe the ( rst-order) formul of a language L. Such a formula is a string
of symbols built from the symbols of L, a nite number of variable symbols vi;vy;:::,

the equality symbol =, the Boolean symbols: , ~,_ (\not", \and", \or"), quantiers 8,

9 and parentheses (,). AnL-term is either:

a variable symbolyv;, for somei 1

a constant symbolc2 C

13
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An L-formula is then de ned inductively as follows:
if t1 and t, are L-terms, then t; = t, is an L-formula

if R 2 R is a relation symbol, andty;:::t,, are terms, then R(ty;:::ths) IS an
L -formula

if and areL-formul,then( : ),( ~ )and( _ ) areL-formul
if is anL-formula and v; is a variable symbol, then9v; and 8v; areL-formul

A variable symbol v; which occurs in a formula without being modied by a
quantier 9 or 8 is said to be afree variable. We shall emphasize the free variables

called a sentence In the following, we shall use the usual abbreviations in rst-order
formul :

I for :

$ for( ! )A(C D)
Vn
izx ifor 1N N A
Wn

i=1 i for 1_ > AN

9lv (v) for 9v( (W)™ (Bw( (w)! w=V)).

2.1.2 Structures

Let L = (R;F;C be a language. AnL-structure M consists of a non-empty setM
(called the domain of M) together with an interpretation LM of the symbols ofL in
M. A relation symbol R 2 R is interpreted by a subset Sg M "R where a tuple

interpreted by a map M"" | M, and the interpretation of a constant symbol c 2 C is
an element ofM . For example, the ordered eld of real numbersR = (R;<; +; ;0;1) is
a L o-structure. In the following, we shall use the same notationL for a language and
its interpretation. Hence, we will denote a L -structure M by (M; L).

The interpretation of the language L induces an interpretation of the formul of L

If Mistrue at a2 MK, we write M E (). In particular, if  is a sentence oL, the
function M is constant. Thus a sentence de nes a statement ol which is either true
or false.

For example, consider the following formula in the language of ordered ring& or:

V):9%(y y=v):



2.1 Model theory 15

When interpreted in a L -structure M, the sentence (v) yields a boolean function
which is true at a 2 M if a admits a square root in M. Now consider the following
sentence:

8 (x> 0!9 y(y y=x)):

A Lo-structure M satisfy M if every positive element of the domain ofM has a
square root. This statement is false orL o -structure of the rational numbers Q = (Q; <
;+; ;0;1), but true on the ordered eld of the real numbers R.

2.1.3 Complete theories

A L-theory T is a set of sentences of the languagke, the axioms of the theory T. A
L-structure M is a model of the theory T if M F  for all axioms 2 T. We say that
a L-theory is complete if, for any two models M ;N of the theory T, a L-sentence is
true in M if and only if it is true in N.

We shall describe two complete theories: the theory of ordered divisible abelian
groups and the theory of real closed elds.

Ordered abelian groups

The theory of abelian groups consists of the following sentences in the languadey =
f+;0g.

8Xx0+x=x+0= X (identity element)
8x8y8z x+(y+2z)=(x+y)+ z (associativity)
8x9y x+y=y+x=0 (invertibility)

8x8y x+y=y+x (abelian)

The theory of divisible abelian group is obtained by adding, for all integersn 2, the
axiom:

BXOY Yy, ty=x (divisibility)

n times

Ordered (divisible) abelian groups are described in the languagé og = f<; +;0g by the
axioms of (divisible) abelian groups along with:

8x : (x<x) (irre exivity)
8x8y8z ((x<y)ry<z)! x<2z) (transitivity)
8Xx8y (Xx<y _X=y_ y<Xx) (totality)
8x8y8z (x<y ! X+z<y+ 2) (translation-invariance)

The non-strict order relation  isthen dened as8x8y (x y)$ (x<y _x=Yy).

Theorem 2.1 ([MarQ2} Corollary 3.1.17]). The theory of ordered divisible abelian groups
is complete.

This result can be traced back to Robinson[[Rob77, Theorem 4.3.2].



16 Chapter 2. Preliminaries

Ordered elds

The theory of ordered elds is described in the languagd.or = (<; +; ;0;1). It consists
of the axioms of ordered abelian groups in the language<( + ; 0), along with:

8x1l x=x 1=1 (multiplicative identity element)
8x8y X y=vy X (commutativity of multiplication)
8x8y8z x (y z)=(x vy) z (multiplicative associativity)
8X (x=0_9yx y=1) (multiplicative invertibility)
8x8y8z x (y+2z2)=(X y)+(x 2) (distributivity)
8x8y8z (x<y)"z>0)! x z<y 2) (scaling-invariance)

The theory of real closed elds is obtained from the theory of ordered elds by also
requiring every positive element to be a square root and every polynomial of odd degree
to have at least one root. In symbols, the rst requirement is described by:

8Xx (x>0!'9 y;(y y=Xx));

while the second requirement amounts to the set of sentencds , jn  Og, de ned by:

N+ +a x+a=0);

n 1 8ap8ay i 18asn+1 9X (agn+1 X"+ ay X
where we usexX as an abbreviation forr X {z':: )Jg

k times

Theorem 2.2 ([Mar02, Corollary 3.3.16]). The theory of real closed elds is complete.

This theorem follows from the work of Tarski and Seidenberg[[Tar51, Sei%4] who
proved that the theory of real closed elds admits elimination of quanti ers.

2.2 Tropical semirings and non-Archimedean ordered elds

The theory of ordered (commutative) semirings, in the language €; +; ;0; 1), is obtained
from the theory of ordered elds by removing the axioms asserting the existence of inverse
elements for the addition and the multiplication, and adding the axiom 8x 0 Xx =

x 0 =0. The set of non-negative integers, or the set of non-negative real numbers, with
their natural ordering and usual addition and multiplication, are examples of ordered
semirings.

We are mainly interested in semirings formed with the non-negative elements of
an ordered eld. On these semirings, the notion of \order of magnitude” is captured
by Archimedean classes. The map that sends an element to its Archimedean class is
a homomorphism to another semiring, called a tropical semiring. We begin with the
description of tropical semirings, and explain how they arise from ordered elds. We
then present non-Archimedean elds, that is elds with a non-trivial set of Archimedean
classes. First, the eld of Hahn series consists of formal power series with exponents in an
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arbitrary ordered group. Second, we present elds of real-valued functions, called Hardy
elds. Such a eld consists of functions that are de nable in a o-minimal structure. The
advantage of an Hardy eld over Hahn series is that it consists of real-valued functions,
rather than formal objects.

2.2.1 Tropical semirings

We are interested in a speci ¢ class of ordered semirings, that we cattopical semirings.

We shall describe them in the language<€; ; ;0;1). Given an ordered abelian group
(G;<; +4), the tropical semiring (T(G);<; ; ;0;1)is de ned as follows. The base set
is T(G) = G[f Oy(g)g where the new elemenOr ) 62G satis es Oy(g) > a forall a2 G.

The additive law is dened by a b= max(a;b), where the maximum is taken with

respect to <. The multiplicative law is the group addition + extended to T(G) by

setting a + Org) = Oyg) + @ = Oyg) for all a2 T(G). The zero and unit elements
are Or(gy and 17 := Og, the neutral element of G, respectively. In the following, we

simply denote T(G) by T when this is clear from the context.

The operations are extended to matricesﬁ_= (Aj );B = (Bjj) with entries in T by
setting A° B =(Aj; Bj)and A B =( (Aik Byj). In the following, unless
explicitly stated, the entries of a matrix A are denoted by Aj . Moreover, we denote
by A, the submatrix of A obtained with rows indexed by |. By abuse of notation, we
denote A¢jg by Aj. We also denote byA” the transpose of the matrix A. For the sake
of simplicity, we identify vectors of size n with n 1-matrices.

Given a = (&) 2 T* " and x 2 T", we denote by argé x) the set of indices

a x=max(ay + Xj):
i2[n]

The usual total order on G extends to T. This induces a partial ordering of tropical
vectors by entry-wise comparisons. The topology induced by the order makesT( ; )
a topological semiring.

In the following, we will think of the n-fold product spaceT" as a semimodule over
T, where scalars act tropically on vectors by (;x ) 7! X:=( +Xqg;:::; + Xp)and
the tropical vector addition is (x;y) 7! x y:= (max(X1;VY1);:::;max(Xn;¥yn)).

2.2.2 Non-Archimedean elds

Let K be an ordered eld. Two elementsa;b 2 K satisfy the Archimedean relation if
they are within a rational multiple of each other, i.e., if there exists a positive rational
number r such that r 1jbj < jaj < r jbj, wherejaj = max(a; a) is the absolute value.
The equivalence class o& for the Archimedean relation is called the value of a and is
denoted by val(@). The map val : a 7! val(a) is called avaluation map.

We shall see below that valK nf0g) is an ordered group, called thevalue groupof K .
A eld K is non-Archimedean if its value group is not the trivial group, i.e., if K nf0g
has more than one Archimedean class.
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A lift of a valuea 2 val(K) is an elementa 2 K such that val(a) = a. Clearly,
such a lift is by no means unique. The set of all lifts will be denoted val *(a). The set
of values val(K) inherits an order from the order on K, and an operation from the
multiplication on K. They are de ned for a;b2 val(K) by:

a<b, a6 bandjaj< jbj for any a 2 val (a);b2 val (b
a b=val(ab) for any a 2 val (a);b2 val (b):

These de nitions do not depend on the choice of the liftsa; b.

Proposition 2.3.  The ordering relation a < b and the operationa b are well-de ned
for any a;b 2 val(K). Moreover, the setval(K nf0g), equipped with the order<, the
operation , and the neutral elementl := val(1) , forms an ordered abelian group.

Proof. First, let us show that a < b is well de ned for any a;b2 val(K). Suppose that
a6 b. Consider anya 2 val %(a);b 2 val 1(b), and assume without loss of generality
that jaj < jbj. Then, we claim that jag < jbS for all a2 val (a) and b°2 val (b).
By de nition, there exists two rational numbers p;q 2 Q such that jaj < pjaj and
jbj < qjby. Sincejaj < jbj, we obtain ja§ < pqjbj. Suppose, by contradiction, that
ja3 j bY. Then, ja9 > }jbY. Consider the rational number r = max(pg;2). We have
r 1jbY < jaG < rjb9. Hence, a®and b° belongs to the same Archimedean class. This
contradicts the hypothesis val(@) 6 val( b), and proves our claim.

Second, let us showa b= val( ab) is independent of the choice ofa 2 val (a) and
b2 val 1(b). Consider any lifts a;a®2 val %(a) andb;b°2 val (b). By de nition, there
exist two rational numbers p;q2 Q such that p tja9 < jaj < pja§ and q 1jby < jbj <
q 1jbY. It follows that ( pg) tja®I < jabj < (pg)ja%bT, and thus val(a®d = val( ab).

It follows immediately from the de nition that is commutative, admits 1 = val(1)
as a neutral element, and that any element val@) 2 val(K nf0g) has an inverse valg 1).
Moreover, it is also easy to see thaa >b impliesa c¢>b cforall a;b2 val(K) and
c 2 val(K nf0g). Consequently, (val(K nf0g);<; ) is an ordered abelian group. [

In the following, we shall always identify val(K ) with the tropical semiring based on
the value group of K, where we have se® := val(0). The valuation map satis es the
following crucial properties.

Proposition 2.4. Let (K;<; +; ;0;1) be an ordered group andval(K);<; ; ;0;1)
the tropical semiring of its value group. The valuation map, restricted to the sekK .
of non-negative elements oK, is a homomorphism of ordered semirings, i.e., for any
a;b2 K., we have:
val(a + b) =val(a) val(b)
val(ab) =val(a) val(b) :
a b) val(a) val(b)

Proof. The identity val( ab) = val( a) val(b), and the implication a b)) val(a)
val(b) are direct consequences of the de nition of the order on valK ) and of the operation
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. We now prove the equality val(a+ b) = val( a) val(b). Consider two positive elements
a;b 2 K. Without loss of generality, we can assume thata  b. We have the inequalities
2a a+b a=2, and thus val(a + b) = val( a) = max(val( a); val(b)). O

2.2.3 Signed tropical numbers, and the signed valuation map

We now enhance the valuation map with a sign information. Thesigned tropical numbers
T =T4+[ T consist of two copies ofT, the set of positive tropical numbers T, and the
set of negative tropical numbersT . These elements are respectively denoted as and

afora2 T. The elementsa and a are distinct unlessa = Ot. In the latter case, these
two elements are identi ed, i.e., we haveOy = Ot. The sign of the elementsa and a
are sign@) = 1 and sign( a) = 1, respectively, whena is not Oy, and sign(O) = 0.
The re ection map a7! x sends a positive elemenato a, and a negative element a
to a. The modulusof x 2 fa; agis de ned asjxj := a. The multiplication x y of two
elementsx;y 2 T yields the element whose modulus igxj + jyj and whose sign is the
product sign(x) sign(y). The positive part and the negative part of an elementa2 T
are the tropical numbersa* and a de ned by:

+ _ Jg if ais positive _ 0 if ais positive
. a . .
0 otherwise IET otherwise

When T = val( K) is the tropical semiring of an ordered eld, we de ne the signed
valuation map sval : K ! T by:

val(a) ifa O;
val(a) otherwise.

sval :a 7!

Consequently,a 2 K and sval(@) have the same sign, sval(a) = sval(a), and the

modulus of sval@) is val(jaj). Moreover, the signed valuation map preserves the mul-
tiplication: we have sval(ab) = sval(a) sval(b) for any a;b 2 K. Note that we do

not equip the tropical signed numbers with an additive law, asa ( a) would not be

de ned. Similarly, we do not de ne an order on T . However,T can be embedded into
a semiring, called thesymmetrized tropical semiring; see Sectior 7.2]1. In the following,
an element of an ordered eld will be written in bold and its signed value with a stan-

dard font, e.g, a = val( a). Modulus, the re ection map, positive and negative parts,

and signed valuation extend to matrices entry-wise.

2.2.4 Hahn series

Given a (totally) ordered abelian group (G;<; +:;0), the set of Hahn series R[t®] with
value group (G; <; +;0) and with real coe cient consists of formal series
X
a:= agt? ;
02G
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where the coe cients ag are real numbers, and thesupport Supp(a) := fg2 Gjag60g

is anti well-ordered (i.e., every non-empty subset of Suppd) admits a greatest element).
Note that Hahn series are sometimes de ned as series with well-ordered support, instead
of anti well-ordered. As we use the (max+) notation for tropical semirings, we nd it
more natural to adopt the anti well-ordered de nition. We shall equip the set of Hahn
series with an L o-structure (R[t®];<; +; ;0;1). The constant symbol O is interpreted
as the unique Hahn series with empty support, while 1 is the Hahn seriesgt® , where
1r is the multiplicative identity of R aBd Os the additive igentity of G. Addition and

multiplication are de ned, forany a= j,gagt9andb= " 5 hbyt9, by:
X
a+b:= (ag+ byt?;
92G 0 1
X X
ab := % ab § t9:

092G . 2G;

+ =9

Theorem 2.5. Hahn series, equipped with the addition and multiplication of formal
series, forms a eld.

Proof. We give a sketch of proof for the sake of completeness, and refer tb [Pas77,
Chap. 13, Theorem 2.11] for details. LetA = Supp(a) and B = Supp(b). To prove
the stability of the addition, it is su cient to observe that Supp( a+ b) A[ B is anti
well-ordered, sinceA and B are.

For the multiplication, one rst show that Supp( ab) is well-ordered. It comes from
the fact that Supp(ab) is a subset of the Minkowski sumA + B, and that A + B is anti
well-ordered. Then, one can show that for anyg 2 Supp(ab), there is a nite number
of (; )2 A B suchthat + = g. Consequently, the coe cient of t9 in ab is a
well-de ned real number.

Proving that a a 6 0 has a multiplicative inverse is slightly more involved. In a
nutshell, a can always be written asa = ct9(1 w) with c a non-zero real number,
g 2 G and w a Hahn series with support included in the negative elements o6. Clearly
c 1tF,g is a multiplicative inverse of ct9. One then proves that the geometric series
1+ 1 w'is a Hahn series, which is the inverse of 1 w. O

The leading coe cient Ic(x) of a Hahn seriesa = P g2G & t9 is the coe cient a
where max is the greatest element of Suppé). By convention, we set Ic(0) := 0. A
non-null Hahn seriesa is positive if Ic(a) > 0, and we writea > 0 in this case. Similarly,
we write a > bif a b> 0. This de nition turns R[t®] into an ordered eld. Moreover,
the topology induced by this order makesR[t®] a topological eld.

Two Hahn seriesa;b belongs to the same Archimedean class if and only if Supp(
and Supp() have the same greatest element. Hence, the value group &t¢] is G, and
we can write the Archimedean valuation map as val@) = maxfg 2 Supp(@)g.

Theorem 2.6 ([DW96] Theorem 2.15(iv)]). If G is divisible, then R[t®] is a real closed
eld.
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2.2.5 The Hardy eld of an o-minimal structure

We now present a particular class of ordered elds of germs real-valued functions, called
Hardy elds. Such a eld arises from functions that are de nable in a o-minimal struc-
ture. This framework have been devised by Alessandrini to study the tropicalization of
semi-algebraic sets [Ale13].

An expansionL °of a languageL is obtained by adding some new relations, functions
and constants toL. We de ne an expansion of an L-structure M to be an L %structure
MO such that: LCis an expansion ofL, M and M? have the same domain, and the
interpretation of the language L in M coincides with the one inM % In the rest of this
section,R = ( R; L) will denote an expansion of theL o -structure of the real numbersR.
In particular, the domain of R is the set of real numbers.

and an elementb2 R' such that A = fa2 R*jR E (a;bg. Given a de nable set
A2 R amapF :A! R'isdenable if its graph f(a;F(a)) ja2 Ag RK''isa
de nable set.

The structure R is o-minimal if every subset of R that is denable in R is a -
nite union of points and intervals with endpoints in R[f1 ;+1g . Under the o-
minimality requirement, de nable sets and maps are \well-behaved". For example, the
setf (x; sin(1=x)) j x > 0Og is not de nable in an o-minimal structure. We refer the reader
to [vdD98] or [Cos00] for more details.

We say that two de nable functions f;g : R! R are equivalent, and we writef g,
if f(t) = g(t) ultimately, i.e., for all t large enough. Thegerm f of a de nable function f
is the equivalence class of for the relation . By abuse of notation, f will also denote
a representative of the germf .

Let H(R) := ff jf : R! Risdenablein Rg be the set of germs of functions
de nable in R. Each function symbol F 2 F has a natural interpretation in H(R), by

Besides, the setR is embedded intoH (R) by identifying each elementa 2 R with the
constant function with value a. This provides an interpretation of the constant symbols

false. This provides an interpretation of R over H(R). In particular, f > 0Oif f (t)> 0
ultimately.

Consequently,H (R) has a natural L -structure, which we denote byH(R). It follows
from [Cos00, Prop. 5.9] that H(R) and R have the same full theory; see alsd [Fosl0,
Lemma 2.2.64]. In other words, the following holds.

Proposition 2.7. Let R be an o-minimal L-structure and H(R) the natural L -structure
of the germs of functions that are de nable inR. Then, for any L-sentence , we have
R F ifandonlyif HRR) F

As an expansion ofR, the structure R satis es the axioms of the theory of real closed
elds. By Proposition the structure H(R) satis es the same axioms. As a result,
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H(R) is a real closed eld that we will refer to as the Hardy eld of structure R. In
particular, H(R) is an ordered eld, and it carries a natural topology induced by the
ordering. The standard topology on R coincides with the subspace topology induced
from H(R).

A structure R is polynomially boundedif for any de nable function f : R! R, there
exists a natural number n such that jf (t)j t" ultimately. Miller proved [Mil94b] that
in an o-minimal and polynomially bounded expansion ofR, if a de nable function f is
not ultimately zero, then there exists an exponentr 2 R and a non-zero coe cient c2 R
such that

B
t!Ilgrnl " =cC: (2.1)

The set of such exponents forms a sub eld of R, called the eld of exponents of the
structure R.

It follows that the Archimedean value group of H(R) is the eld of exponents of R,
with its additive law. Moreover, the Archimedean valuation can be identi ed with the
map:

f 7! tIIir+n1 log(jf (t)j)=log(t) :

In the following, we will use the structure RR which expandsR by adding to the
languagel o the family of function symbols (f;);2r, and interpreting f, as the power
function that maps a positive number t to t", and any non-positive number to 0. The
structure RR is o-minimal, polynomially bounded and its eld of exponents is R; see
[Mil94al IMil12]. It follows that the value group of H(RR) is the additive group (R;<
;+,;0). Another structure with the same properties is Ry, , the reals with restricted
analytic functions and convergent generalized power series [vdDS98].

2.2.6 Maximal ordered groups and elds

Hahn series forms the more general ordered eld we need to consider. Indeed, every
ordered eld can be embedded inR[t®] for some groupG. Recall that an ordered group

G is torsion-free, and thus there exists a unique (up to isomorphism) minimal divisible
group that contains G, called the divisible hull of G; see([Mar02, Lemma 3.1.8].

Theorem 2.8 ([CD69, Theorem I1]). Let K be an ordered eld with value groupG.
Then, there exists a value and order preserving isomorphism of K into a sub eld of
R[t®].

In addition, assume thatR K is any order-isomorphic copy of the reals and 7! r
is the unique order-isormorphism ofR onto R. Let G be a rationally independant
basis for the divisible hull ofG, and (x ) » K+ a system of positive representatives
of . Then can be chosen sothat(rx )= rt foreachr 2 Rand 2

Kaplansky proved that any valued eld of characteric 0 can be embedded into a
power series eld, and his result extends to elds of positive characteric under some
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conditions [Kap42, Theorem 6]. So Theorenj 2|8 is sometimes called \Kaplansky's em-
bedding Theorem" [DW96, Theorem 2.17]; see also [PooR3]. Conrad and Dauns in fact
extended this result to lattice-ordered elds [CD69]; see also[[Stel0].

The additive group of Hahn series is also the more general group we need.

Theorem 2.9 (Hahn's embedding Theorem [[HahOF]) Every ordered group is order-
isomorphic to a subgroup of the additive group of Hahn serieR[tS], for some ordered
setS.

The notion of Archimedean classes extends to ordered groups, and the s&tis in
fact the set of Archimedean classes o&. Several proofs of this theorem are known, see
the books [DW96,[Fuc63, Ste10] and the references therein.
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Chapter 3

Tropicalizing the simplex method

The simplex method is a family of algorithms that solve classical linear programs on an
ordered eld K, i.e., problems of the form

minimize ¢’ x

. LP (A;b;c)
subjectto Ax +b 0; x 2K";
where A 2 K™ " b2 K™, and c 2 K". In this chapter, we give conditions under
which a simplex algorithm can be implemented using only the \tropical” information
sval A .

This is motivated by the tropical counterpart of linear programming developped
in the subsequent chapters, but also by the question of the complexity of linear pro-
gramming over ordered elds [Meg87], in particular over elds of rational functions
[Jer73a,[ER89,[FAAQZ]. Intuitively, we will perform arithmetic operations over series
expansions of rational functions using only the leading terms.

In a nutshell, to perform the basic operations of the simplex method, pivoting and
computing the signs of reduced costs, it is su cient to know the signs of some minors
of AR . Hence, to tropicalize, it is su cient to determine the signs of the minors of

A using only sval 4% . However, pivoting rules may be arbitrary procedures. In
order to tropicalize, we restrict ourselves tosemi-algebraicpivoting rules, i.e., pivoting
rules that have access to the problem at hand only through the signs of polynomials
evaluated on A% . It turns out that, for a polynomial P, the sign of P 4% can be
computed from sval 4% | provided that sval 49 satis es some genericity conditions.
Moreover, under assumptions onP, that sign can be determined in time polynomial in
the input size of sval 4%

This chapter is organized as follows. We rst recall basic notions and results on
polyhedra and linear programming in Sectior] 3.1. A key idea of this chapter is contained
in Section[3.2, where we explain how the sign of a polynomial can be computed by tropical
means. Sectior] 33 discusses the simplex method in the context of ordered elds. Last,
semi-algebraic pivoting rules and the tropical implementation of simplex algorithms are
presented in Sectior] 3.4.

25
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In this chapter, we demonstrate the feasibility of the tropicalization of the simplex
method. Even if the tropical versions of pivoting and computing reduced costs pre-
sented here run in polynomial time, their complexities can be improved. More e cient
implementations are presented in Chaptel J.

The tropicalization of simplex operations (pivoting and computing reduced costs)
was exposed in[[ABGJ13b]. In[[ABGJ13a], the tropicalization of combinatorial pivoting
rules was presented (combinatorial pivoting rules rely only on the signs of the minors
of the input matrix). The study of the tropical shadow-vertex rule [ABG14]| led to the
more general framework ofsemi-algebraicpivoting rules that we adopt here.

3.1 Polyhedra over ordered elds

In this section, we review relevant basic results on linear programming and polyhedra
over ordered elds. Throughout this chapter, K denotes an arbitrary ordered eld.
A halfspacein dimensionn 1 is a set of the form

H (a;b):=fx2K"jax +b O0g (3.1)

wherea 2 K " andb 2 K. When b = 0, it is said to be a linear halfspace The
boundary
H(a;b):=fx 2 K"jax + b=0g (3.2)

of an halfpsace in ahyperplane A polyhedron is the intersection of nitely many halfs-
paces,i.e., a set of the form:

P(A;b):=fx2K"jAx +b 0g:

When b is the zero vector,P (A ;b) is a polyhedral cone

3.1.1 Convexity

A subset P of the K -vector spaceK" is convex if, for any x;y 2 P, the set P also
contains the convex hull conv(x;y) of x and y, where:

conv(x;y)=fx +y j ; 2Ksand + =1g:
More generally, the convex hull convS) of an arbitrary subset S K" is the smallest
convex subset containingS. When S consists of nitely many points x1;:::;xk 2 K",
we have:
( % v )
conv(x ;i xK) = «xKj 2K, foralli2[k]; and =1
i=1 i=1

We say that a point v in a convex setP is an extreme point, or vertex, of P if it cannot
be expressed as a convex combinaison of points i n fvg. This means that if v is
contained in conv(x;y) for somex;y 2 P,thenv=x orv = vy.
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A convex conein K" is a convex setC that is also stable under multiplication by
positive scalars,i.e., for any x 2 C and any positive 2 K, the point x belongs
to C. Equivalently, C is a convex cone if and only if for any nite subset of points

( )
Xk
pos(xL;:::xK) = XK 2Ky foralli 2 [K]

As for convex hull, the positive hull pos(S) of an arbitrary subset S K" is the

A ray of a convex coneC is a set of the formf]:=fr j 2 K, gfor some non-null
vectorr 2 C. We say that a ray [r] is an extreme ray of the convex coneC if x 2 [r]
ory 2 [r] wheneverr 2 pos(x;y) for somex;y 2 C.

The \unbounded" part of a convex set P is described by itsrecession conerec(P ),
where:

recP)=fr2K"jr +x2P forallx2P andall 2K.g:

When P is a non-empty polyhedronP (A ;b), its recession cone coincides with the poly-
hedral coneP (A;0). By extension, we say that f] is an extreme ray of the convex set
P if [r] is an extreme ray of its recession cone rep().

3.1.2 Double description

In the remaining of this section, we shall prove the following fundamental theorem.

Theorem 3.1. A polyhedron on an ordered eld is the convex hull of nitely many point
and rays. More precisely, for anyA 2 K™ " and b 2 K™, there exists two nite sets
V;R K" such that:

P (A;b)=conv(V)+pos(R) ; (3.3)

where conv(V ) + pos(R) := fx +y jx 2 conv(V);y 2 pos(R)g is the Minkowksi sum
of these two sets.

We shall derive Theorem[3.1 as a corollary of a slightly more precise statement for
bounded polyhedra.

Theorem 3.2 ([CC58]). A bounded polyhedron on an ordered eld is the convex hull of
a nite set of points, the set of its extreme points.

Corollary 3.3. If P(A;b) is included in the non-negative orthant ofK ", then
P (A;b)=conv(V)+pos(R) ; (3.4)

whereV is the set of extreme points ofP (A;b), and R is the set of its extreme rays.
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Proof. Let us write P := P (A;b). We homogeneizeP into the polyhedral cone
C=f(x; )2K" KjAx +b 0; 0g : (3.5)

Clearly, if x belongs to the polyhedronP , then (x;1) 2 C. An conversely, if (x; ) is
a non-null vector contained in the coneC, then either =0 and x is in the recession
cone ofP, or x 2 P. Observe that an extreme pointx of P yields an extreme ray
[(x;1)] of C, and an extreme ray | ] of the recession cone oP provides an extreme ray
[(r;0)] of C. Futhermore, any extreme ray of C arises in this way.

Since P is included in the non-negative orthant of K", its homogeneization C is
included in the non-negative orthant of K "*1 . It follows that the set of rays of C can be
identi ed with the pounded polyhedron obtained by intersecting C with the hyperplane
f(x; )2 KM j jnzl Xj + =1g. By Theorem , this bounded polyhedron is the
convex hull of its set G of extreme points. Consequently, the coneC is the conic hull
of G, and it is easy to see thatG consists of a representative of each extreme ray df.
It follows that P = conv(V)+ pos(R) whereV = fx 2 K" j (x;0) 2 Gg is the set of
extreme points of P, and R = fr j(r; ) 2 G forsome 6 0g is the set of extreme
rays of P . O

An arbitrary polyhedron may not have extreme points or extreme rays, but it is still
nitely generated.

Proof of Theorem[3.]. Observe that an arbitrary polyhedron P (A;b) K" is a projec-
tion of the polyhedron

f(x";x )2K" K"jAx* Ax +b 0Ox" 0Ox 0g ;

which is included in the positive orthant, and that this projection preserves convex and
conic hulls. The result then follows from Corollary [3.3. O

3.1.3 Classical linear programming

A linear program is an optimization problem of the form:

minimize ¢’ x
_ LP (A;b;c)
subjectto Ax +b 0; x2K";
where A 2 KM "' b2 K™ andc 2 K". Thus a linear program LP (A ;b;c) seeks
a minimizer of a linear function x 7! ¢ x over a polyhedronP (A;b). When P (A;b)
is empty, we say that LP (A ;b;c) is infeasible. A linear program is unboundedif, for
any 2 K, there exists a feasible pointx such that ¢>x < . An optimal solution of
LP (A;b;c)isax 2 P(A;b)suchthatc>x ¢ x forall x 2 P(A;b). If an optimal
solution exists, ¢” x is called the optimal value of LP (A ;b;c).

Proposition 3.4. A linear program LP (A;b;c) over an ordered eld K is either infea-
sible, unbounded, or admits an optimal solution.
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Proof. If the linear program is infeasible, then the other two possibilities are excluded.
Now suppose thatP (A;b) is not empty. Then, by Theorem [3.1, there exists two nite
setsV;R K" such that

P (A;b)=conv(V)+pos(R) :

If there exists ar 2 R such that ¢cr < 0, then the linear program is unbounded.
Otherwise any feasible pointx satisfy c>x  minyoy ¢ v, and an element ofV is an
optimal solution. O

Unboundedness can be certi ed as follows.

Lemma 3.5. A feasible linear program LP (A ;b;c) is unbounded if and only if there
exists ar in the polyhedral coneP (A ;0) such thatc”r < 0.

Proof. Continuing the previous proof, the feasible linear program is unbounded if and
only if there existsr 2 R such thatc>r < 0, whereP (A ;b) = conv(V )+pos(R). Then,
observe that posR) is the recession cone oP (A ;b), which is exactly the polyhedral
coneP (A;0). O

Duality
The dual linear program of LP (A ; b;c) is :

maximize b’y
. LD (A;b;c)
subjectto Ay=c;y O, y2KM™:

Theorem 3.6. Let x be a feasible solution of the linear prograniP (A;b;c) andy a
feasible solution of the dual probleniD (A ;b;c). Then, ¢ x b>y.

Proof. Sincey is dual feasible, we havec® = y”A. Hence,c>x = y>Ax and ¢’ x +
b>y = y>(Ax + b). Sincey OandAx +b 0, itfollowsthat c>x + b’y 0. O

Theorem 3.7 (Complementary Slackness) Let x be a feasible solution of the linear
program LP (A;b;c) and y a feasible solution of the dual problemlD (A;b;c) such
that:

yi(Aix + bj)=0 foralli?2[m]: (3.6)

Then, x and y are optimal solutions of LP (A;b;c) and LD (A;b;c) respectively.
Moreover,c>x = b’y .

Proof. By Weak Duality (Theorem , by is alower bound for the optimal value of
LP (A;Db;c), and c> x is an upper bound for the optimal value ofLD (A ; b; c). Hence, it
is su cient to prove the equality ¢>x = Db’y . Asinthe proof of Theorem, we have
c>x +b>y =(y )>(Ax +b). Then, the conditions (8.6) imply that (y )> (Ax +b) =
0. O
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3.2 Computing the sign of a polynomial by tropical means

A key ingredient to tropicalize algorithms is to determine the sign of a polynomial
expression on an ordered eldK using only the information provided by the valuation

on 2 K!, the sign of P( ) can be computed using only sval(). More precisely, to

compute the sign of P( ), we solve a linear program over the Newton polytope of the
polynomial P. The objective function of the linear program is given by sval( ). Hence,
if we have an algorithm that solves linear programs over the Newton polytope of in

polynomial time, the sign of P( ) can be computed in time polynomial in the input size
of sval( ).

We shall write a multivariate polynomial P 2 Q[X1;:::; X,] as the formal expression
X
P = qXx ;
2
6here N' is a nite set, the coe cients g 6 O are rationals numbers, and X =
|
b oX. i
i=1 i

M
trop(P) := tsign(q ) 4 ! L (3.7)
2

where tsign(q )= 1if q > 0, and tsign(q )= 1if g < 0. A tropical vector 2 T'
is generic for the polynomial P if the maximum in
M
Jig ? by tEmax aj it ol ot ajns (3.8)
2
is equal to O or attained on a unique 2

We also say that 2 T' is sign-genericfor P if, forany two ; 2 attaining the
maximum in (B.8), the terms tsign(q ) ; ! , 'andtsign(q) 4 * -
have the same tropical sign. When 2 T' is generic, or sign-generic, folP, we write:

trop(P)( ) :=tsign(q ) ;! P (3.9)

where is any maximizer in ). Observe that if is generic forP, then it is sign-
generic. Also notice that the modulus of trop(P)( ) is equal to (3.§). We say that 2
is a maximizer for jtrop(P)( )j if it attains the maximum in (.

The determinant is a polynomial that plays an important role in this manuscript.
The tropicalization of the determinant of a square matrix M 2 T" " will be denoted by
tdet(M). It is de ned by:

M
tdet(M ) := tsign( ) My (g Mn (n)
2Sym(n)
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where Sym() is the set of all permutations of [n], and tsign( ) = 1 if is an even
permutation and tsign( ) = 1 otherwise. Observe that

jtdet(M)j = max le Wi+ + My (] - (3.10)

Computing a maximizer for jtdet(M )j amounts to nding a permutation which at-
tains the maximum in (B.10). Such a permutation is a solution of the assignment prob-
lem with costs (jMjj j). It can be found in time O(n®) using the Hungarian method; see
[Sch03,x17.3].

P
Lemma 3.8. Consider a polynomial P = > X 2 Q[Xyg:inXJand 2 K'.
Suppose that =sval( ) is sign-generic for the polynomialP, then

trop(P)( ) =sval(P( )) :

Proof. First one easily checks that if two elementsx;y 2 K have the same value and
the same sign, then valk + y) = max(val( x);val(y)) and x + y has the same sign ax
and y. Similarly, if val( x) > val(y), then we have valx + y) = val( x) and x + y has
the same sign a.

Let be the set of maximizer forjtrop(P)(S )j. Forany 2 |, the image under

the signed valuation map of the monomialq i ;' istrop(P)( ). Consequently, the

S|96ed value of > q i ;' isalsotrop(P)( ). Forevery 2 n the monomial
q ' has a value strictly smaller than jtrop(P)( )j. Hence, the signed value oP( )

is trop(P)( ). O

When 2 T' is (sign-)generic for a polynomialP, computing trop(P)( ) amounts to
nding a maximizer for jtrop(P)( )j. It turns out that such a maximizer is an optimal
vertex of an (abstract) linear program over the polytope conv( ), the Newton polytope
of P.

To see this, let us rst suppose that does not haveO entries. In that case, trop(P)( )
i§ not equal to 0. Moreover, jtrop(P)( )j is the maximum of the linear function 7!

i2[1] ij Ji- evaluated on the nite number of points 2 . By convexity, jtrop(P)( )j
is the optimal value of the following optimization problem:
X
maximize il i
i2[1] (3.11)
subject to 2 conv( ):

Hence, the set of maximizers foijitrop(P)( )j is exactly the set of optimal vertices of the
linear program (3.11). Observe that the feasible set of[(3.12) is included iR', while the
objective function takes values in the totally ordered abelian groupG = T nf0g. Hence,
the problem (3.13) is a linear program onR' with an abstract linear objective function.

Now, if 2 T' has some entries equal t®, a small technical di culty arises.
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P
Lemma 3.9. Let T = T(G). Consider a polynomial P = > X 2 Q[Xyg; i X]
and suppose that 2 T'. Then, a maximizer for jtrop(P)( )j is given by an optimal
vertex of the problem: X

maximize idi
i2[1] (3.12)
subject to 2 conv( );

whered is the vector with entries in the additive groupQ G, ordered lexicographically,
denedbydi=( 1,0 if j=0andd =(0;j j) otherwise.

Proof. If has noO entries, then the problems [3.11) and [(3.1R) have the same optimal
solutions. Otherwise, if has 0 entries, it may happen that trop(P)( ) = 0. This is

the case if and only if, for all 2 , there exists ani 2 [IJwith ; = Oand ; > 0.
Consequently, trop(P)( ) = 0 if and only if the optimal value of
X
maximize i
i2[l]j i=0 (3.13)

subject to 2 conv( );

is strictly greater than 0. In this case, every 2 is a maximizer forjtrop(P)( )j. This
holds in particular for an optimal vertex of (8.12)
If trop( P)( ) 6 O, then the optimal value of (8.13) is equal to 0, andjtrop(P)( )j is

the optimal value of: X
maximize i
i2[l]j i60
subject to 2X conv( ) (3.14)
i=0:
i2[l)j =0

Furthermore, any optimal vertex of (8.14) is a maximizer for jtrop(P)( )j. Observe
that (8.14) and (B8.12) have the same set of optimal solutions. O

3.2.2 Tropically tractable polynomials

We say that a polynomial P = P > X 2 Q[Xg;:::;X] is tropically tractable if
there is an algorithm that, given any 2 T' that is sign-generic for P, returns the the
sign of trop(P)( ) in time polynomial in the input size hi of .

The (binary) input size of an integerz 2 Z is the number of bit required to write
Z in the binary representation. When z = 0 only one bit is needed. Otherwise, we
need one bit for the sign anddlog,(jzj + 1) e bits for the absolute value jzj, henceh i :=
dog,(jzj + 1) e+ 1. The input size of a rational number r, which can always be written
asr = p=qwherep and g > 0 are relatively prime integers, ishri = hpi + hgi. The input
size of a matrix is the sum of the input sizes of its entries. In particular, the input size
of a vectorv 2 Q' is always greater thanl.
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The notion of input size is a-priori not well de ned for elements of an arbitrary group
G. Since this is su cient for our purposes, we shall study the tropical tractability of
polynomials over tropical semirings of the form T(Q"), where r is an integer and Q'
is equipped with component-wise addition and lexicographic order. Note that Hahn's
embedding theorem (Theore) states that any totally ordered abelian groupG is
order-isomorphic to an additive subgroup of RISI equipped with a lexicographic order,
whereS is a suitable (possibly in nite) ordered set. Hence,G contains a subgroup which
can be identi ed with a subgroup of QSI. The notion of input size is then well-de ned
for the elements of QISI with a nite number of non-zero components. This of course
depends on the embedding intaQ!S!, which may not be known a-priori. Here, we assume
that such an embedding is known.

We now give su cient conditions on a polynomial to be tropically tractable.

P
Proposition 3.10. Consider a polynomial P = 5> g X 2 Q[Xy;:::;X] that sat-
is es the following properties:

(i) there exists an algorithm which computessign(q ), for every 2 , in time poly-
nomial in |;

(i) the Newton polytope conv( ) is contained in a L4 -ball of radius R, where the input
size of R is polynomial in [;

(iii) there exists an algorithm, which given any 2 Q', returns an optimal vertex of the
linear program

maximize °~

) (3.15)
subject to 2 conv( );

in time polynomial in hi.
Then P is tropically tractable.

Proof. Let T= T(Q" ) fora nite r> 1and 2 T' be sign-generic for tropf). By
Lemmas[3.8 and 3., it is su cient to g an optimal vertex of the problem (3.12), i.e.,
a maximizer of the linear function 7!~ ;,;,; idi which takes values in the lexicograph-
ically ordered group Q". We shall use instead a real-valued linear objective function,

7! > for some 2 Q' with an input size bounded by | and Hdi, that provides the
same set of optimal solutions.

Note that we are interested in optimal vertiﬁes of conv( ), hence of elements of .
Thus, it is sucient to nd a such that 7!, idiand 7! = have the same
maximizers in . Let us denoted; = (dj );2(,;2 Q' forany i 2 [I].

Up to multiplying d by the common denominators of the € );j , we can assume that
the dj are integers (note that this transformation does not change the sum of the input
sizes of thed;j ). By assumption (i), there a exists an integer R® 1, whose input size
in bounded by a polynomial in| and h i, such that

RO< i <RO (316)
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for all points 2 andallj 2 [r].

The objective vector 2 Q', dened by ; = P i2p+rydi @RY 1 for all i 2 1],
satis es the required properties. Indeed, > > forsome; 2 if and only if
0 1 0 1
X X X X .
@RO+ idij A (ZR% J QRO+ idij A (ZR% I (3.17)
j2[r] i21] j2[r] i21]

P P
By (B.16), the numbers R+~ idj and R%+ ~ ,;; idj are positive integers
strictly smaller than 2R Hence, the left and right-hand side of [3.1f) can be thought
of as expansions of rationals in base R’ If follows that the inequality (3.17) holds if
and only if

0 1 0 1

X X X X
@ idia; 11o; idi A e @ i1y i i A O

i2[] i2[1] i2[1] i2[]

Lemma 3.11. A determinant is a tropically tractable polynomial. More precisely, given
aM 2 T" " which is sign-generic for then n determinant polynomial, the sign of
tdet(M ) can be computed inO(n3) operations an in space polynomial inhM i.

Proof. This is a consequence of Propositiof 3.10. The determinant of & n matrix is

X Y
det = sign( ) X () -
2S([n]) i2[n]

A permutation 2 S([n]) corresponds to the vector of exponents j 2 N" " de ned
foralli2 [n]Jby ; jy=1and j =0forj & (i). Hence, the Newton polytope of the
n n determinant is the Birkho polytope: its vertices are in bijection with the perfect
matchings of the complete bipartite graph between two sets of nodes of cardinalityn.
This polytope is contained in the L -ball of radius 1 centered at the origin. Hence,
Proposition is satis ed.

The sign of a permutation 2 S([n]) can be computed inO(n) operations by counting
the number of transpositions. Consequently, Propositior{ 3.10[{i) holds.

Finally, a linear program over the Birkho polytope is a maximal assigment problem.
It can be solved in strongly polynomial time (in fact in O(n®) operations) by the Hun-
garian method; seel[Sch03, Theorem 17.3]. Thus, Propositidn 3J1 {iii) is satis ed. [

A separation oraclefor a convex setC  R! is a routine which, given 2 R! decides
whether 2 C, and if not, returns a hyperplane that separates from C, i.e., nds a
vector d 2 R' such thatd® > maxfd®> j 2 Cg.

P
Proposition 3.12. Consider a polynomialP = 5> g X 2 Q[Xg;:::;Xy] that satis-
es Conditions (i) and (i) of Proposition 3.10, and such that there exists a polynomial-
time separation oracle for the Newton polytopeconv( ). Then P is tropically tractable.
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Proof. By the results of Gmtschel, Lovasz and Schrijver (Theorem 6.6.5 and Lemma 4.2.7
in [GLS88]), an optimal vertex of the linear program (3.15) can be found inO(l) opera-
tions, and in space polynomial inl and h i, if there exists a polynomial-time separation
oracle for the Newton polytope conv( ), and the vertices of conv( ) have an input size
bounded by a polynomial inl. O

3.3 The simplex method

In this section, we recall the basic notions needed to present the simplex method.

Basic points

A basisof a polyhedronP (A ;b) asubsetl [m] of cardinality n such that the submatrix
A, formed from the rows with indices in |, is non-singular. The system

H(Ai;b)=fx 2K"jAx+ b =0g (3.18)
i21

contains a unique point, called abasic point and denoted asx'. When x' belongs to
the polyhedron P (A; b), it is called a feasible basic poinf and we say that| is afeasible
basis. By extension, we say thatl is a (feasible) basis of a linear progranlLP (A;b;c)
if it is a (feasible) basis for its feasible setP (A ; b).

Remark 3.13 A basis is sometimes de ned by a partition of the (explicitly bounded)

that | corresponds to the \non-basic" variables as it indexes the zero coordinates af.
The set| can also be interpreted as the set of \basic" variables in the dual program.

Basic points are the \algebraic" counterpart of the geometric notion of extreme
points.

Proposition 3.14. Each feasible basic point of a polyhedron is an extreme point. Con-
versely, each extreme point is a basic point for some feasible basis.

Proof. Let x' be a basic point for some basid. Suppose by contradiction that x' is
not an extreme point of P (A;b). Then x' = y +(1 )z for somey;z 2 P(A;b)
and 0< < 1. Asy 6 x', we haveA;y + bj > 0 for somei 2 |, otherwisey would
be a solution of the system [(3.1B). Since (1 )(Aiz + by) = (Aiy + b)) < 0 and
(1 ) > 0, we deduce thatAiz + b; < 0, and thus that z 62P (A ; b), a contradiction.
Conversely, consider an extreme poink of P (A;b). Let | = fi 2 [m]j Aix+b; =0g.
If A, has a rank smaller than the dimensionn, then there exists a vectord 6 Ok~ in
the kernel of A|. Hence, for > 0 small enough, the pointsx + d andx d belongs
to P (A;b). Hence, x is in the convex hull of two points of P (A;b) that are distincts
from x. ConsequentlyA| has rank at leastn, hence it contains an n submatrix Ao
with det( A o) 6 0. O
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Note however that two distinct bases|; | ° can yield the same basic point. This will
not happen under the non-degeneracy assumption explained below.
Given a basis, the corresponding basic point can be computed with Cramer's formul .

Proposition 3.15 (Cramer's formul) . Let | be a basis ofP (A;b). The components
of the basic pointx' 2 K" are given by:

x| =( i det(A,.p by)=det(A;) forall j 2 [n]; (3.19)
WhereAl;p is the submatrix of A| obtained by removing the th column.
A| b|

Proof. Consider anyk 2 [m]. Expanding the determinant of AL by along the last row
yields:

0 1
X0 .
det ﬁ' E' =@ ( "IAy det(A .p br) +( 1)>"*2 py det(A | )A
kb . '
=1
0 1 (3.20)
X
=@ Aijj'+bkAdet(A|):
j=1
Now suppose thatk 2 |. Since the determinarE is an alternative form, we have
det A p =0.Sincedet(A;) 60, we deducethat [_; Ayx/+bc =0. Hence, (3.19)
provides the unique solutionA, (' b;) of the system (3.18). O

Cramer's formul provide the following characterization of feasible bases.

Lemma 3.16. Let | be a basis of° (A;b). The basisl is feasible if and only if:

A, b

det Ar by

=det(A;) 0 forall k2 [m]nl:

Proof. By de nition, a basis | is feasible if and only if the basic pointx' satisfy the
inequalities Ax + b 0. By de nition of a basic point, A;x' + b, = 0. Hence, it su ces
to check the inequalitesAyx' + b, 0 for k 2 [m]nl. Equation (8.20) shows that

Ax! + by is equal to det 4! 2 =det(A)). O

Degeneracy

In general, a feasible basic pointx! may be contained in a hyperplaneH (A ; by) for
somek 62I. When this happens we say that the basid is degenerate A polyhedron
P (A;Db) is non-degenerateif it does not admit a degenerate basis. Under the non-
degeneracy assumption, two distinct bases yield two distinct basic points. Geometrically,
this implies that the polyhedron is simple. By extension, we say that a linear program
LP (A; b; c) is (primally) non-degenerate when its feasible seP (A ; b) is non-degenerate.
Non-degeneracy corresponds to the following algebraic conditions.
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Lemma 3.17. A polyhedron P (A; b) is non-degenerate if and only if, for every feasible
basis|, the following strict inequalities are satis ed:

A, b

det Ar by

=det(A;)> 0 forall k2 [m]nl:
Proof. This follows immediately from the arguments in the proof of Lemma[3.16. O

Edges

A subsetK  [m + n] of cardinality n 1 de nes a (feasible) edge

\
Ex = H(Ai;b)\ P(A;Db)
i2K

when Ti2K H (Ai;b) is an ane line that intersects P (A;b). Notice that an edge
de ned in this way may have \length zero", i.e., as a set it may only consist of a single
point. However, this does not happen under the non-degeneracy assumption.

A basic point x' is contained in the n edges de ned by the setd nfigug foriou 2 |.
The edgeE, nyj,,g is contained in a half-linefx' + d 'nfiowd | Og that we direct with
the vector d'"iowd 2 K" de ned as the unique solutiond 2 K" of the system:

A|nfioutgd =0and A ,d=1": (321)

lout

The edgeE, i, g IS unbounded if and only if the set
Ent(l;i out) := fi 2 [m]nl indInfiomg < 0g

is empty. Otherwise, the length of the edge is given by:

_ Aix'+b . .
= min X 'g ji 2 Ent(l;iout)

The other endpoint of the edge isx®= x' + d '"fiowd_ Clearly, this point is contained in

the hyperplapesH (Aji;by) for i 2 1 nfigyg, but also fori 2 Ent(l;i o). Moreover, the

intersection 5 ntio.qff iemg (A bi) is reduced tox%for any ient 2 Ent(l;i out). Hence,
for any suchient, the setl nfigug[f ientgis a feasible basis and °the corresponding basic
point. A basis | °is said to beadjacent to a basis! if it is of the form 1°9= | nfioug[f ientg

for someigy 2 | andien: 2 Ent(l;i oyt). In that case, we also say that the basic pointxIO

is adjacent to the basic point x'. For a non-degenerate polyhedron, the seEnt(l;i out)

is either empty or reduced to a singleton.

Reduced costs and optimal bases

Moving along an edgeE, ;g from the basic point x! decreases the objective function
x 7! ¢ x if and only if the reduced costy! = ¢ d'"iud is negative.
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Lemma 3.18. The vector of reduced costsy! = (yilout)ioutZI at a basis! is the unique
solution of the following system of equations:

(A1)y=c: (3.22)

Proof. By (B-21), the direction vector d'"leud is equal to A| *e'ow, where e is the k-th
unit vector of Kl It follows that y! = c¢>A, *eler. Hence,y' = (A, 1)>c, which is
the unique solution of (3.22). O

Lemma 3.19. Let | be a feasible basis. If reduced COS‘(%’ilout)iomm are non-negative,
then the basic pointx' is an optimal solution of the linear program LP (A ; b; c).

Proof. We can extendy' = (yilom)ioutZI 2 K to a vector K™ by adding components
equal to 0. Then, the pair (x';y') satisfy the complementary slackness conditions

(Theorem [3.7). O

We say that a feasible basid is optimal if the reduced costs atl are non-negative.
Note that, in case of degeneracy, a basic poirnk' may be an optimal solution while | is
not an optimal basis.

Example 3.20. Consider the linear program:
minimize xo st X1 X2, X1 0;x2, O:

The point (0;0) is an optimal solution. It is a basic point for the basis indexing the
inequalities x1 X2 and x; 0. However, the vector of reduced costs for this basis is
(' 1;1), which have a negative component. Hence this basis is not optimal.

The simplex method

We now present the simplex method. For the sake of simplicity, we restrict the exposition
to non-degenerate linear programs. The principle of the simplex method is to pivot from
feasible basis to feasible basis by following edges. The signs of the reduced costs indicate
which pivot improves the objective value and provide a stopping criterion.

Each iteration of the simplex method starts with a feasible basisl. The reduced
costsy' are computed. Ify' is non-negative, then the current basisl is optimal, and
the basic point x' is an optimal solution of the problem.

If the current basis is not optimal, an edgek, ;,,g With a negative reduced costyi'out
is selected. The indexiqy is called aleaving index. If the selected edge is unbounded,
then the linear program is unbounded. Otherwise, the algorithmpivots, i.e., moves to
the other end of the selected edge. By the non-degeneracy assumption, the g&tt(l; i out)
is reduced to a singletonfigntg. The index ignt is called the entering index. The other
endpoint of the edge is a basic point for the basi$®= | nfiowg[f ientg. The basisl %is
then used to perform the next iteration.

Algorithm L]describes the simplex method for a linear programLP (A;b;c). We
have denoted byUnboundedA ; b) a routine which, given a feasible basid and a leaving
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Algorithm 1:  The simplex method for non-degenerate linear programs
Data: A2 K™ "p2KMandc2 K"
Input : A feasible basisl ! of the linear program LP (A ; b; c).
Output : Either Unbounded or an optimal basis of LP (A b; c).

1k 1

2 while SignRedCost®\ ; c)(1¥) has a negative entrydo
3 | iow= (A;be)(fllii;ikg)

4 if UnboundedA :b)(1¥;iouw) then

5 | return Unbounded

6 Ient Pivot(A ; b)(l k; lout)

7 | k+1 |knfioutg[]c lentd

8 k k+1

9 return the optimal basis | ¥

index iout 2 1, returns true if the edge E, nt;,,g iS unbounded. Otherwise, the routine
Pivot(A ; b) returns the entering index ien:. Similarly, SignRedCos{#\ ;c) is a function
that returns the signs of the reduced costsy'.
Given an initial feasible basis|?!, the simplex method builds a sequence of bases
[1:12::::: 1N, At every iteration k 1, the leaving indexioy is chosen by a function
(A;b:c) which takes as input fl11;:::;1Kg the history up to time k. The map is
called apivoting rule.

Proposition 3.21. Suppose thatLP (A;b;c) is a non-degenerate linear program, and
that the pivoting rule always returns a leaving indexioy: such that reduced cosiyi'out is
negative. Then, Algorithm[J] terminates and is correct.

Proof. Since a feasible basis is given as input, the linear program is always feasible. If
an unbounded edgeE, .4 iS €ncountered, then its direction vectord satis es ¢*d =
yi, < 0. Forany 2 K., the point x' + d belongs to the polyhedronP (A;b).
Consequently, for any 2 K, we can nd a point x 2 P (A;b) such that c>x < and
the linear program is unbounded.

Otherwise the problem admits an optimal solution. By non-degeneracy, each edge
has a positive length. Since the pivoting rule always chooses a leaving index with a
negative reduced cost, each pivot operation strictly improves the value of the objective
function. Consequently, the algorithm terminates, and provides an optimal basis. [

In the following, we shall always assume that a pivoting rule always selects a leaving
index with a negative reduced cost.
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3.4 Tropical implementation of the simplex method

We now explain how to implement the operations of the simplex method on a linear
program LP (A ; b; ¢) (pivoting, computing the signs of the reduced costs, and evaluating
the pivoting rule) by tropical means, i.e., using only the signed valuation of 4% . For
pivoting and the reduced costs, we shall see that we only need to compute the signs
of minors of 4% . As explained in Section|3.2, determinants are tropically tractable
polynomials, so the signs of the minors of 4 can be computed in polynomial time
from sval 4% . Pivoting rules may be arbitrary procedures. In order to tropicalize,
we restrict ourselves to pivoting rules that rely on the signs of polynomials, so that the
results of Section[3.2 apply. This does not seem to be a strong restriction, since most
known pivoting rules t in this context.

We begin with the pivoting, and the computation of the signs of reduced costs.

Proposition 3.22.  There exists three mapsSignRedCosts Unbounded and Pivot’ sat-
isfying
SignRedCosfyA; c) = SignRedCos{& ; c)
Unbounded(A; b) = UnboundedA ; b)
Pivot" (A; b) = Pivot(A ; b)

for any linear programs LP (A;b;c) such that 48 =sval 4% is sign-generic for the
polynomials providing the minors of 4% i.e., all polynomials P such thatP A% is
a minor of A% .

Furthermore, the values of SignRedCostyA; c); Unbounded(A;b) and Pivot' (A; b)
can be computed inO(n*); O(m?n3) and O(m?n?) tropical operations respectively, and
in space bounded by a polynomial in the input size d&;b;c.

Proof. The signs of the reduced costs at a basis are given by the Cramer's formul
of the system ). This involves the computation of the sign of detA ), and of the
determinants det((Aig)” ¢) for i 2 I, hencen + 1 minors of ﬁ% of sizen n. By
Lemma[3.8, we can compute the signs of these determinants by computing their tropical
counterparts on 4% . By Lemma [3.11, computing an  n tropical minor of 48
takes O(n?) operations and uses a space bounded by the input size &f; b; c.

Pivoting, and determining unboundedness, can be implemented as follows. Giveh
and ioyt 2 |, we determine which of them n sets of the form19= | nfiouwg[f ientd
for ient 2 [M] nl, is a feasible basis. By Lemm6, this amounts, for each such

19 to computing the sign of det(A o) and of det ﬁ'k" tk’)'k(’ for k 2 [m]n1% hence one

determinant of sizen  n and m n determinants of size f+1) (n+1). Thus, to
test all 1% we haveO((m n)(m n+1)) = O(m?) determinants to compute. Each
tropical determinant takes O(n?) operations and uses a space bounded by the input size
of A;b;c. O

Remark 3.23 The complexity bounds in Proposition[3.22 can be improved. In Chaptef7,
we show that these three complexity bounds can be reduced t®(n(m + n)) under
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additional technical assumptions. In particular, the computation of reduced costs in
Chapter [7] is based on the iterative Jacobi algorithm of [PIu90] for tropical Cramer
systems. In [RGSTO05] Richter-Gebert, Sturmfels and Theobald relate the solutions of
tropical Cramer systems to solutions of transportation problems. Hence, algorithms for
transportation problems may also be used to compute the signs of the reduced costs.

3.4.1 Semi-algebraic pivoting rules

We shall restrict ourselves tosemi-algberaic pivoting rules,i.e., pivoting rules that have
access to information on the problem at hand only through the signs of polynomials
evaluated on 4% . More precisely, we say that a pivoting rule is semi-algebraic, if
(A;b;c) is determined from (A ;b;c) by the signs of a nite number of polynomials
(Pi )i2[r] Q[X 115 -+~ ;X(m+1)( n+1)] evaluated on % % .
Formally, let us denote by  the oracle which takes as inputi 2 [r] and returns the
sign of P, AR . If a strategy is semi-algebraic, then (A;b;c) takes as input the

We say that a pivoting rule is tropically tractable when:
the polynomials (P; )i are tropically tractables;

(A ; b; c) can be de ned in the arithmetic model of computation with oracle, which
means that (A;b;c) is allowed to perform arithmetic operations +; ; ;= and
call the oracle ;

the number of arithmetic operations, calls to the oracle, and the space complexity

Observe that a tropically tractable pivoting rule may involve polynomials that are
\untractable" in a classical setting. For example, it may use permanents. A permanent
is tropically tractable, as its Newton polytope is, as for the determinant, tge Birko poly-
tope. However, computing a classical permanent is a # -complete problem, see [Val79].

Proposition 3.24. Let be a semi-algebraic pivoting rule. There exists a map "
satisfying
T(A;b;0= (A:b;c)

for all linear programs LP (A;b;c) such that 4% =sval A% is sign-generic for the
the polynomials (P; );.
Furthermore, if  is tropically tractable, then for any sequence of base ;::::1 |‘g,

in k and in the input size of A;b;c.

Proof. Thisis an immediate consequence of Lemn@.s, and the de nition of a (tropically
tractable) semi-algebraic pivoting rule. O

Any T which arises in this way is called atropical pivoting rule.



42 Chapter 3. Tropicalizing the simplex method

Examples of semi-algebraic pivoting rules

Most known pivoting rules are semi-algebraic. Consider for example the rule that se-
lects the smallest index with a negative reduced cost (this rule is known as Bland's
rule [Bla77]). Since the signs of the reduced costs are given by determinants, Bland's
rule is a semi-algebraic pivoting rule which is also tropically tractable. The tropicaliza-
tion of Bland's rule will use O(n*) tropical operations to compute the signs of reduced
costs (as in Proposition[ 3.2P) and thenO(m) operations to determine the smallest index
with a negative reduced cost.

Similarly, every pivoting rule that relies only on the signs of the reduced costs is
semi-algebraic. This includes the \least entered" rule, introduced by Zadeh[[Zad80].
Indeed, this rule selects the improving pivot with the leaving index that has left the
basis the least number of times through the execution of the method. In particular, the
\least entered" rule is tropically tractable. The \shadow-vertex" rule is also a tropically
tractable semi-algebraic pivoting rule, as we shall see in Chaptelr|6.

The rule originally proposed by Dantzig [Dan98] picks the leaving index of the small-
est negative reduced cost. Since the vector of reduced cost$ at a basis| is the solution
of the system ), itsi-th entry, for i 2 1, is given by the Cramer formula

yl = ( 17O get A|Cr>1fig —det(A ) ;

where idx(i; | ) is the index of i in the ordered setl. Hence, comparing the two reduced
costsyi' and yl'( boils down to computing the sign of the expression

det Ag;fig det A'C';fkg : (3.23)

which is a polynomial in 4 . Hence, Dantzig's rule is semi-algebraic. However, it is
unclear whether the polynomial (3.23) is tropically tractable.

The \largest improvement” rule selects the pivot that leads to the largest improvent
of the objective value. Hence, we need to compare the objective values of adjacent basic
points. At a basis |, the objective value is given by:

A, b

> 1 _
c” x' =det 0

=detA, :

To see this, one can use Equation (3.20) with the row A « by) replaced by (c 0). Conse-
quently, the \largest improvement" rule is semi-algebraic, but it is also unclear whether
it is tropically tractable.

3.4.2 The tropical simplex method

Algorithm Z]presents our rst tropical implementation of the simplex method. This
algorithm can be viewed as a puri ed version of the method, which is especially useful
for theoretical purposes. It is the foundation of the practical algorithm which will be
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Algorithm 2:  The tropical simplex method for non-degenerate linear programs
Data : A tropical signed matrix A2 T™ ", two vectorsb2 T™;c2 T"
Input : A subsetl? [m] of cardinality n.

Output : Either Unbounded or a subsetl  [m] of cardinality n.

k 1

while SignRedCostA; c)(1¥) has a negative entrydo

fout = T(A;b;O(fIL;:::;1%g)

if Unbounded (A; b)(1%;:iou) then

| return Unbounded

Ient PiVOtT(A; b)(1 ; iout)

I 1K nfigwg [f ientd

k k+1

9 return K

a A W N P

~N O

presented in Chapter[7, where more e cient versions of the operations of pivoting and
computing reduced costs will be given.

Observe that Algorithm P] is analogous to Algorithm [I, excepts that the maps
Pivot; UnboundedSignRedCostaind have been replaced by their tropical counterparts.
As an immediate application of Propositions[3.22 and 3.24, we have the following theo-
rem.

Theorem 3.25. Let LP (A;b;c) be a non-degenerate linear program, and a semi-
algebraic pivoting rule. Suppose that 28 =sval 4% is sign-generic for the polyno-
mials providing a minor of ﬁbo , and the polynomials(P; ); de ning

Then, for any feasible basisl , the tropical simplex method (Algorithm @), equipped
with the tropical pivoting rule T and applied on the inputA;b;c and I 1, correctly de-
termines if LP (A;b;c) is unbounded, or provides an optimal basis.

the sequence of bases obtained by the classical simplex method (Algorifhim 1), equipped
with the pivoting rule and applied on the inputA; b;c; 1.

If furthermore the pivoting rule is tropically tractable, the k-th iteration of the
tropical simplex method can be performed in time polynomial irk and in the input size
of A;b;c.
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Chapter 4

Tropical linear programming via
the simplex method

In this chapter, we use the tropicalization of the simplex method to solve linear programs
over an arbitrary tropical semiring T = T(G), i.e., problems of the form

minimize ¢ X

subjectto A* x b* A X b LP(Ab0)
whereA*;A 2T™ " 'b";b 2 TMandc2 T". One of the main motivation is to obtain
an algorithm for mean payo games, thanks to the reduction presented in Sectionf 1.1]4.

Our approach is the following. A tropical linear program can be lifted to a linear
program LP (A;b;c) over Hahn series such that the valuation of the entries ofA;b;c
are given byA* ;A ;b";b andc. An optimal solution of the Hahn problem LP (A; b;c)
provides an optimal solution of the tropical problem LP(A;b;c). Hence, the tropical-
ization of the simplex method presented in Chapter B provides an algorithm that solves
tropical linear programs, provided that A*; A ;b";b and c satisfy genericity conditions.

However, we cannot solve arbitrary tropical linear programs in this way. To overcome
this obstacle, we introduce a perturbation scheme, that transforms an arbitrary tropical
linear program into an equivalent, but generic, problem. Our main idea is to use tropical
semirings based on additive groups of vectors with a lexicographic order.

This chapter is organized as follows. In Sectiof 4]1, we expose basic results on tropical
polyhedra and linear programs. In particular, we explain how tropical polyhedra relate
to classical polyhedra over Hahn series. In Sectioh 4.2, we show, that under genericity
conditions, the valuation map preseves the face poset of an arrangement of hyperplanes.
In particular, this entails a geometric notion of tropical basic points and edges. This
geometric interpretation of the tropical simplex method presented in Sectior{ 4.3, along
with the tropical versions of other related notions such as reduced costs or degeneracy.
In Section[4.4, we devise the perturbation scheme that allows to solve arbitrary tropical
linear programs with the tropical simplex method.

The contents of this chapter are mostly adapted from [ABGJ13b] and [ABGJ134].

45
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4.1 Tropical polyhedra

In the following, we work with an arbitrary tropical semiring T = T(G). We use in-
diferrently the notations (G;+;0) and (G; ;1) for the group structure on G. The
non-Archimedean eld we use is any sub eld K of R[t®] that contains all the series
fct? j ¢ 2 R;g 2 Gg. By Theorem , any ordered eld with value group G that
contains R as a sub eld can be identi ed with such a K.

Tropical halfspaces

An (ane) tropical halfspace is the set of points x 2 T" satisfying a tropical linear
inequality:

max( 1+ Xg3;:: n+ Xny ) max( 1+ Xiiil on+ Xny ) 4.1)

where ; 2 T and ; 2 T. When = = 0, it is said to be a linear tropical
halfspace Throughout this paper, we assume that half-spaces are de ned by non-trivial
inequalities:

Assumption A.  There is at least one non0 coe cient in the inequality (4.1)] i.e.,
max max j;max j; ; > 0:
j2[n] " j2[n]
Tropical halfspaces relate to classical halfspaces, see FigJre |4.1 for an illustration.

Lemma 4.1. The tropical halfspace dened by ; 2 T" and ; 2 T is the image

under the valuation map of the intersection of the halfspace
8 0 1
<

Il ©

X X
CX2K'] @ tix;+t A tix;+t (4.2)
' j=1 i=1 '

with the positive orthant K7, for any 2 R greater thann + 1.

Proof. Let x 2 T" be a point in the tropical halfspace (4.1). Then, the lift x =

X0
Eixj+t  (n+1)tmXCexaEatan) X
j=1
and 0 1
A .
@ t ij +t A tmax( 1+ X100 ntXn,; ) - t X t X

j=1
Conversely, supposex 2 KI belongs to the halfspace [(4]2). The Hahn series which
appears in the inequality de ning ( are non-negative. Since the valuation map is

an order-preserving homomorphism from K ; +; ) to (T; max; +), it follows that val( x)
belongs to the tropical halfspace [(4.1). O
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X2 X2 X2
t t

max(x1;x2) 0 max(0;x2) X

max(0;X1) X2

> X1 X1 > X1
X2, X2, X2

X1+Xx2 1 1+X2 X1

1+X1 X2

Figure 4.1: Some tropical halfspaces ifl?, and examples of their lifts into halfspaces
over the positive orthant K2 of Hahn series.

Lemma 4.2. Let H (a;b) be a halfspace for soma 2 K! " and b 2 K. Then, the
image under the valuation map oH (a;b)\ K@ is a tropical halfspace. More precisely,
val(H (a;b)\ K1) is exactly the set of pointsx 2 T" that satisfy

max(aj; + X1;:::;85, + Xn;b")  max(agy + X508y, + Xnib ) ; 4.3)

wherea*:a 2 T! "andb';b 2 T are the values ofa® = max(a;0);a = min(a;0)
and b* = max(b;0);b = min( b;0) respectively.

Proof. Using the homorphism property of the valuation map, valH (a;b)\ K7) is
clearly included in the tropical halfspace (4.3). Conversely, consider any pointx 2
T" satisfying (4.3). We claim that there exists a lift x 2 K} of x, of the form x =
(vat*1; 11, vat*n) for some vector of positive real numbersv 2 R?, which belongs to
val(H (a;b)). Let us rst treat the case of a linear halfspace,i.e., b = 0 or equivalently
" = b = 0. If the inequality ( is strict at X, then the claim holds with any v with
positive entries. Otherwise,a” x=a xanditissucientto ndofa v 2 R" which
satisfy:
X
lc(ay;)y; > lc(ay;)v;
j2argmax (a* x) j2argmax (a  x) (4.4)
vj >0 forallj 2 [n]:

Indeed, given such av, the Hahn seriesax has a positive leading coe cient when x is

the lift (vjt*i);. The system (4.4) clearly admits a solution, and this proves the claim
when b = 0.
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The caseb 6 0, easily follows by homogeneization. Ifx 2 T" satisfy (4.3), then the

point (x;1) 2 T"*! admits a lift (cit*;:::;Cat " ;Crer) 2 K"*1 with ch41 > 0, which
belongs to the linear halfspaceH ((a b);0). Consequently,x = (Cnc—fltxl; i Cnc—jltxn)
is nonnegative and belongs taH (a;b). O

Remark 4.3. The proof above shows that any pointx in the tropical halfspace ) has
a pre-image by the valuation map in theinterior of the Hahn halfspaceH (a;b).

It follows from the two previous lemmas that we can always assume that each variable
(comprising the \a ne" variable) appears on at most one side of the inequality de ning
a tropical halfspace. In other words, any tropical halfspace can be concisely describe by
a signed row vectora = (ayj) 2 T! " and a signed scalab2 T as:

H (gxb:=fx2T"ja;; x1 a;, Xn b a; x1 a, Xn bg

fx2T"ja" x b" a x bag:

Seel|[GK11, Lemma 1], for an elementary proof.

Tropical s-hyperplanes

A signed tropical hyperplane or s-hyperplane is de ned as the set of solutionsx 2 T" of
a tropically linear equality:

H(a;b=fx2T"ja"* x b"'=a x bg; (4.5)

wherea2 T' "andb2 T . When H (a;b) is a non-empty proper subset ofT", its
boundary is H(a; b).

Lemma 4.4. For any a 2 K" and anyb 2 K, let a=sval(a) and b= sval(b). Then:
val(H (a;b)\ K})= H(a;b : (4.6)

Proof. Clearly, val(H (a;b)\ K7) H (a;b). The converse inclusion is a straightfoward
consequence of Lemma 4.2. Indeed, ¥ 2 H (a;b), then x belongs to the two tropical
halfspacesH (a;b) and H (a;b). Hence, x admits two lifts x1:x2 2 K", one on each
side of the hyperplaneH (a;b). Thus the line segment betweenx! and x? intersects
the hyperplane H (a;b). Sincex! and x? have nonnegative entries, and share the same
value x, any point in their convex hull is contained in K} and has valuex. O

Remark 4.5. The set H(a;b) is said to be signed because it corresponds to the tropi-
calization of the intersection of a Hahn hyperplane with the non-negative orthant. A
tropical (unsigned) hyperplane is de ned by an unsigned row vectora = (ayj) 2 Tt N

and an unsigned scalaib 2 T as the set of all pointsx 2 T" such that the maximum is

attained at least twice ina x b=max(ay1+ X1;:::;an + Xn; b); see [RGSTO5]. This
corresponds to the tropicalization of an entire Hahn hyperplane.
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Tropical polyhedra

A tropical polyhedron is the intersection of nitely many tropical a ne halfspaces. It
will be denoted by a signed matrixA 2 T™ " and a signed vectorb2 TM as :

\
P(Ajb):=fx2T"jA* x b" A x bgs= H (Aijb) :
i2[m]

If all those tropical halfspaces are linear,i.e., if bis identically O, that intersection is a
tropical polyhedral cone

Example 4.6. The tropical polyhedron depicted in Figure[1.3 is de ned by the following
matrix and vector.

0 1 0 1
_ (7 5 § _%o —
A—% 7 5 and b= 0

The half-space depicted in orange in Figur3 i (Ag;b) = fx 2 T2 j max(xy
5:Xx, 3) 0g. Its boundary is the signed hyperplaneH (A1;by) = fx 2 T2 j max(xy
5;x2 3)=0g. The last three rows yield the inequalities:

max(x2;0) x1 7;
max(Xy 7;X2 2) O;
X1 max(xy 6;0);

which de ne the half-spaces respectively depicted in purple, green and khaki in Fig-
ure [L.3.

Proposition 4.7.  Consider a tropical polyhedraP (A; b) for someA 2 T™ "andb2 T™M.
Then there existA 2 sval *(A) and b 2 sval (b) such that

P(A;b)=val(P(A;b)\ K}): 4.7)

Proof. Lifting the inequalities as in Lemmal4.7], the proposition holds for any lift of the
form (Ab)=(A* b") (A b )dened, fori2[m]andj 2 [n] by:

At =(tA)and A =(th)
b* =(t%)andb =(t?)

where is a real number strictly greater than n + 1. Indeed, in this case, ifx 2 P (A;b),

inclusion val(P (A;b)\ K7) P (A;b) follows from the homomorphism property of the
valuation map. O
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X2 X2 X2

t0-

0 X1 t/O X1 0 X1

Figure 4.2: Left: the tropical polyhedron P described in [4.8); middle: the Puiseux
polyhedron P obtained by lifting the inequality representation of P as in (4.9); right:
the set val(P ), which is strictly contained in P.

For arbitrary A 2 K™ "andb 2 K™, the image by the valuation map ofP (A ; b)\ K@
is always contained inP (A; b), where A = val( A) and b= val( b). However, this inclusion
may be strict.

Example 4.8. Consider the tropical polyhedron:

P=1fx2T?jmax(0;x2) X1; max(0;x1) X2, X1 0; X2 0g: (4.8)
A lift of its inequality representation provides the following Puiseux polyhedron:

P =fx2K2j1+0:5x2 x1; 1+0:5x1 Xx2; X1 0;x2 0Og: (4.9)

See Figur. By the homomorphism property of the valuation map, we have vaK )
P, but this inclusion is strict for this example. The val( P) consists of the pointsx 2 T?
such that x; 0 andx, 0. However, P also contains the half-linef(; )j > O0g.
Indeed, suppose that there exist X1;x2) 2 P such that val(x1) = val(x2) = > 0.
Let uit and upt be the leading terms ofx 1 and x» respectively. Then, the inequality
1+0:5x1 X, implies that 0:5u;  up, while 1+0:5x, x; imposes that Q5u,  uq,
and we obtain a contradiction.

4.1.1 Tropical convexity

We de ne a tropical convex setof T" as the image by the valuation map of a convex set
of Hahn series contained in the positive orthantK? . Consider a convex combination of
two points x;y 2 K7

Z= X +y where + =1; 0; 0:

Sincex and y have nonnegative entries, and ; 0, the value of z is the tropical
convex combination

val(z) = X y ; where =1;
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of the tropical vectors x = val( x) and y = val(y) with scaling coe cients = val( )
and = val( ). Hence, a setP T" is tropically convex if and only if, for any

9
<M , M =
tconv(x®; i xK) = i x'j 2T foralli2[k]and i=0
T i2[K] i2[k] ’
By analogy with the classical case, we say that a poinv in a tropically convex set P is
a tropical extreme point of P if v 2 tconv(x;y) for somex;y 2 P implies that v = x or
V=y.

It is straightforward to verify that a tropical polyhedron P (A;b) is stable by tropical
convex hull, and thus is tropically convex. Alternatively, this follows from Proposi-
tion B.71

We de ne similarly a tropical convex coneof T" as the image by the valuation map
of a convex cone of Hahn series contained iK7. Equivalently, C T" is a tropical

convex cone if it contains thetropical conic hull tpos(x?;:::;x*) of any nite number of
points x1;:::;xX 2 C, where: 9
< M ) =
tpos(xt;::1;xX) = i x'j i2Tforalli2[k]
T i2[K] '

Clearly, a tropical polyhedral cone P (A; 0) is a tropical convex cone.

A point r in a tropical convex coneCde nes atropicalray [r]:=f rj 2 TnfOgg
of C. We say that [r] is a tropical extreme ray of Cif x 2 [r] or y 2 [r] whenever
r 2 tpos(x;y) for somex;y 2 C. Equivalently, r = x y impliesr = xorr =y.

The tropical recession coneof a tropical convex setP  T" is

trec(P):=fr2T"jx ( r)2P forallx2P andall 2Tg:

Proposition 4.9. If P(A;b) is a non-empty tropical polyhedron, its tropical recession
cone is the tropical polyhedral coneP (A; 0).

Proof. ConsideranyA 2 T™ "andb2 T™. Let r be an element of the tropical recession
cone of P(A;b). By contradiction, suppose that r does not belong toP(A; 0). Then,

Al r<A, r for somei 2 [m]. Clearly, this implies A, r > 0. Choose any
x 2 P (A; b). By de nition of the tropical recession cone, for any 2 T, we have
(Al x B) ( A ) (A, x b)) ( A ) (4.10)
SinceA] r<A,; r,we obtain:
Al x B AT

As the latter inequality holds forany 2 T,andA, r> 0, we obtain a contradiction.

Conversely, letr 2 P(A;0) and x 2 P (A;b). Then, for any 2 T, the inequal-
ity (4.10) is satis ed for all i 2 [m], and thusx (  r) belongs toP(A;b). Hence,r is
an element of the tropical recession cone. O



52 Chapter 4. Tropical linear programming via the simplex method

4.1.2 Homogeneization

It is sometimes convenient to homogeneize a tropical polyhedro® (A;b) T" into the
tropical into the polyhedral cone Q(A;b) T"*!, de ned by

C(A;b):= P((Ab);0)=f(x; )2T" TjA" x b A x b"  g: (411

The points of the tropical polyhedron P (A; b) are associated with elements of the tropical
polyhedral coneC(A; b) by the following bijection:

P(Ajb) If y2Cjyns1 = 1g

x 7! (x;1) (4.12)

The points of the form (x; 0) in C(A; b) correspond to the rays in the recession cone of
P(A;b).

As a tropical cone, C(A;b) is closed under tropical scalar multiplication. For this
reason, we identify C(A;b), with its image in the tropical projective space TP". The
tropical projective space TP" consists of the equivalent classes of"** for the relation
Xy which holds for x;y 2 T"*? if there exists a 2 T nfOg such that x = y.

T" such that the image of P\ R" under the canonical projection fromR" to the tropical
torus fR  x j x 2 R"gis a \tropical polytope" in the sense of Develin and Sturmfels
[DS04]. Via this identi cation, the tropical linear halfspaces which are non-empty proper
subsets of T" correspond to the \tropical halfspaces" studied in [Jos05]. The tropical
projective space de ned above compacti es the tropical torus (with boundary).

4.1.3 Tropical double description

As their classical counterparts, tropical polyhedra are exactly the tropical convex sets
which are nitely generated, i.e., the convex hull of a nite number of points and rays.
This has been established in[[BH84], see also [GP97]. We refer to [GK11] for more
references. We include a proof for the sake of completeness.

Theorem 4.11. Let P(A;b) be a tropical polyhedron for someA 2 T™ " and b2 T™.
Then:

P(A;b)=tconv(V) tpos(R)=fx yjx2tconv(V);y2 tpos(R)g;

where V is the set of tropical extreme points ofP(A;b) and R the set of its tropical
extreme rays. Moreover, the sets/; R are nite.

Proof. It is fact su cient to prove the result for tropical polyhedral cones. Indeed, we
can always homogenize a tropical polyhedrorP (A; b) into the tropical polyhedral cone
C(A;b) de ned in (4.11). The rays of the homogeneized coneX(A;b) are in bijection
with the points in P (A;b) and in its recession cond? (A; 0). Moreover, one easily veri es
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that [( x; 0)] is an extreme ray of C(A; b) if and only if x is an extreme point of P (A; b).
Similarly, [(x; 1)] 2 C(A;b) is an extreme ray if and only if x is an extreme ray of the
recession cone oP (A;b).

We now prove that a tropical polyhedral cone C is the convex hull of its extreme
rays. By Proposition 4.7, there exists a polyhedral coneC K} whose image under
the valuation map is C. It follows that Cis the tropical conic hull of a nite number of

yield extreme rays of C; see Examplg 4.12. Hence, it may happen that for some2 [l],
the point r' belongs to the tropical conic hull of the other generators tposR n frig).
Clearly, we can remove these points fronR and still have a generating set ofC. Let us
write 1 = fi 2 [I]j r' 62pos(R nfrig). We claim that f[r']ji 2 1gis exactly the set of
extreme rays ofC. L

First, any extreme ray [x] of C can be decomposed ix = ,,, r' for some

2 T'. It follows from the extremality of [ x] that r' 2 [x] for somei 2 | .
Second, consider anyg 2 |. We shall prove that [r9] is an extreme ray of C. By

contradiction, suppose that rd £ x yforsomex;y 2 C. There exist ; 2 T' such
that x=;,, i r'andy= ,,, i r'. Hence,
0 1
M .
ri=( 4 ¢ 19 @ (i i) A (4.13)
i21nfqg

This imply the two inequalities:

rd (I\ﬂ )

rd ( i i) ri: (4-14)
i21nfgg

Equality cannot occur in the last inequality, since r9 is not contained in the tropical
conic hullof fr' ji 2 1 nfggg Therefore, there must exists a coordinatej 2 [n] such
that r!> " 5 qq( i i) rj. Consequentlyr!=( q ¢ r{, by @13 and (4.14).
It follows that o ¢= 1. Hence, ¢= 1 or 4= 1. Without loss of generality, let us
assume that 4= 1. Then,

0 1
M .
x=r49 @ i r'A
i2lnfqg
L .
By (#.14), we haver® i2infqg i T andthusx = rq. O

Example 4.12 Consider the tropical polyhedron whose feasible set is an usual square:

2 X1 1;2 x» 1:
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It can be lifted to the square in K2:
2 x; tf:t? x, tt:

The point (t2;t?) is extreme in K2. However, its value (2 2) is not an extreme point of
the tropical polyhedron. Indeed, (2,2) = (2;1) (1;2). In fact, the usual square, as a
tropical polyhedron, is a triangle: it is the tropical convex hull of (1;1);(2;1) and (1; 2).

Remark 4.13 In the proof of Theorem [4.11, we actually showed that if P(A;b) =
conv(V) tpos(R) for some nite sets V;R, then V contains the set of extreme points
of P(A;b), and R its set of extreme rays.

The \converse" of Theorem[4.1] also holds: a nitely generated tropical convex set
is a tropical polyhedron.

Theorem 4.14. Let V;R T" be two nite sets. Then the tropical convex set
tconv(V) tpos(R) = fx yjx2tconv(V);y 2 tpos(R)g (4.15)
is a tropical polyhedron.

The classical counterpart of Theorem[4.I4 can be proved using separation hyper-
planes. The same approach also works in the tropical case. Thaolar C of a tropical
convex coneC parametrizes the set of tropical linear halfspaces containingC, i.e.,

C :=f(; )21 T"j > X > xforall x2 Cg:

By de nition, the tropical cone C is included in the intersection of the tropical halfspaces
parametrized by C . When C is nitely generated, the converse inclusion holds, thanks
to the following separation theorem.

Theorem 4.15. Let C = tpos(R) be a tropical convex cone generated by a nite set
R T". If v 2 T" does not belong toC, then there exists a tropical halfspace that
contains C and does not containv.

Proof. This tropical separation theorem holds for general convex cone (seé [CGQ04,
Zim77,|CGQSO05%]), but in tropical semirings which are complete, or conditionnaly com-
plete, for their natural ordering. However, in the case of nitely generated cones, the
completeness requirement can be dispensed with. The proof below is and adaptation
of [CGQO04] to our setting.

It is su cient to prove the theorem for a point v 2 T" nCwith nite entries. Indeed,
suppose thatv; = 0 for somej 2 [n]andletJ = fj 2 [n]jv; > 0g. Then, the projection
vy of vin T has nite entries. The projection G of Cis a tropical convex cone which
is nitely generated by the projections of the generatorsr 2 R. A tropical halfspace in
TJ separatingv; from G extends to a tropical halfspace ofT" separatingv from C.

We now assume thatv 2 T" n C has nite entries. If Cis included in one of the
coordinate hyperplanefx 2 T" j x; = 0g for somej 2 [n], then the inequality x; 0
provides a tropical halfspace separatingC from v. Hence we can restrict to the case
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where, for anyj 2 [n], there exists a generatorr 2 R such that r; > 0. Without loss of
generality, we may also assume that 6 Ot~ for everyr 2 R. Let 2 TR be de ned for
everyr 2 R by

FIEminy oI

j2[n]

with the convention 0 =+ 1. Note that , 2 T is well-de ned sinceLv has nite
entries, and there exists g 2 [n] such thatr; > 0. Consider the point = .5  T.
Equivalently, for any j 2 [n]:

jEmax o+ (4.16)

Clearly, j > Osince has nite entries and at least one generatorr 2 R satisesrj > 0.
We claim that the tropical halfspace:

H =fx2T"jmaxx; v maxx;
emo M Emt 00
separate the tropical coneC from v. Observe that v; 2 Tand 2 T, sincev and

have nite entries.
First we show that v does not belong toH . Consider anyj 2 [n]and letr 2 G be

a generator that attains the maximum in (#.16), i.e., such that ; =  +r;. Since |
is nite, soisr;. As v r;,itfollowsthat ; vj. However, the equality = v

cannot occurs, as 2 C and v 62 C Hence, there exists at least ong 2 [n] such that
j <Vvj. Consequently,
maxv; Vv; =0 < maxy; i
j2[n] j2[n]
and v does not belong toH
Second, we prove the inclusiorlC H . By convexity, it is su cient to show that

everyr 2 R belongs toH . Fix any generator r 2 R. By de nition of |, we have
maxjomfj Vj = r. Moreover, | Tr; j foreveryj 2 [n], by de nition of
This concludes the proof. O

Corollary 4.16. Let R2 T" be a nite set. Then, the tropical convex conetpos(R) is
a tropical polyhedral cone.

Proof. By Theorem[4.15, the tropical coneC is the intersection of the tropical halfspaces
in its polar: \
C-= fx2T"j >x  7xg:
(; )2cC

By convexity, the polar C of the tropical cone C = tpos(R) is the intersection of nitely
many tropical halfspaces:
\
C = f(; )21 T"jr” r’ g:
r2R

By Theorem [4.1],C is a nitely generated convex cone,i.e., there exists a nite set
G 2 T?" suchthat C =tpos(G). Hence, ifx 2 T" satis es the inequality > x > X
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forall (; ) 2 G, then x also satis es this inequality for any (; ) 2 C by convexity.
Consequently, C is the following tropical polyhedral cone:

\
C= fx2T"j] >x  7xg: O
(; )26G

Proof of Theorem[4.14. Let us homogeneize the convex se® = tconv(V) tpos(R)

T" into the convex coneC = pos(V®[ RY  T"*1 whereV®= f(v;1) jv 2 Vg and
RO= f(r;0) j r 2 Rg. By Corollary 4.16| there exists a matrix (A b) 2 T™ (™1 such
that C = P((A b);0). If x 2 P, then (x;1) 2 C and thus x 2 P (A;b). Conversely, if
x 2P (A;b), then (x;1) 2 C and thus x 2 P. O

4.1.4 Tropical linear programming

A tropical linear program is an optimization problem of the form

optimize ¢ X
subjectto x 2P (A;b) ;

whereA 2 TM " b2 T™ are signed matrices,c 2 T" is an unsigned vector, and \op-
timize" means either \maximize" or \minimize". We say that the program is infeasible
if the tropical polyhedron P(A;b) is empty. Otherwise, it is said to be feasible A
maximization problem is unboundedif for any 2 T, there exists ax 2 P (A;b) such
that c x> . SinceO is a lower bound on any tropical number, tropical minimiza-
tion problems are always bounded. Anoptimal solution of a minimization problem is a
x 2 P (A;b) such that:

¢ x ¢ xforalx2P(A;b): (4.17)
For a maximization problem, the inequality  in (4.17) is replaced by

Lemma 4.17. A tropical linear maximization problem is either infeasible, unbounded,
or admits an optimal solution. A tropical linear minimization problem is either infeasible
or admits an optimal solution.

Proof. If the linear program is infeasible, then the other possibilities are excluded. Now
suppose thatP (A;b) is not empty. Then, by Theorem [4.1], there exist a nite number

First consider a maximization problem. If there exists ai 2 [I] such that ¢ r' > 0,
then the linear program is unbounded. Otherwise any feasible poinik satisfy
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L o . :
and the element  ;,;V' is an optimal solution.
In case of a feasible minimization problem, any feasible poink can be written as

0 1 0 1
M , M .
=@ i viA @ i A
i2[K] i2[1]

L L I .
where 55 k = 1. Consequently, we havec™  x i2fg i (€ V'). Consider

anyi 2 [K]suchthat ; = 1. Then,¢ x ¢ V' minjgc V. Consequently,
the optimal value of the linear program is min;; ¢ vi and it is attained on some
v O

Remark 4.18 The proof of Lemma[4.1T shows that a feasible maximization problem is

equal to P(A; 0) by Proposition 4.9. Hence, Lemmd 3.5 admits a tropical counterpart.

Remark 4.19 The proof of Lemma[4.17 also shows that a feasible a bounded maxi-
mization problem admits i2[l]vi as an optimal solution. Observe that this point is
optimal for all objective vector c that yields a bounded problem. In case of a feasible
minimization problem, we proved that there always exists an extreme pointv' which is
an optimal solution.

In the following, we shall consider only minimization problems, that we denote as
follows: o >
minimize X .
subjectto x 2 P (A;b) ; LP(A;b9)
Proposition 4.20. There is a way to associate to every tropical linear program of the
form LP (A;Db; ) a linear program over K

minimize  cx
subjectto x 2 P(A;b); x O (4.18)

satisfying A 2 sval 1(A), b2 sval 1(b) and c 2 sval (c), so that:

(i) the image by the valuation of the feasible set of the linear progranf4.18) is precisely
the feasible set of the tropical linear program LKA, b;c); in particular, the former
program is feasible if, and only if, the latter one is feasible;

(i) the valuation of any optimal solution of (4.18) (if any) is an optimal solution of
LP(A;b;0).

Proof. The lifted matrices A 2 sval *(A) and b 2 sval (b) provided by Proposition [7]
proves the rst part of the proposition. For the second part, choose anyc 2 sval (c).

Sincec has tropically non-negative entries,c also has non-negative entries. It follows that
cx > O0forallx 2 P(A;b)\ K. If P(A;b)is not empty, then P (A;b)\ K7 is also not
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(0;0;4) (4,4, 4)

(0; 0;0) (4,4,0)

(4;0;0)

Figure 4.3: The tropical polyhedron de ned by the inequalities (4.19) and its
external representation.

(t%%t %) (t %t %t %

(t01 tO, tO)
(t 4t 419

(t 4; tO, tO)

Figure 4.4: A lift of the tropical polyhedron de ned by the inequalities (4.19})
and its external representation.
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empty by the rst part of the proposition. Hence, the Hahn linear program ( admits
an optimal solution x by Proposition [?Zl] As c” x cx forall x 2 P(A;b)\ K7, it
follows from the homomorphism property of the valuation map that ¢ val(x ) ¢ x
forall x 2 val(P (A;b)\ K})= P(A;b). O

Example 4.21 Throughout the rest of this manuscript, we will illustrate some results
on the following problem.

minimize max(x1 2;X2;Xz 1)

subject to max(0;x> 1) max(x:1 1;x3 1) —— H1
X3 max(0;x, 2) = H>
X2 0 — H3
x1 max(0;x2 3) e Hg
0 X 4: s Hs

These constraints de ne the tropical polyhedron represented in Figurd 4.3. A lift of this
tropical polyhedron is depicted in Figure[4.4. The optimal value of this tropical linear
program is 0 and the set of optimal solutions is the ordinary square:

f(X1;X2;x3) 2 T3j0 x3 landxy=0and0 x3 1g:

However, over Hahn series, there is a unique optimum. It is the point located in the
intersection of three hyperplanes obtained by lifting the inequalities [H2), (H3) and (H4).
This point has value (0; 0; 0), which is an optimum for the tropical linear program.
The homogeneization of the polyhedron|(4.19) is the cone described by the inequal-
e max(xs4;X2 1) max(x: 1;x3 1)
X3 max(Xa; X2 2)
X2 X4 (420)
X1 max(xa; X2 3)
X4 X2 4

where the coordinatex, plays the role of the a ne component. For the sake of simplicity,

the linear half-spaces in [[4.2D) are still referred to asfil ){([Hs).

4.2 Generic arrangements of tropical hyperplanes

A set of Hahn hyperplanesf H (A;; bi)gi2jm) induces a cell decomposition of the ambient
spaceK" into polyhedra. Similarly a set of tropical hyperplanesfH (A;;b)gi>m; decom-
poses the spacd”. In this section, we establish the following relation between these
two decompositions (see Figur5 for an illustration).
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- Y )
1 4

7 X1

t 1 toxl 1 0

t 1

Figure 4.5: lllustration of Theorem . Left: the cell decomposition ofK? induced
by the hyperplane arrangement of Exampl. Right: the cell decomposition off 2
induced by the tropicalization of the hyperplanes of Example[1.2. Note that in the
tropical decomposition, the zero-dimensionnal cells that correspond to points withO
entries are not represented.

Theorem 4.22. Suppose that(A b) 2 T™ ("*1) s sign-generic for all minors polyno-
mials. Then, for all A 2 sval *(A), b2 sval (b) and! [m],

val P (A;b)\ K} = P/ (A;b): (4.21)
where, for any subset of rowd  [m], we denote

\ \
Pi(AD):=  H(AB)\P (Ab); Pi(Asb):=  H(A;b)\ P(A;b):
i21 i21

By Theorem , the set of tropical s-hyperplanesH (A;;b)gi2m; induces a cellular
decomposition of T" into tropical polyhedra. We call this collection of tropical polyhedra
the signed cellsof the arrangementfH (A;;b)gi2;m;. Notice that the signed cells form
an intersection poset thanks to Theoren 4.2p.

The signed cell decomposition coarsens the cell decomposition introduced in [DS04],
which partitions T" into ordinary polyhedra. Here we call the latter cells unsigned
In particular, the one dimensional signed cells are unions of (closed) one-dimensional
unsigned cells. However, some one-dimensional unsigned cells may not belong to any
one dimensional signed cell. In the example depicted in Figurg 4.3, this is the case for
the ordinary line segment [(2; 0; 1); (1; 1; 1)].

Example 4.23 Consider the tropical polyhedral coneCin T2 given by the three homoge-
nous constraints

X2  max(Xi; Xs) (4.22)
X1 max(xz 2;x3 1) (4.23)
max(xi;xXxz3+1) Xo 1: (4.24)
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[ ; ;123]

[2; ;13]

[12 ;3]

[123 ; ]

Figure 4.6: Unsigned (left) and signed (right) cell decompositions induced by the three
tropical s-hyperplanes in Example[4.28.

This gives rise to an arrangement of three tropical s-hyperplanes in whiclC forms one
signed cell; see Figur6 (right) for a visualization in thex; = 0 plane. Each tropical
s-hyperplane yields a unique unsigned tropical hyperplane. Aropen sectoris one con-
nected component of the complement of an unsigned tropical hyperplane. The ordinary
polyhedral complex arising from intersecting the open sectors of an arrangement of un-
signed tropical hyperplanes is thetype decompositionof Develin and Sturmfels [DS04].
In our example the type decomposition has ten unsigned maximal cells; in Figurg 4.6
(left), we marked them with labels as in [DS04].

The apices of the unsigned tropical hyperplanes arising from the three constraints
above arep; =(0;0;0), po=(0;2;1) and p3 = (0;1; 1). The tropical convex hull of py,
p2 and ps, with respect to min as the tropical addition, is the topological closure of the
unsigend bounded cell [21; 3].

The signed cellC is precisely the union of the two maximal unsigned cells [21; 3]
and [23 1; ] together with the (relatively open) bounded edge of type [231; 3] sitting
in-between. The other signed cells come about by replacing \" by \ " in some subset
of the constraints above. For instance, exchanging\ "by\ "in ( and keeping the
other two yields the signed cell which is the union of the three unsigned cells [2 ; 13],
[12, ;3], [123 ; ] and two (relatively open) edges in-between. Altogether there are
six maximal signed cells in this case.

The proper notion of a \face" of a tropical polyhedron is a subject of active research,
see [[Jos05] and [DYQ7]. Notice that the signed and unsigned cells depend on the ar-
rangement of s-hyperplanes, while several di erent arrangements may describe the same
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tropical polyhedron. For example,
fx2T2jx1 X» 1g=fx2T?jx; landx, 1g: (4.25)

Even if a canonical external representation exists, see [AK13], it may not satisfy the
genericity conditions of Theorem[4.22. Thus this approach does not easily lead to a
meaningful notion of faces for tropical polyhedra.

The rest of this section is devoted to prove Theorenj 4.22.

4.2.1 The tangent digraph

Consider a matrix W = (W;;) 2 T™ ("Y' For every point x 2 T"*! with no 0 entries,
we de ne the tangent graph G((W) at the point x with respect to W as a bipartite
graph over the following two disjoint sets of nodes: the \coordinate nodes" i + 1] and
the \hyperplane nodes" fi 2 [m]j W x =W, x > 0g. There is an edge between
the hyperplane nodei and the coordinate nodej whenj 2 arg(jWij x).

The tangent digraph G, (W) is an oriented version ofG, (W), where the edge between
the hyperplane nodei and the coordinate nodej is oriented from j to i when Wj is
tropically positive, and from i to j when Wj; is tropically negative (if a tangent digraph
contains an edge between andj then W; 6 0).

Examples of tangent digraphs are given in Figur (there, hyperplane nodes are
denoted H;). The term \tangent" comes from the fact that G((W) is a combinatorial
encoding of the tangent cone atx in the tropical cone C= P(W;0), see [AGG13]. The
tangent digraph is the same for any two points in the same cell of the arrangement of
tropical hyperplanes given by the inequalities. The tangent graphG(W) corresponds
to the \types" introduced in [DS04] but relative only to the hyperplanes given by the
tight inequalities at x.

When there is no risk of confusion, we will denote byG, and G, the tangent graph
and digraph, respectively.

Example 4.24. Let W be the matrix formed by the coe cients of the system (4.20), and
consider the point x = (1;0;0;0) (corresponding to (1 0;0) via the bijection (.12)).
The inequalities (H4), (H2) and (H3) are tight at x. They read

max(Xs; X2 1) max(xy 1;xz 1)

X3 max(Xs; X2 2)
X2 X4

where we marked the positions where the maxima are attained. The tangent digraph
G((W) is depicted in the top left of Figure [7] For instance, the rst inequality provides
the arcs from coordinate node 4 to hyperplane nodl 4}, and from[H1]to coordinate node
1.

If I and J are respectively subsets of the hyperplane and coordinate nodes &, a
matching betweenl| and J is a subgraph ofG; with node setl [ J in which every node
is incident to exactly one edge. A matching can be identi ed with a bijection :1 ! J.



4.2 Generic arrangements of tropical hyperplanes 63

W@@*“@\/@@ ®

Fa| |Fd (2| |Fd [EE] [ER]
At (1;0;0) In the open segment At (1;1;0) In the open segment
1(1;0;0); (1;1; 0)[ 11, 1,0); (2;2,0)[

Q90 9&

2] (A [E0] Fs| [Fa|

S D 00 O-ED

At (2;2;0) In the open segment At (4;4;2)
1(2:2;0); (4,4, 2)[

Figure 4.7: Tangent digraphs at various points of the tropical cone obtained by homoge-
nization of the tropical polyhedron de ned by the inequalities (4.19). Hyperplane nodes
are rectangles and coordinate nodes are circles.

Lemma 4.25. Let W 2 T™ ™% and x 2 T"*! be a point with no 0 entries. Suppose
the tangent graphG; contains a matching between the hyperplane noddsand the co-

ordinate nodesJ. Then this matching is a solution of the maximal assignment problem
with costs (jWij j)i2|;j 27.

Proof. Let f(i1;j1);::::(iqgjq)9 be a matchlng between the hyperplanes node$ =
fig;::15iq0 and the coordlnate nodesJ = fji;:::jq0. By de nition of the tangent
graph, for all p 2 [g], we have:

iWinioi+ Xj, ] Wiyj+x forall 2 [n+1]:

P P
Sincex has no0 entries, this implies -, Wi, ] o=1 IWi, (i)l for any bijection
o I N ]

Lemma 4.26. Let W 2 T™ ™1 and x 2 T"*! pe a point with no O entries. If

the tangent graphG, contains an undirected cycle, then the matrixW admits a square
submatrix W °which is not generic for the determinant polynomial. Moreover, if the cycle
is directed in the tangent digraphG,, then W is not sign-generic for the determinant
polynomial.
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Cip 7V jpand :ip 7! jper for p 2 [q are bijections. The sets of edgeb(ip;jp) j p 2 [dlg
and f(ip;jp+1) | P 2 [dlg are two distinct matchings between the hyperplane nodes

Now suppose that the cycle is directed. ThenW; ;  is tropically positive and Wi j .,
is tropically negative for all p 2 [q]. Consequently, the tropical signs ofW;,j,

Wi j, and Wi,j, Wigiq dier by (- 1)9. Moreover, is obtained from by a
cyclic permutation of order g, so their signs diers by ( 1)%*1. As a result, the terms
tsign( ) Wiy, Wi j, and tsign( ) Wi,j, Wi 1 have opposite tropical

signs, andW %is not sign-generic for the determinant. This completes the proof. O

4.2.2 Cells of an arrangement of signed tropical hyperplanes

Theorem 4.27. Suppose that(A b) 2 T™ (1) s sign-generic for all minors polyno-
mials. Then the identity

val P(A:b)\ K" = P(A;b)

holds for any A 2 sval 1(A) and b 2 sval (b).

Proof. Let W = (A b). For any A 2 sval }(A) and b 2 sval X(b), let W = (A b).
We rst prove the result for the cones C= P(W;0) and C = P (W ;0). The inclusion
val(C\ K?*1) C is trivial. Conversely, let x 2 C. Up to removing the columnsj of W
with x; = 0, we can assume thatx has no0 entries. We construct a lift x of x in the
coneC\ K7*! using the tangent digraph G, with hyperplane node setl . We claim that
it is su cient to nd a vector v 2 R"*! satisfying the following conditions:

lc(wjj )v; > 0 foralli2l; (4.26)
j2arg(jWij x)
vj >0 forallj2[n+1]; (4.27)

where W = (wjj ).

Indeed, given such a vectorv, consider the lift x = (v;t*i); of x. Clearly x 2 KL,
If i 21, then ) ensures that the leading coe cient of W;x is positive. If i 62I,
two cases can occur. EitheW,;" x = W, x = 0 and thus W;x = 0. Otherwise,
W x>W, X, sothe leading term of W;x is positive. We conclude thatWix 0
for all i 2 [m]. This proves the claim.

Let F = (fj) 2 R ("1 pe the real matrix de ned by fj = Ic(wj) when j 2
arg(jwij x) and fj; = 0 otherwise. We claim that there exists av 2 R"*1 such that
Fv> 0 andv > 0, or, equivalently, that the following polyhedron is not empty:

fv2R"™ jFv 1, v 1g:
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By contradiction, suppose that the latter polyhedron is empty. Then, by Farkas' lemma

[Sch03,x5.4], there exist 2 R} and 2 R"*! such that:

F> + 0 4.28
x (4.28)

i + j >0 (429)
i21 j2[n+1]

X

Note that if  is the O vector, then by (4.29), there exists a ; > 0 for somej 2 [n +1],
which contradicts (4.28). Thus, the setk = fi 21 j ;> Ogisnotempty. Let J  [n+1]
be de ned by: [ [
J = arg(\W," x)=  fjjfj >0g:
i2K i2K
By de nition of the tangent digraph, every hyperplane node in K has an incoming arc
from a coordinate node inJ. Moreover, for everyj 2 J, the inequality ( yields:
X
fij i 0:
i21

This sum contains a positive termfj; ; (by de nition of J). Consequently, it must also
contain a negative term fy; . Equivalently, k 2 K and f; < 0, which means that
the coordinate nodej has an incoming arc from the hyperplane node. It follows that
the tangent digraph G, contains a directed cycle (through the nodesk [ J). Then, by
Lemmal[4.26, the matrix W is not sign-generic for a minor polynomial. This contradicts
the sign-genericity of W and proves the claim.

Now we consider the polyhedrorP (A; b). The inclusion val(P (A;b)\ K1) P (A;b)
is still valid. Conversely, given x 2 P (A;b), the point x°= (x; 1) 2 T"*! belongs to the
coneC. By the previous proof, there exists a liftx °of x%in C\ K1*!. Since valx%,,) = 1,

val(x) = x and it belongs toP (A;b)\ K@. O

Theorem[4.2T shows that valuation commutes with intersection for halfspaces in gen-
eral position. This extends to mixed intersection of halfspaces and (signed) hyperplanes.

Proof of Theorem[4.23. We rst prove the result when | =[m]. In this case, the claim is
about the intersection of all (Hahn or signed tropi]cal) hyperplanes in the arrangement.
The rst4nclusion val @ H(Ai;bi)\ K1 M H(Ai;b) is trivial. Conversely,
let x 2 0, H(Ai;b). The point x belongs to the tropical polyhedron P(A;b). By
Theorem|[4.27,x admits a lift in P (A;b)\ K. But observe that the choice of tropical
signs for the rows of @ b) is arbitrary. Indeed, if (A°HP) is obtained by multiplying some
rows of (A b) by 1, then (At satisfy the conditions of Theorem andx belongs
to P(A% ). Thus for any sign pattern s 2f 1;+1g™, there exists a lift xS of x which

S
belongs to the Hahn polyhedronP (A*®;b%)\ K7, where (A® b%) = b . (A b).
Since the Hahn pointsx® are non-negative with value x, any point in their convex
hull is also non-negative with value x. We claim that the convex hull convfx® j s 2
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T
f 1;+1g™g contains a point in the intersection {2, H (Ai;b;). We prove the claim by

induction on the number m of hyperplanes.

If m =1, we obtain two points x* and x on each side of the hyperplandd (A 1;b,),
and it is easy to see that their convex hull intersects the hyperplane. Now, suppose we
havem 2 hyperplanes. LetS* (resp.S ) be the set of all signs patternss 2 f 1;+1g™
with s;, = +1 (resp. s,m = 1). By induction, the convex hull conyfx® j s 2 S*g
contains a point x* in the intersection of the rst m T1 hyperplanes i”lll H(Ai;b).
Similarly, convfx® j s 2 S g contains a point x in i”:‘llH (Ai;b). The points x™*
and x are on opposite sides of the last hyperplanéd (A ,; by), thus their convex hull
intersectsH (A n; bm).

When | ( [m], the previous proof can be generalized by considering only the sign
patterns s2f 1;+1g™ such that s; = +1 for all i 62. O

4.3 The simplex method for tropical linear programming

We shall now use the tropical simplex method to solve a tropical linear program. By
Proposition , a solution of LP(A; b; ¢) can be found by applying the simplex method
to a classical linear program

minimize  c¢x

subjectto x 2 P(A;b); x O (4.30)

over Hahn series, for some A% 2 sval * Ab . Note that the feasible set of [4.30) is
included in the positive orthant. To ease the connection between tropical and classical
linear programs, we shall make the following assumption.

Assumption B.  The matrix (A b) 2 T™ ™71 is such that P (A:b) is included in the
positive orthant K7 for any (A b) 2 sval (A b).

This assumption can be easily satis ed by adding explicitely the (implicit) inequali-
ties x 0 to the description of P (A;b).

Tropical basic points

Proposition-De nition 4.28. Suppose that(A b) 2 T™ (1) s sign-generic for the
minor polynomials and satis es Assumption@. Let | be a subset ofm] of cardinality n
such thattdet(A;) 6 0. If the set

Pi(A;b)= fx2P(A;b)jA] x B =A, x hg (4.31)

is not empty, it contains a unique point x'. In this case, | is called a (feasible) basis,
and x' a (feasible) basic point, of P (A; b).

For any (A b) 2 sval (A b), the feasible bases oP (A;b) are exactly the feasible
bases ofP (A ; b), Moreover, for any feasible basid , the basic pointx' of P(A;b) is the
value of the basic pointx' of P (A ;b).
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Proof. Consider any (A b) 2 sval }(A b). By Assumption E the Hahn polyhedron
P (A;b) is included in the positive orthant K. Hence, by Corollary[4.22, the set[(4.3]1)
is exactly the image under the valuation map of the set

Pi(A;b)=fx2P(A;b)jAx + Db =0g (4.32)

Since tdet(A,) 6 0, and A, is sign-generic for the determinant, it follows from Lemm
at det(A,) 6 0. As a consequence,l is a basis of P (A;b), and the intersection
i»; H(Aji;bj) contains only the Hahn basic point x'. If this point is contained in

P(A;b), i.e., if the basis is feasible forP (A;b), then the set (4.32) is reduced to

fval(x')g. Otherwise, the set [4.32) is empty. O

Given a basis, the corresponding basic point can be obtained as follows.
Proposition 4.29.  Suppose that(A b) 2 T™ ™Y s sign-generic for the minor poly-
nomials and satis es Assumption@. Letl [m] be a feasible basis oP (A;b). The jth
component of the basic pointx! 2 T" is given by

x| =( 1) "™ tdet(Aph) (tdet(A) 1= jtdet(A,ph)jj tdet(A))j: (4.33)

Proof. By Lemma, the tropical basic pointx' is the image under the valuation map
of the Hahn basic point x' of the polyhedron P (A;b), for any (A b) 2 sval (A b).
The rest of the proposition then follows from Cramer's formul (Proposition and

Lemmal3.8. O

Proposition 4.30.  Every extreme point of a tropical polyhedron is a feasible basic point.

Proof. Let (A b) 2 sval (A b) be the lifted matrix given by Proposition so that
val(P (A ; b)) coincides with P(A;b). Let V be the set of basic points ofP (A;b). By
Proposition [4.2§, V = val( V) is the set of tropical basic points of P(A;b). The set
of extreme points of P (A; b) is exactly the set of its basic points by Proposition[3.14.
Hence, P (A;b) = conv(V) + pos(R) for some nite set R K" by Theorem [3.1.
Consequently, P(A; b) = tconv( V) tpos(val(R)). It then follows from Remark 4.13
that V contains the set of extreme points ofP (A; b). O

However, in contrast with the classical case, a tropical basic point may not be an
extreme point. This happens in particular in Example [4.12, where (22) is a basic point
but not an extreme point. Observe that the set of basic points actually depends on
the external representation chosen for a tropical polyhedron. For example, the tropical
polyhedron of Example[4.12 can also be described by:

2 max(Xi;X2);X1 Lixp 1:

With this representation, (2;2) is no longer a basic point. In fact, the set of basic points
is f(2;1);(1;2);(1; 1)g, and it coincides with the set of extreme points.
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Non-degeneracy

By analogy with the classical case, we say that a feasible baslisof a tropical polyhedron
P (A; b) is degenerateif the tropical basic point x' belongs to an s-hyperplaneH (Ag; by)
for somek 62 . When there is no degenerate basis, we say that the tropical polyhedron
P (A;b), and the tropical linear program LP(A;b; ), is non-degenerate

Note that even if (A b) is generic for the minor polynomials, it may happenP (A; b)
is degenerate. This happens in particular in the tropical counterpart of the degenerate
linear program in Example[3.20.

Example 4.31 The tropical polyhedron of T2 de ned by the inequalities:
X1 Xz2;X1 O0;xo O (4.34)

has a sign-generic matrix, and Q; 0) is a basic point for the three distinct basesx; =
X2;X1 = 0,and X1 = x2;X2= 0, and x; = 0;x, = 0.

The following conditions are su cient to ensure non-degeneracy.

Lemma 4.32. Suppose that(A b) 2 T" (*1) s sign-generic for the minor polyno-
mials and satis es Assumption[B. If one of the following conditions holds, the tropical
polyhedron P (A; b) is non-degenerate.

(i) The polyhedron P(A;b) does not contain a point with O entries.

(i) The matrix (A b) is of the form /BO%O , whereb’ has noO entries, andD isan n

diagonal matrix with tropically positive entries on the diagonal.

Proof. Let (A b) 2 sval (A b) and | a feasible basis. By Corollary 4.2, it is su cient
to prove that, for any k 2 [m]nl, the basic point x' is not contained in the hyperplane

H (Ak;bk). By contradiction, suppose that Ax' + b, = 0. Then, det ﬁ'k E'k =0

by (8.20). Thus tdet ﬁ'k ﬁ‘( = 0 by genericity on that minor polynomial. By de nition

of the tropical determinant, we have

Al Db M

tdet
Ak b

JAgj | tdet(Appb)j j b tdet(Ap)j: (4.35)
j2[n]

(i) If the polyhedron does not contain point with 0 entries, the basic pointx' does
not have O entries. By Proposition , it follows that | tdet(Al;p b)j& Oforallj 2 [n].

Assumption |[Al Consequently, we obtain the contradiction tdet ﬁ'k EL > 0 by (4.35).

(i) Now suppose that (A b) is of the form ADO%O , where b° has no 0 entries, and
D is an n diagonal matrix with tropically positive entries on the diagonal. Since
jtdet(A)j & 0, Equation (4.35) imply b = 0. As the components oft® are not equal to

0, we haveAy = D for somel 2 [n]. Hence, tdet 2! P = jDyj j tdet(A.,b)j.
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Let :[n] 7! | be a maximizing permutation in tdet(A,). As tdet(A,;) 6 0, we have
A () € Oforall j 2 [n]. In particular, A (;, 6 0. Consequently, (l) either indexes the
row (A b) = (D, 0), or a row of (A°H). Since (1) 2 | and k 62, we deduce that (1)
indexes a row of A%KY), and thus that b ) & 0. Finally, we obtain the contradiction:

X
0= jtdet(A, pb)j j b o)+ JAjj y>0: O
j2[n]nflg
Tropical edges
Proposition-De nition 4.33. Suppose that(A b) 2 T™ (1) g sign-generic for the

minor polynomials and satis es Assumption[B. Let K be a subset ofm] of cardinality
n 1 such thatAx has a maximal square submatrix with a nor® tropical determinant.
If the set

Pc(Ajb)= fx2P(Ab)jAx x b =A, x bg (4.36)

is not empty, then it is called an edge oP (A;b).
The edges ofP(A;b) are exactly image under the valuation map of the edges of
P (A;b) for any lift (A b) 2 sval (A b).

Proof. The arguments are the same as in the proof of Proposition-De nition[4.2B. [

Since a bounded edge of a Hahn polyhedron is the convex hull of two of its basic
points, a bounded edge of a tropical polyhedron is the tropical convex hull of two of its
basic points. We refer to Chapter[7 for a more thorough description of tropical edges.

Tropical reduced costs
We also de ne a tropical version of reduced costs.

Proposition-De nition 4.34. Suppose that A8 2 T(M*D (" gatis es Assump-

tion B]and is sign-generic for the minor polynomials. Let| be a feasible basis of
LP(A:b;0). The vector of reduced costsof LP(A;b:¢) at | is the vectory' 2 T
with entries:

yl =( HMIdED det A'C;‘fig (tdet(A)) *foralli2| (4.37)

whereidx(i;1 ) is the index ofi in the ordered setl .

Forany AR 2sval ' Ab  and for any feasible basid , the reduced costs vector
y' of LP(A;b; ¢ is the image under the signed valuation map of the reduced costs vector
y' of LP (A;b;c).

Proof. The reduced costs vectory' at a basis| is the unique solution of the system
A7y = c. We then apply Cramer's formul to this system, and Lemma O
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X2

¥

1 2 3 X

Figure 4.8: lllustration of Example §.35. The set of optimal solutions of the tropical
linear program on the left is the segment between (11) and (1;3). In particular, the
tropical basic point (1;3) is an optimal solution. However, the corresponding basis is
not optimal. Indeed, on a lift of this tropical linear program (on the right), the basic
point de ned by the blue and green hyperplanes is not optimal.

If, at a feasible basis! all reduced costs ¥! )i>; have a non-negative tropical sign,
we say that | is an optimal basis of LP(A;b;c). Observe that at an optimal basis |, the
basic point x' is an optimal solution of LP(A;b;c). Indeed, x' is an optimal solution of
the Hahn linear program provided by Proposition [4.7.

However, it may happen that a basic pointx' is an optimal solution of LP(A;b;c),
while | is not an optimal basis, i.e., some reduced costs have negative sign. Unlike the
classical case, this can happen even on a non-degenerate tropical linear program.

Example 4.35. Consider following the tropical linear program (illustrated in Figure 4.8):
minimize max(Xy;x2 4) s.t. 3 max(Xi;X2); X1 1, X 1:

It can be described by the matrices

0 1 0 1
1 1 3 1
A=@1 O0A;b=@ 1A andc= 4
0 1 1

One easily verify that 4 8§ is sign-generic for the minor polynomials, and that Assump-
tion Blis satis ed.

The set of optimal solutions of this tropical linear program is the line segment between
the two basic points (1;1) and (3;1). The basic point (3;1) is de ned by the system

3 =max(Xqg;X2); Xo=1:
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The tropical reduced cost for the constraint 3  max(xi;x2) is 1, hence tropically
negative.
To see this, it may be easier to look at a lift of this tropical linear program over Hahn
series:
minimize X1+t %Xo s.t. t2 X1+ Xo: X1t Xo t:

The Hahn basic point corresponding to the tropical basic point (3 1) is de ned by:

t3= X1+ X9 Xp= t:

The vector of reduced cost for the corresponding basis is the unique solution 2 K? of

10 _ 1
1197 ¢4

henceis 1 t*

. - Its image under the signed valuation map is L.

The tropical simplex method solves generic tropical linear programs

Proposition 4.36. Let be a semi-algebraic pivoting rule. Suppose that L{A;b;c) a
non-degenerate tropical linear program satisfying Assumptiorﬂa and such thatﬁ% is
sign-generic for the minor polynomials, and all polynomials(P; ).

Then, for any feasible basisl of LP(A;b;c), the tropical simplex method, equipped
with the tropical pivoting rule T, and applied onA;b;c; |, terminates and returns an
optimal basis of LP(A; b; ©).

Proof. Consider the matrix 4% 2 sval Y AR ) given by Proposition @ The
conditions of Theorem[3.2% are satis ed and thus the tropical simplex method terminates.
The linear program LP (A;b;c) seek a minimum ofx 7! c>x with ¢ 0, and the
polyhedron P (A ;b) is included in the positive orthant. Hence, LP (A b;c) is bounded
and the tropical simplex method returns an optimal basis| of LP (A;b;c). It follows
that the basic point x' is optimal for LP (A;b;c). By Proposition , the tropical
basic point x' =val(x' ) is optimal for LP( A;b;0). O

We conclude this section by applying the tropical simplex algorithm to the running
example[4.2].

Example 4.37. We start from the tropical basic point (4 ;4,; 2) associated with the basis
| = fH 1f[H2}[H=p. For this basis, the tropical reduced costs arefr= (1), ypg= 1
and ypz = 4. We chooseiot = [Hgland pivot along the tropical edge Eggysy-

We arrive at the basic point (1; 0; 0), associated withl = fH 1}[H2}[H3g. The reduced
costs areyp= ( 1), yag= 1 andymz = 0. The only tropically negative reduced
cost is Yy, thus we pivot along Eg—jry-

The new basic point is (Q 0; 0), corresponding to the setfH 2f[H3}[H40. The reduced
costs are tropically positive: ya;1= 1, gz =0 and ygz= 2. Thus (0; 0; 0) is optimal.
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4.4 Perturbation scheme

We x a totally ordered abelian group G, and a tropical linear program LP = LP( A; b; ¢)
on the tropical semiring T = T(G). We shall construct a tropical linear program fp
which is generic and whose solution provides an optimal solution of LP. The problem
fP is de ned on a \bigger" semiring | = T(F G H), whereF and H are two groups
and F G H is ordered lexicographically. We shall useZ; +) for F, and the additive
group ZN N, with a lexicographic order, for H. For computational purposes, we shall see
below that it is su cient to instantiate H asz(M*"+3) (n+3) tg yse the tropical simplex
method on tropical linear program de ned by m inequalities in dimensionn.

Intuitively, a tuple ( f;g;h) 2 F G H corresponds to an element of5 of the form
fM + g+ h , whereM is an in nite formal value and and in nitesimal formal value.
An elementg 2 G is lifted into (0; ; ). In contrast, the elements of | of the form (f; ;)
with f 6 O correspond to di erent layers of in nite values, namely 1 iff < 0,and+1
if f > 0. Finally, the semiring | has its own bottom element, 0, which also corresponds
to Or.

We de ne a canonical embedding , which maps a tropical signed numberx 2 T to

(x) 2 1 de ned by:

8

2 (0;jxj; 0) if x is tropically positive ;
(x) := S (0;jxj;0) if x is tropically negative ;

" Og if x=07:

The map is extended to matrices component-wise, and we let
A= (A); b= (b;andc= (c): (4.38)

In order to obtain a non-degenerate linear program, we wish to use Lemma 4.B2{(ii).
So, we replace thé entries of b by \in nitely small" but nite entries. Wedene d2 ™M
to be a vector such that

1, di>0 forali2[m]: (4.39)

For example, we can taked; = ( 1;0;0) for all i 2 [m]. We want to solve the following
linear program over |:

maximize ¢ X
subjectto A* x (b d) A x b (4.40)
X 0:

However, the matrix of this problem may not be sign-generic. We now use théd -entries
of the elements ofl to satisfy the genericity conditions. Let E = (") be a basis of
the Z-module H = ZN N. For example, we can use the canonical basis whetél is the
in nite matrix with all entries equal to 0 except the ( i;j )-th entry which is equal to 1.
We de ne a perturbation map g, that associates to anyM 2 1P 9, the perturbed matrix
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f = g(M)2IP 9dened by

8 iy

2 (fij;g:") if Mj; is tropically positive, and jM;j j = (fj;0j; )
Mij = S (fij ;9 " ) if M is tropically negative, and jM;; j = (i ;g )

) O| if Mij = OT .

Lemma 4.38. Let M 2 IP 9. The perturbed matrix g (M) is generic for any polynomial

P
Proof. Let f1 = e(M)and P = >, g X . If trop(P)(If/I)z 0 then there is nothing

[o prove. Otherwjise, let ; 2 NP 9 be two maximizers injtrop(P)(f)j. We have
i oom =4 iy". SinceE = ("Y)is a basis, and ;  have non-negative
entries, it follows that = . O

We are now considering now the following tropical linear program onl:
minimize € X
subjectto & x ® & & x 9 (fpP)
3] X 0|n

with parameters given by:

0 1 0 1
€ 0 0 (> 0 O

@8 8 A= @ (A) (b dA (4.41)
|g 0|n 0 Id OI” 0
where Id is then n identity matrix of 1.
Example 4.39 Let us illustrate our perturbation scheme on a very simple example.
Consider the tropical polyhedron P(A; b) in T? de ned by:

X1 Xz and X2 X1

This polyhedron consists of the diagonaki = x» (see Figurd 4.9, right). After embedding
into 12, and replacing the 0 entries of the right-hand sideb by ( 1;0;0) as in (4.4Q), we
obtain the polyhedron in 12 depicted in Figure 4.9 (middle), which de ned by:

x1 (1,000 x
X2 ( 1,000 Xxp:

Finally, applying the perturbation map as in (4.41) provides the polyhedron illustrated
in the left of Figure {.9, which can be described by:

0:;0;"Y)  xg ( 1,0:"5%)  (0;0; "¥?)  x
0;0,"%2) xp ( LO;"%% (0;0; "%y xq:
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X2 X2 X2

X1 X1 X1

Figure 4.9: lllustration of the two perturbation steps on the polyhedron described in
Example . Left: the original tropical polyhedron P (A;b), embedded into 12, which
is the diagonal x; = x». Middle: the polyhedron obtained when the O entries of b have
been replaced by thelin nitely small" scalar ( 1;0;0). Right: the polyhedron obtained
after applying the perturbation map g.

Lemma 4.40. Suppose that the elements oE are positive. Then, given any feasible
point x 2 T" of LP, its canonical embeddingx = (x) is feasible forfP.

Proof. Clearly, ® x Ojn. For the other inequalities, it su ces to show that & x
8 A& x B fori2[m].IfA, x b = Or,thenwealso have& x B = 0. Since
& x § 0,theinequality is satis ed. Otherwise A]” x b A, x b > Or.
In this case, we have

& x & =0;A7 x B;"")

R x 8 =0O;A, x b; ")

where"* and " are sum of elements inE. Since the elements ofE are positive, it
follows that "* 0 " O

Let | denote the subset ofl consisting of the elements{;g;h) 2 F G H with

f 0, together with 0,. We project the elements ofl to T with the map , de ned by

(0;0;)=g,and (f; ;)= Oy forf< 0,alongwith (0))= Or. The map is extended
to vectors entry-wise.

Lemma 4.41. Let x2 I" be a point with entries inl . If x is feasible forfP, then (X)
is feasible for LP. Besides, ifx is optimal for tP, then (X) is optimal for LP.

Proof. Observe that!l is a subsemiring ofl, and that the coe cients de ning P belong
to I . The lemma then follows from the fact that is a homomorphism of semirings
from | to T that preserves the order. O
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Remark 4.42 The feasible points of fP with some entries in | n| correspond to rays

of the recession cone oP (A;b). Indeed, consider such a pointx. Let = max;(Xj)
and letr = x be the point obtained by rescalingx by . Then, r has entries inl
and satis es:

A r ( &) & r ( 9):

Note that is of the form ( f; ; ) for some positivef , whereasB* and® have entries of
the form (0; ; ) or 0,. Hence, the image of both 8" and 8 under the projection
map is the vector with Ot entries. It follows that (r) belongs to the polyhedral cone
P (A; 0), which is the recession cone oP (A;b).

Lemma 4.43. Let | be a feasible basis ofP. Then the basic point X' have entries in
I

Proof. Let (&% &) be the matrix de ning the feasible set of P, i.e., & = é and

= O‘fﬁ , with 82 I™ being the vector such that @* = 8 &and ® =8 . By
Proposition [4.29, the components ofk' 2 I" are given by

X = jdet(AR), B)j | tdet(AD)j ;

The entries of j(A° 8)j belongs to 1 , hencejtdet(&ﬁp #0)j is also in1 . Moreover,

the entries of &Y are either of the form (0; ; ) or equal to 0,. Since tdet(N}) 6 0, we
deduce thatjtdet(ﬁ?lo)j is an element of the form (Q ; ). Hencex' have entriesinl . O

Proposition 4.44.  Suppose thatf P is feasible and letl be a feasible basis dfP. Then,
the tropical simplex method, equipped with any tropical pivoting rule, and applied on the

input é , & ,eandl, terminates and returns an optimal basisl of fP. Let X be

the corresponding basic point. Then, (x' ) is an optimal solution of LP.

. RS . . : .
Proof. By Lemma |4.38, the matrix g is generic, and thus sign-generic, for the
eO

tropicalization of any polynomial. Moreover, ® has non O entries. Hence, £P is non-
degenerate by Lemma 4.32(ji) Hence, the tropical simplex method terminates and returns

an optimal basis of [P by Proposition . By Lemmas and, (8" )is an
optimal solution of LP. O

4.4.1 Perturbation into a bounded polyhedron

It is sometimes convenient to obtain a tropical linear program whose feasible set is
a bounded polyhedron and that contains no points with O entries. In particular, this
assumption is needed to apply the implementation of tropical simplex method developped
in Chapter [7] Hence, we shall add to the tropical linear program [(4.4D) an \in nitely
small" lower bound x;  |; for each variablej 2 [n]. We require that

d; ;>0 foralli2[m]andj 2 [n] :
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We also add an \in nitely big" upper bound constraint € x u, wheree?2 I" is the
vector with all entries equal to 1, andu  1,. For example, we may use the parameters:

dy = =dn=( 100
lh = =lh=( 2,0,0) (4.42)
u=(1;0;0) :
As before, we apply the perturbation map
0 e 0 01 0 & 0 01

I _ % (A) (b di .

R gﬁ - B0 V% (4.43)

e 8 0 e u 0

and we denote byLP the following linear program:

maximize € X
subjectto & & B & A& r © o
(LP)
@@ e F
B € R
Lemma 4.45. Suppose thatd; j for all i;j 2 [m] [n], that u 1, and that the
elements ofE are positive. Then, given any feasible poink 2 T" of LP, the point x 2 |",

de ned by x; =(0;x;;0) if x; 8 T and x; = § otherwise, is feasible forLP.

Proof. Clearly, x satisese € ®rand® ®r , € Now consider ani 2 [m]. If
Ai x b =0r,then& x B isoftheform ;A §. Due to our conditions
onl;d, it follows that & A&  x ® . Otherwise, A* x b* A x b > Or,

and the proof of Lemma[4.4) readily applies. O

Lemma 4.46. Let | be an optimal basis ofLP, and i, the index of the inequality
@ e R If i, 62l, the basic pointX has entries inl , and (x') is an optimal
solution of LP. Otherwise, if iy 2 |, pivoting along the edge de ned by nfi,g provides
another basis! ®with i, 62 2 Its basic point X ° is also an optimal solution of LP.

Proof. The matrix de ning the feasible set of LP is of the form

R &
e€ 8
where &% and & have entries inl . Suppose thati, 621, then the Cramer's formul

providing x' involves minors of (&° &) (as in Lemma), and thusx' has entries in
I .
Otherwise, let| = K [f iyg. Let us lift LP to the linear program over Hahn series

R[tF € ] provided by Proposition [4.20:
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maximize € X
subjectto A%+ & 0 (4.44)
e ex

Let X' 2 K" be the basic point of (4.44) for the basisl, and x'° the basic point
obtained by pivoting along the edge E, i, 4. We claim that the reduced cost of the
edge Ej i, g is non-positive. This imply that € x° e x'. Moreover, | being an
optimal basis, x' is an optimal solution of #44). Consequently,e”x'° = € x' and thus
e x°=¢e X by applying the valuation map.

We now prove our claim. Let us denote byz the reduced cost of the edgeE, i, g,
and y, the reduced cost ofE, g for k 2 1 nfiyg. Note that the Cramer's formul
de ning y and z involves only minors of é:o . It follows that the tropical reduced
costsy = val( y) and z = val( z) have entries |T1 I

Sincel is an optimal basis,x' is an optimal solution of ), and (y; z) and optimal
solution of the dual linear program. Consequently,

ex = (&®°y ez (4.45)

by Theorem . Since®y and z have entries inl , while 8 1, it follows that the
leading term of the Hahn series[(4.45) is given by the leading term of ez. Sincee” x! °
is non-negative, we deduce that @z is non-negative and thus thatz is non-positive. []

442 Phase |

It remains to detect the feasibility of LP. As usual, we use a Phase | method. We add a
new variable to LP to measure the \infeasibility" of a point. The objective is now to
minimize . To keep our linear program bounded, we also add upper and lower bound
constraints on . Let 2 I™ be the unit vector of sizem, and l,+1 2 | a scalar such that
O< I+ I diforall(i;j)2[m] [n]. If we choosed;l;:::;l, and u as in (4.42),
then we can take

lhe1 =( 3;0,0): (4.46)
Our Phase | linear program is:

maximize m

subjectto &% x € ® ® A& x 8
| x ¢ (Phase 1)
¢ 1':"n+1

>
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where:
0 0 0 0 (3] ! 0 0 0 0 11
V.5 8 & € A b d
1® £ 0 0 = % Id I 0 OE X (4.47)
0 f“n+1 0 € 0 In+1 01
e e 0 en+1 e u 01

Observe that (4.43) and (4.47) de ne the same matrices&; ®;& 18 and £
We have a feasible basis for Phase I.

Lemma 4.47. The setl indexing the inequalitiesl®@ x fande € X em
is a feasible basis of Phase I.

Proof. Clearly tdet G'g O 6 0. Thus it is su cient to show that the unique solution

€n+1

(x; )ofthe systeml®@@ x=Ffande=¢€ X e is feasible for Phase I. Due to
our assumptionu 1 |; , it follows that 1 x forall j 2 [n]. Consequently,
¢ £.+1 and

£ x € ® & € g x 8 : O
Lemma 4.48. Let | be an optimal basis of Phase | and, the index of the inequality
€ £+1. Either iy 2 1 and | nfigis a feasible basis forLP, or i; 621 and LP is
infeasible.

Proof. Let (x'; ') be the basic point of an optimal basis|. First, consider the case
i 621. Since Phase | is non-degenerate by Lemnia 432, we have the strict inequality

¢ !> 8.1. Hence, the optimal value of Phase | ism !, and satisfy:

m '>m B4 € 1 (4.48)
By contradiction, suppose that LP admits a feasible pointx. Let = &+1 (8) 1. We
have:

A x € ® & & x ® & £ x 9

Furthermore, eq+1 e asly+1 1 u. Consequently, the point (x; ) is feasible for
Phase |. At this point, the value of the objective function of Phase lism .1 (8) .
Using (4.48), this contradicts the optimality of (x'; '), and thus LP is infeasible.

Second, assume thai; 2 |. Then ' = 8.+ (8 1 Sincelpss d 1 for all
i 2 [m], it follows that € ' & We obtain:
& X ® &=-£f£ x € ' @ §:

As (X'; ') is feasible for Phase I, it follows that

& X @& & &X § forali2[m]; (4.49)
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and the inequality (¢.49) holds with equality for i 2 I \ [m]. Clearly,

B € X e ' e X

Moreover, if | indexes the latter inequality, then we must havee = € X' asey+; !
g. Obviously, the inequalities 1@ X' £ are satis ed, and holds with equality when
indexed by | .

We have shown thatx' is feasible forLP and that it activates the inequalities indexed
by I nfijg. It remains to show that the corresponding submatrix has a non0 tropical

determinant. Denote &° = 5 and €9 = o?n . Sincel is a basis of Phase I, we

have tdet ﬁ?nfilg:) 6 0. Consequently, tdet(&,; ) 6 0. It follows that, | nfijgis a
0

feasible basis forLP. O

Theorem 4.49 (Tropical simplex method for arbitrary tropical linear programs) . An
arbitrary tropical linear program LP (A;b;c) is solved by the following algorithm:

Apply the tropical simplex method to the tropical linear program Phase |, starting
with the feasible basis of Lemmp 4.47. Lelt be the optimal basis of Phase | returned
by the algorithm

If ij 62, then LP(A;b;¢) is infeasible by Lemmg 4.4B.
Otherwise, apply the tropical simplex method td_P with | nfi;g as an initial basis.

Let | be the optimal basis of_LP obtained, possibly after the last pivoting step of

Lemmal[4.48.
Compute the basic pointx of LP using Proposition [4.29.

The projection (X' ) is an optimal solution of LP(A; b; ¢).

Remark 4.50. Since the matrix in (4.47) is of size m+ n+3) (n+3), we use only
(m+ n+3)(n+3) elements of E to obtained the perturbed matrix. Hence, we can use
H = z(m*+n+3) (n+3) a5 a perturbation group, and the canonical basis oH for elements
of E. Using the parameters proposed in[(4.46) and[(4.42), the norD entries of the
matrices (4.47) and (4.43) are of the form €;;g; hi), where jf;j 3, the elementg; is
either 0 or an entry of 48 ,and h; 2 H is an element of the basisE of H. Hence the
input size of f; is O(1) and the input size of h; is O(mn). Consequently, the input size
of Phase | andLP are polynomial in the input size of LP(A;b;c).
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Chapter 5

Relations between the complexity
of classical and tropical linear
programming via the simplex
method

In this chapter, we present three results related to the complexity of the simplex method.
First, in Section 5.1, we prove that the existence of a pivoting rule which performs a
strongly polynomial number of iterations on linear programs over R would provide a
polynomial algorithm for tropical linear programming, and thus mean payo games.
Second, in Sectior) 5.2, we show that if a pivoting rule, used on a tropical linear program,
performs a number of iterations which is polynomial in the input size of the tropical
entries, the number of iterations is in fact strongly polynomial (i.e., polynomial in the
dimensions of the problem). Last, in Sectio, we exhibit a class of classical linear
programs on which the simplex method, with any pivoting rule, performs a number
of iterations which is polynomial in the input size of the problem. Consequently, the
corresponding polyhedra have a diameter which is polynomial in the input size.

These three results are based on the following idea. We have seen in Sect[on|3.3 that
the simplex method can be implemented using only the signs of polynomials evaluated
on the problem to be solved. This also provides the following observation.

Proposition 5.1. Consider a semi-algebraic pivoting rule de ned by the polynomials
(P, )i. The sequence of bases produced by the simplex method applied to a linear program

LP (A;b;c) depends only on the signs of the minors of& & and the signs ofP, 42 .

We call this collection of signs thesign pattern of LP (A ;b; c), and we denote it by
s (A;b;c). Any linear program with a sign pattern s is called arealization of s.

If the simplex method performs L iterations on an instance LP (A ;b;c), then the
number of iterations is also equal toL on any realization of the sign patterns (A;b;c),
including realizations on other ordered elds. Our rst result, in Section 5.1} comes from
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the fact that the sign pattern of linear program over Hahn series is realizable over the
real numbers, by completeness of the theory of real-closed elds.

For a generic tropical linear program, we can also de ne a sign-pattern, which governs
the behavior of the simplex method. In Sectior{ 5.2, we show that the tropical realization
space of a sign pattern is a semi-linear set. Using simultaneous diophantine approxima-
tion, it follows that the sign-pattern of a tropical linear program always have a \short"
realization, i.e., with an input size which is polynomial in the dimensions. Consequently,
an algorithm which is polynomial in the bit model is in fact strongly polynomial.

Finally, in 5.3] we construct linear programs over Q which realize the sign-pattern
of a tropical instance, and whose input sizes are greater than thevalues of tropical
input. Hence, if the simplex method is pseudo-polynomial for the tropical instance, it is
polynomial with respect to the input size of the classical instances.

The transfer of complexity from classical to tropical linear programming (Theo-
rem[5.3 below) appeared in[[ABGJ134] in a less general form (restricted toombinatorial
pivoting rules). The other contents of this chapter are original.

5.1 From classical to tropical linear programming

Let Nk (n;m; ) be the maximal length of a run of the simplex method, equipped with
a semi-algebraic pivoting rule , for a non-degenerate classical linear programs of size
(n; m), with coe cients in a real closed eld K.

Similarly, let Nt(n;m; T) the maximal length of a run of the tropical simplex algo-
rithm, equipped with the tropical rule T, for a tropical linear program satisfying the
conditions of Proposition [4.38, with coe cients in a tropical semiring T = T(G).

Proposition 5.2. Let G be a totally ordered abelian group. Then,
Nry(mm; ) Ng(nm; ) :

Proof. Let LP(A;b;c) be a non-degenerate tropical linear program, with coe cients in
the semiring T(G), satisfying the conditions of Proposition[4.36, andl a feasible basis of
this problem. By Theorem|3.25, the number of iterations of the tropical simplex method
applied to A;b;c; | is exactly the number of iterations of the classical simplex method
over Hahn series applied toA;b;c;| forany A& 2sval * AbY .

By Proposition 5.1, the number of iterations of the classical simplex algorithm
depends only onl and the sign pattern s (A;b;c). We claim that the sign pat-
tern s (A;b;c) is realizable over the real numbers,i.e., we arm that there exist

be the polynomials de ning the sign-pattern. Observe that the realizability of a sign
pattern s 2 f 1;0;+1d" by a (n;m) linear program over an ordered eld K can be
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expressed as the following sentence in the languade,:
9 ét()) 2 K (m+1) (n+1) s.t
N

Pi A8 >0 ~ P, Ab =0 ~ P Ab <0 : (51)
i2[r] i2[r] i2[r]
sj=+1 s =0 si= 1
Up to embedding, we can always assume that the abelian grouf® is divisible (The-
orem|[2.9). In this case, the eld of Hahn seriesR[t®] is real closed (Theorem| 2.5).
The sentence [(5.1) holds onR[t®]. Since the theory of real-closed elds is complete
(Theorem ), andR is a real-closed eld, we conclude that ) also holds orRr.

It remains to show that the realization 48 of the sign pattern over R does pro-
vide a non-degenerate linear program. Since the tropical linear program LPX;b;c)
is non-degenerate, so is the Hahn linear prograniP (A ;b;c) by Corollary By
Lemmal[3.17, the non-degeneracy property is entirely determined by the signs of the mi-
nors of A% . Since the signs of the minors are part of the sign patterrs (A ;b;c), and
since A8 realizes this sign pattern, we conclude that_P (A; b; ) is non-degenerate. [

Theorem 5.3. Let be a tropically tractable pivoting rule. Suppose that the simplex
method, equipped with , performs a number of iterations which is polynomial inm and
n on all non-degenerate linear programs ovelR de ned m inequalities in dimension n.
Then any tropical linear program can be solved in polynomial time.

Proof. Let T = T(G). Consider a tropical linear program LP(A;b;c) with 4B 2
T(m+1) (1) We construct the problems Phase | andLP as in Section[4.4. Applying
the tropical simplex method succesively to these two problems solves LR b;c) by
Theorem[4.49. The problem Phase | is described byn + n + 2 inequalities in dimension
n+1, and LP by m + n + 1 inequalities in dimension n. Hence, the two calls to the
tropical simplex method performs atotal of Nt(n+1;m+n+3; N+ Ny(n;m+n+2; T)
iterations. By Proposition this number of iterations is smaller than Ng(n +1;m +
n+2; N+ Ngr(n;m+n+1; T), and the latter is a polynomial in n and m by hypothesis.
The input sizes of Phase | andLP are polynomial in the input size of A;b;c (see
Remark[4.5Q). Then, by Theorem|3.25, each iteration of the tropical simplex method on
these problems takes a time polynomial in the input size ofA; b;c when is tropically
tractable. O

5.2 A weakly polynomial tropical pivoting rule in fact per-
forms a strongly polynomial number of iterations

Given a semi-algebraic pivoting rule , we can also de ne the sign patterns (A;b; c) for
a tropical linear program LP(A;b;c) if the matrix 48 is sign-generic for the minor
polynomials and the polynomials de ning . Indeed, for any of these polynomials,
trop(P) 48 is well-de ned (see Sectio), and thus has a tropical sign. Since the
execution of the tropical simplex method depends only on this sign pattern, we can
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also look at other tropical realizations of the sign pattern to obtain bounds on the
complexity of the (tropical) simplex method. With this approach, we shall prove the
following theorem.

Theorem 5.4. Let be a semi-algebraic pivoting rule. Suppose that:

for any tropical linear program LP (A;b;c) with coe cients in the semiring T(Q)
satisfying the conditions of Proposition[4.36, the tropical simplex method, equipped
with T, performs a number of iterations which is polynomial in the input size of
A;b;c

P
for every polynomial 5> X 2 Q[Xg;:::;X] involved in the de nition of
the Newton polytopeconv( ) is contained in a L1 -ball of radius R, where the input
size of R is a polynomial in |.

Then, the tropical simplex method, equipped with T, in fact performs a strongly poly-
nomial number of iterations on all tropical linear programs, i.e., Nt)(n; m; N is a
polynomial in m and n only for any ordered abelian groupG.

Let us rst describe the set of tropical realizations of a sign pattern. Let LP(A;b; )
be a tropical linear program satisfying the conditions of Proposition[4.36 with entries in
an arbitrary tropical semiring T = T(G), and let s be its sign pattern. Observe that the
set of polynomials de ning the sign pattern includes all minor polynomials. In particular,
this includes the 1 1 minors. As a consequence, for any tropical realization 2 §  of
the sign pattern s, the tropical signs of the entries of 29 are identical. To alleviate
the notation, let us consider A8 asavector 2 T'. By the discussion above, the sign
pattern xes the sign of the entries . Consequently, we can identify a realization of
the sign pattern with a vector consisting of the modulus of the nonO entries of , i.e.,
with a vector w 2 GX, wherek is the number of non0 entries of , and the components
of w are exactly thej jj for the i 2 [I] such that ; 6 0. Hence, we identify the set of
tropical realizations of a sign pattern with a subset of GK.

Lemma 5.5. The set of tropical realizations of a sign patterns is the union of a nite
number of classical convex cones dBX. Each of this cone is of the form

fw2 GkjMw 0, M > 0Og (5.2)

for some matrices M; M ° with integer entries. Moreveor, each entry ofM; M © has an
absolute value bounded bgR, whereR is the radius of aL; -ball containing the Newton
polytopes of all polynomials de ning the sign pattern.

P
Proof. Let 2 T' be a realization of the sign patterns, and P = >, gX 2

Q[X1;:::; X ] a polynomial involved in the de nition of the sign pattern.
First suppose that trop(P)( ) = 0. Then, for every 2 , there exists ai 2 [I] with
i = 0and ;> 0. Consequently, for every °2 T' such that = 0 when ; =0, we

have trop(P)( 9 = 0. In other words, if we restrict the sign pattern to the signs of the
entries of and the sign of trop(P)( ), the realization space isGK.
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Second, suppose that tropP)( ) 6 0. Up to replacing P by P we can assume that

trop(P)( ) is tropically positive. Let us dene *; as follows:
Y
T=f 2 jsignq) sign(i) =+1g
i2[1]
. - Y . .
=f 2 jsign(q) sign(i) "= 1g:

i2[1]

Since trop(P)( ) is tropically positive, the maximum in trop( P)( ) must be attained
only on exponents 2 *. Consequently, the modulus of the nonO entries of , must
satisfy the follwing inequality:
X X
max i} il > max i i (5.3)
iji60 iji60

Conversely, if °2 T satis es (5.3) and have the same0 entries as , then Cis sign-
generic forP and trop(P)( 9 is tropically positive.

It follows that the realization space of a sign pattern is described by a nite number
of inequalities of the form ). Selecting a maximizing term in the left-hand side of
each of these inequalities provides a cone of the fornj (§.2). O

As the set of tropical realizations of a sign pattern is described by linear inequalities,
we shall see that we can always nd a realization onl (Q) with a \short" input size, i.e.,
an input size which is polynomial in m and n. The key tool is simultaneous diophantine
approximation. More precisely, we shall use the following result of Frank and Tardos.

Theorem 5.6 ([FT87] Theorem 3.3]). For any rational vector w 2 Q' and any integer
R, there exists an integral vectorw 2 N' such thatjwj;  24°R!'(*2 and sign( > w) =
sign( >w) for any integral vector 2 N' withj j1. R L1

We now have all the ingredients to prove our theorem.

Proof of Theorem[5.4. Let s be the sign pattern of a tropical linear program satisfying
the conditions of Proposition with entries in an arbitrary tropical semiring T =
T(G). By Lemma , the realization space ofs can be described as a disjunction of
conjonctions of linear inequalities with integer coe cients. Consequently, there exists a
rst-order formul s(A; b; ©) in the language of ordered groupd <; +; Og that holds true
if and only if 4% is a realization of s. By hypothesis, the sign pattern s is realizable
on an ordered abelian groupG. Since we can always embed> in a divisible group
(Theorem[2.9), it follows that the rst-order sentence 9A;b;c s(A;b;c) holds true in a
ordered abelian divisible group. SinceQ is an ordered abelian divisible group, the sign
pattern s is realizable onT(Q) by Theorem .

Since the sign patterns is realizable onT(Q), Theorem and Lemma[ 5.5 tell us
that it is realizable by a matrix 48 with entries that have an input size bounded by
O(I13+1%1log(R)). By hypothesis, log(R) is a polynomial in |. For a (n; m) linear program,
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we consider polynomials onl = (m+1)( n+1) variables. Hence, the sign-pattern can be
realized onT(Q) by a matrix 4% with an input size that is polynomial in m and n.
By hypothesis, the tropical simplex method applied to LP(A; b; ¢) performs a number of
iterations that is polynomial in the input size of 48 . Consequently, when applied to
the latter instance, the tropical simplex method performs a number of iterations that is
polynomial in m and n. Since the number of iterations of the tropical simplex method
depends only of the sign patterns, the number of iterations is still a polynomial in m
and n on any realization of the sign pattern s. In particular, this holds for a realization
on any tropical semiring T(G). O

5.3 From tropical to classical linear programming

We now exhibit a class of real linear programs on which the number of iterations of
the simplex method is polynomial in the input size, regardless of the pivoting rule.
Consequently, the corresponding polyhedra have a diameter which is polynomial in the
input size. The idea is to consider the tropical linear programs on which the tropical
simplex method is pseudo-polynomial. These instances arguantized into real linear
programs. The guantized linear programs are combinatorially equivalent to the tropical
one, and the values of the tropical input is a lower bound on the input size of the
quantized programs.

5.3.1 Edge-improving tropical linear programs

We say that a tropical linear program LP(A;b;c) is edge-improving if it satis es the
conditions of Proposition , and for any pair of adjacent basic pointsx' :x'°, the
objective valuesc® x' andc  x!'° are distinct.

Lemma 5.7. Let LP(A;b;c) be an edge-improving tropical linear program om variables

with entries in T(Z). Suppose that the nonO entries of A8  belongs to the interval

[ viv] Z. Then, the tropical simplex method, equipped with any pivoting rule, performs
at most O(nv) iterations on LP (A;b;¢).

Proof. Let x' be a basic point. By Proposition[4.29, the components ok' are of the
form
x| = jtdet(A;p b)j j tdet(A)j :

The matrices (A|., ) and A, are of sizen n. Since the non0 entries of AB are
integers in the interval [ v;V], the non 0 components ofx' satises 2nv xj' 2nv.
Consequently, 2n+1)v. ¢ x' (@n+1)wv.

Suppose that the simplex method starts at the basisl *. Let IN be the last basis
visited such that ¢ x'" > 0. Since the tropical linear program is edge-improving,I \
is either the last basis visited, or the basis preceding the last. The di erence between
¢ x'"andc x'" is bounded by (40 +2)v. Moreover,c> x! is an integer for any
basis|. Since the linear program is edge-improvingc x' and ¢ x'° dier by at
least 1 for any two adjacent bases. O
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X2

1 2 3 X

Figure 5.1: lllustration of the edge-improving tropical linear program (6.4). The set
of optimal solutions is the segment between (1) and (1;2). In particular, the tropical
basic point (1;1) is the unique optimal basic point. The basic point/edge graph of this
tropical linear program, oriented by the signs of the reduced costs, coincides with the
oriented graph of non edge-improving linear program of Examplé 4.35.

Remark 5.8. Note that genericity for the minor polynomials is not su cient to ensure an
improvement along an edge. In particular, the tropical linear program in Example[4.3%
is generic but not edge-improving. Moreover, even under small perturbations of its
input, this tropical linear program does not become edge-improving. Hence, the set of
edge-improving tropical linear programs is not of measure 0.

However, consider the following tropical linear program, depicted in Figure 5.1L.

minimize max(x1;X2 4) s.t. 3 max(X1;X2); X1 max(l;xz 1); xo 1: (5.4)

This problem is edge-improving. Observe that the graph formed by its basic points and
edges, and oriented by the signs of the reduced costs, is the same as in Examjple #.35.

5.3.2 Quantized linear programs

In the rest of this section, LP(A; b; ¢) is a tropical program which satis es the conditions
of Proposition , and such that the non0 entries ofj 4B j are non-negative integers
smaller than v. We consider the sign pattern signMinorgA; b; c) that consists of the
signs of the minors of 48 . We now construct a set of classical linear programs, with
entries in R, that realize the sign pattern signMinor§A; b;c). The idea is to lift 49
to a matrix A% whose coe cients are real-valued functions in the variablet (e.g,
polynomial functions or rational functions). This provides a family LP (A (t); b(t); c(t))
of real linear programs. We say that a real linear programLP (A (t); b(t); c(t)) obtained
in this way is a quantization of LP(A; b;¢) if:
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LP (A (t); b(t); c(t)) realizes the sign pattern signMinorgA; b; ¢) of the tropical lin-
ear program (i.e., the real and the tropical polyhedra are combinatorially equiva-
lent);

A (1) b(t)

the input size of o) 0

is greater thanv.

Theorem 5.9. On a quantization of an edge-improving tropical linear program, the
classical simplex method, equipped with any pivoting rule, performs a number of iterations
which is polynomial in the input size of the problem.

the sequence of bases produced by the simplex method on a quantization of L®R(b; ¢),
for a certain pivoting rule (recall that we assume that a pivoting rule always return a
leaving index with a negative reduced cost). Since a quantization is combinatorially

LP(A; b; ©) with edges of negative reduced cost between them. By Lemn{a §.7, it follows
that N = O(nv). Since the input size of the entries of a quantized problem is greater
than v, this proves the result. O

We now construct quantizations of a tropical linear program LP(A; b; C).

Proposition 5.10. Let LP(A;b;c) be an edge-improving tropical linear program. Sup-
pose that the nonO entries of j 2% | are non-negative integers, and let be the largest
entry of j AB j. Consider any lift A% 2sval ¥ A9 such that the entries of Ab
are polynomial real-valued functions of the form:
|
v !
t 7! at (5.5)
k=0

where the ¢ are non-negative integers. For any rational numbert 2, the rational
linear program LP (A (t); b(t);c(t)) have an input size which is greater tharv.

Proof. By assumption, there exists an gntry ofj 48 j which is equal tov. The corre-
sponding entry of 4B is the form ( k=0 atk) with o, 6 0. For any rational t 2,

the input size of the corresponding entry of the rational matrix 'Lé((tt)) bg) is greater
than I 1
X ' X1 oY '
log,  &t* =vlogy(t) +log,(q) +log, 1+ <tV (5.6)
k=0 k=0

Since the coe cients g are non-negative integers, and 2, the expression in ) is

greater than v. Since the input size of ﬁ((tt)) bg) is greater than the sum of the input

sizes of its entries, the result follows. O

Remark 5.11 The coe cients ¢ in (b.5) are restricted to be non-negative integers only
to easily relate the input size of the quantized problem withv. One can clearly obtain
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quantizations when the g are rational numbers. However in that case, one may need
values oft that are larger than 2. Instead of lifting the tropical entries to polynomial
functions, one could also consider more general real-valued functions, such as rational
functions.

With a lift as in Proposition if tis chosen large enough, we will always realize
the sign-pattern of the tropical linear program.

Proposition 5.12. Let LP(A;b;c) be a tropical linear program on n variables with
m  n constraints with entries in T(Z). Let 4% be any lift of 48 whose entries are
polynomial functions of the form @) and let U be an upper bound on the coe cients
o of these polynomial functions. Ift 1+ (n+1)!(v+1)"*1U"* then the classical
linear program LP (A (t); b(t); c(t)) is a quantization of LP(A;b;¢).

Proof. Let M 2 K'! ! be a square submatrix of 4% . Since the entries ofM are of the
from (5.5), with coe cient g U, the determinant of M is of the form

X
detM = ritK
k=0

where the coe cients ry are integers with an absolute value smaller thatl!(v + 1)'U'.
Observe that detM is a polynomial in t. So, if t is larger than the largest root of
detM , then the real number detM (t) have the same sign as the leading coe cientr,,
which is the sign of the Hahn series deM . The Cauchy bound tells us that the roots
of detM belongs to a disk of radius 1 + maxypy 13jrkj=rvj, see Theorem 8.1.3 and
Corollary 8.1.8 in [RS02]. Sincem n, the biggest square submatrices of 2 8 are of
sizeh+1) (n+1). O

Remark 5.13 The bound of Proposition[5.12 is general. For special cases, one can expect
to obtain a quantization for smaller values oft.
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Chapter 6

Tropical shadow-vertex rule for
mean payo games

In this chapter, we prove that the shadow-vertex pivoting rule is tropically tractable.
Following the average-case analysis of Adler, Karp and Shamir in_JAKS87], we obtain
an algorithm that determines the feasibility of tropical polyhedra, and thus solves mean
payo games, in polynomial time on average. The complexity bound holds when the
distribution of the games satis es a ip invariance property. The latter requires that
the distribution of the games is left invariant by every transformation consisting, for an
arbitrary node of the game, in ipping the orientation of all the arcs incident to this
node (see Figurd 6.1). Equivalently, the probability distribution on the set of payment
matrices A; B is invariant by every transformation consisting in swapping the ith row of
A with the ith row of B, or the jth column of A with the jth column of B.

The content of this chapter appeared in [ABG14].

6.1 The shadow-vertex pivoting rule

Givenu;v 2 K", consider the following parametric family of linear programs for increas-
ing values of 0:
minimize (u Vv )7X

subjectto Ax +b O LP

The vectorsu and v are respectively calledobjective and co-objectivevectors. For =0,
the problem (LP )) seeks a minimizer ofx 7! u”x over P := P (A;b), while for large
enough, it corresponds to the maximization ofx 7! v~ x.

Let us assume that [LP_]) admits an optimal basic point x' "for 0=0. Observe that
x'" is also an optimal solution of (LP_)) when lies in a certain closed interval [ ; 1].

For = 1 the problem (LP ) admits another optimal basic point x'* which is adjacent
tox!'". When is continuously increased from 0, we can construct in this way a sequence

IR IN - 0 1 N
X'y x!toof adjacent baS|c points, and a subdivision 0 =

of K., such that eachx'"“ is an optimal solution of (CP_)) forall 2 [ ¥ % X]. The
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A=(72)
B =(5 3)

A=(73)
B=(52)

Figure 6.1: A distribution of game satisfying the ip invariance property (with m =1
and n = 2), together with the payment matrices. The four con gurations are supposed
to be equiprobable. The nodes on which the ip operations have been performed are
depicted in bold.

last basic point x'™ will be a maximizer of x 7! v>x over P, unless this problem is
unbounded.

The shadow-vertex rule is a pivoting rule that provides such a sequence. More
precisely, (A:u;v) will denote the function which, given a basis| ¥ that is optimal for
forall 2 [ ¥ X7 returns a leaving variable that leads to a basisl ¥*1 such

that | ¥ and I **? are both optimal for (LP_ ) at = K+,
The shadow-vertex rule was proposed by Gass and Saaty [GS55]. Its name comes
from the fact that the sequence of basic pointsx'l; cx !t actually corresponds to a

sequence of adjacents basic points in the projection (shadow) of the polyhedroR in
the plane spanned by (1;v). We refer to [Bor87] for more details.

The shadow-vertex rule can also be de ned algebraically. Given a basis, we denote
by y' 2 K' (resp. z' 2 K') the reduced costs for the objective vectoru (resp. the
co-objective vectorv). Recall that y' and z' are de ned as the unique solutionsy and
z of the systemsA7y = u and A7 z = v respectively.

Proposition 6.1. Let | be an optimal basis of (LP ) for some 0. At basis |, the
shadow-vertex rule selects the leaving variabig,: 2 | such that:

.=z, =min yl=z! ji21 andz] >0 : (6.1)

If there is no suchigy 2 |, then x' maximizesx 7! v>x over P.

Proof. Observe that the reduced costs for the objective vectoru v are given by

y! z . Consequently,x' is an optimal solution of (LP ) for all 0 such that
y' z! 0. Inparticular, this holds for = y{ =z! , whereioy isde ned in (5.1).

Moreover, the reduced costyi'oul z! equals zero. Hence, any point on the edge

lout

Einfioug IS @n optimal solution of (LP_J) for = . O
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The shadow-vertex rule as a semi-algebraic rule

We claim that the shadow-vertex rule is a semi-algebraic pivoting rule which is tropically
tractable. More precisely, we shall see that the leaving variable returned by (A; u;v)(l)
only depends on the current basid and on the signs of nitely many minors of the matrix
(A uv). The key point is to show that two ratios y/=z! and y} =z} can be compared
using the signs of the minors of A~ u v).

Lemma 6.2. Let| be a basis and;k 2 | with i>k . Then, we have:

0 1
AInfi;kg
det@ u> A detA,
V>
L 1
Yi=zZi  Yk=Zk = (6.2)

det A\'/Tig det Al/”j"g
Proof. By the Cramer's formul , for any i 2 | we have:

yl=( MO det Ao =det(a,) ;
6.3)
2 = ( 1)TIoG) get A\I/r;fig —det(A ) ;

whereidx(i; | ) represents the index ofi in the ordered setl .

Given K [m + 2] a subset of cardinality n, let us denote by Px the polynomial
providing the K [n] minor of the matrix X = (Xj ) of (m+2) n formal variables,
i.e., we havePx (M ) =det( M ¢ ) forany M 2 K(m+2) n,

Given a basisl  [m], let us further de ne, for i 2 |, the polynomials Q; and R; by:

Qi := Pinfigif me1g and Ri = Pintigr m+2g: (6.4)
Then, for any i 2 I, the reduced costsy! and z! are respectively given by:

yi| :( 1)n+idx(i;l )Qi(M )=PI (|\/| ) :

zl = ( DTG R{(M )=P, (M ) (6.5)

A

whereM = 4> . Consequently, the ratioy! =z! is equal to Q;(M )=R;(M ). For any
V>

two distincts indices i;k 2 |, we obtain:

(QiRk  QkRi)(M)

(RiRO(M ) (6.6)

vzl k=l

It remains to prove that the polynomial QiRx QxR is equal toP ik gff m+1;m+2gP -
By Plscker relations (see for instance [GKZ94, Chapter 3, Theorem 1.3]), we know that
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for any two sequences 1 j; < <jp1 mM+2andl I;< <lps1 M+2, we
have:

( 1)anJ'1;2111:J'n 1;|angIl;:::;Pa;:::;In+1g =0 (6.7)

a=1

where P, means that the index |, is omitted. Let us apply these relations with

If 1a 2 | nfkg, then Py, ... . ,.1.4 = 0. Hence, the only terms that are non null in (6.7)

are obtained forlg 2fi;m +1;m+2g. For I = i, the term reads
( 1)idx(i;l nrke) le;:ii;jn i P nfik gff m+1;m+2g - (6.8)
By exchange of rows on the determinantP; ..., ,.i, we have:
Py 1 = ( 1)n+idx(i;l Py : (6.9)

Furthermore, we assumed thati > k , thus idx(i;1 ) = idx(i;| nfkg)+ 1. It follows
that (6.8) is the polynomial ( 1)™ P Pyt ik gff m+1:m+2g-

and n + 1. Thus the terms of ( for ;= m+1and I; = m+ 2 are respectively:

( D"Pinfigt me1gPintkgrf me2g  @nd (D" Py ntigi me2gPinfkglf meig

Finally, we obtain the equality:

( D" PiPiofigrr meame2g*( D"QiRc ()" QkRi =0 :
This concludes the proof. O

The main result of this section is the following:

Theorem 6.3. The shadow vertex rule (A;u;v) is a semi-algebraic pivoting rule that
uses only the signs of the maximal minors ofA> u v). The tropical shadow vertex rule

T(A;u;v) returns the leaving variable in O(n%) operations and in space polynomial in
the input size of A;u;v.

Proof. By Proposition .1}, the shadow-vertex rule can be implemented using only the
signs ofz', and the signs ofy! =z y\=z| forall i;k 2 1.

The reduced costs vectoz' is given by the Cramer's formul for the system A TYy=v
Hence, the signs ofz' can be determined by computing the determinant ofA| and of

Al/’;“g fori 2 1. Hence, 21 + 1 determinants of sizen n.

This allows to determine the set = fi 2 1 jz! > 0g. Then, the leaving variable i oy
that minimizes the ratio y! =z! fori 2 can be found by performingO(n) comparisons
y|=z| < yi=z|. By Lemma , each of these comparisons can be done by computing
four n  n determinants.

To summarize, we need to computed(n) determinants of sizen n. By Lemma|3.11,

a determinant is tropically tractable. Moreover, a n n tropical determinant can be
computed tropically in O(n?®) operations. This concludes the proof. O
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In the next section, we will use the shadow-vertex rule with the objective vector
u=(; %:::; Mfor > 0small enough. In that case, there is no need to choose or
manipulate explicitely. We present a proof which is comparable to the \lexicographic"
treatment described in [AKS87, Section 6.1]. When such an objective vectou is used,
we will denote the pivoting rule (A;u;v) by (A;v).

Corollary 6.4. The pivoting rule (A ;v) is a semi-algebraic pivoting rule that uses
only the signs of the minors of(A> v). The tropical pivoting rule T(A;v) returns the
leaving variable in O(n®) operations and in space polynomial in the input size of;v.

Proof. Let M be an n submatrix of (A~ uv) 2 K" (M*2) that contains the column
u. By Theorem[6.3, we only need to show that the sign of det{l ) can be computed
from the signs of the minors of @~ v). Up to exchange of columns, we can assume that
M =(uM 9, where M Cis a submatrix of (A> v). Expanding the determinant of M
along its rst column, we obtain:

X .
det(M ) = (DY det(M Oprig) :
i=1

If det(M 2. .. ) =0 for all i 2 [n], then clearly the determinant of M vanishes. Other-

[n]nfig
wise, leti be the smallesti 2 [n] such that det(M [?]]nfig) 6 0. Then, if we choose > 0
small enough, the sign of det ) will be given by the sign of ( 1) det(M [?]]nfi g).

Consequently, the sign of detM ) can be obtained by computing the signs of then
determinants det(M ;) that are all of size (n 1) (n 1).

We have seen in the proof of Theorenj 6|3 that we only need to compute the signs
of O(n) minors of (A~ u v), including n minors that involves the column u. By the
discussion above, the sign of each minor involvingi can be computed fromn minors
of (A” v)ofsize(n 1) (n 1). Since a tropical determinant can be computed in

O(n?) operations, we obtain O(n®) operations for the tropicalization of . O

6.2 The Parametric Constraint-by-Constraint algorithm

The average-case analysis df [AKS87] applies to tHeéarametric Constraint-by-Constraint
algorithm (denoted PCBC). We restrict the presentation to polyhedral feasibility prob-
lems, following our motivation to their tropical counterparts and mean payo games.
This algorithm applies to polyhedra P (A ; b) that satisfy the following assumption.

Assumption C.  The matrix (A b) 2 K(M*M (") js of the form )% % , where Id
is the n  n identity matrix.

Equivalently, we consider polyhedra of the form:
P(A;b)= fx2K"jx 0, A% +b° o0g:

We denote by P ) := P (A y; by) the polyhedron de ned by the rst k inequalities of
the systemAx +b 0. Under Assumption@, the polyhedronP (" is the positive orthant



96 Chapter 6. Tropical shadow-vertex rule for mean payo games

Algorithm 3:  The parametric constraint by constraint algorithm PCBC (A ;b)
Data: A 2 K(M*" nandb2 K™ satisfying Assumption [d.

Input : None
Output : Either Feasibleor Infeasible
1k n

2 1 [n]
3 while k<m do

4 if 1 is a feasible basis folP (A k417 ;b+17) then
5 |k k+1
else
if SignRedCos(&A [}; Ak+1)(l) are all non-negative then
| return Infeasible
9 out (A[k];U;Ak+1)(|)
10 if 1 nfiog[f k+1gis a feasible basis folP (A [c+1); b+qy) then
11 I I nfiowg[f k+1g
12 |k k+1
13 else
14 fent  PIVOU(A p; b (151 out)
15 LI I nfiong[f ientg

16 return Feasible

At stage k, the algorithm determines whether the polyhedronP *1) is empty. At each
stage, the simplex algorithm equipped with the pivoting rule is used,i.e., throughout
the whole execution of PCBC, the shadow-vertex rule is used with the objective vector
u=( ;:::; M), for > 0small enough. On the other hand, the co-objective vectov will
change at each stage. The vector (Q::;0)” is a basic point of P (" = K7 minimizing
X 7! u”x. This provides an initial basis which is compatible with the shadow-vertex
rule at the rst stage k = n.

At stage k, the co-objective vector is set toAy,;. The simplex algorithm thus
follows a path in P (K) consisting of basic points and the edges between them. We stop
it as soon as it discovers a poinx®2 P () such that A1 X%+ besr 0 on the path.
This point is obviously a basic point of P &*1) |t follows from the de nition of the
shadow-vertex rule that x° minimizes the objective function x 7! u>x over P (k*1)
(see [AKS86, Section 4]). Thenx®can be used as a starting point for the execution of
the simplex algorithm during the (k + 1)-th iteration. If no such point x%is discovered,
then the maximum of x 7! Ayx + by over P (%) is negative, which shows that the system
Ax + b 0 is infeasible.

We now explain how to tropicalize the PCBC algorithm. As for the simplex method,
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Algorithm 4:  The tropical parametric constraint by constraint algorithm
TropPCBC (A; b)
Data: A2T™ "andb2 T™ suchthat (Ab)= &% whereldisthen n
identity matrix.
Output : Either Feasibleor Infeasible

1k n

2 | [n]

3 while k<m do

4 if 1 is a feasible basis folP (Ap+1); Bk+1y) then

5 |k k+1

6 else

7 if SignRedCosf'é(A[k];Ak+1)(I) are all non-negative then
| return Infeasible

9 fout  (Apgi Ui A )(1)

10 if I nfiog[f k+1gis a feasible basis foP (Af+1y; bk+1) then

11 I I nfioug[f k+1g

12 k k+1

13 else

14 ient  Pivot" (Agq: ) (151 our)

15 I I nfioug [f Tentg

16 return Feasible

it is su cient to show that PCBC (A;b) can be implemented using only the signs of
polynomials evaluated on @A b). Such an implementation is presented in Algorithm[3.

Proposition 6.5. For any A 2 K(M*n n p 2 KM satisy ng Assumption [C| Algo-
rithm BJis an implementation of the Parametric Constraint by Constraint algorithm in
the arithmetic model of computation with an oracle that returns the signs of the minors
of (A b).

stagek = n.

Now suppose that we are the beginning of stag& of the algorithm, with basis I . If
A1 x' + besr 0, then the algorithm should go to stagek + 1. Clearly, this happens
if and only if I is a feasible basis forP (A j+17; bi+1y) and this is detected at Line B
Consequently, we can assume that at Lineﬂ?, we havé ;1 x!' + ber < 0. If the sign
of the reduced costs are non-negative, therx! maximizes x 7! Ays1X + bygs1 over
P (A ; big) and thus the linear program is infeasible. Otherwise, the shadow-vertex
pivoting rule returns a leaving variable iq. The edge de ned by (;i out) may contain
a point such that A1 x' + bes1 = 0, in that case, the algorithm go to stage k + 1.
This happens if and only if I nfiog [f k + 19 is a feasible basis foP (A 417 ; by+17)-
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If no such point is encountered, the algorithm pivots along the edge de ned by (i out)
and reaches a new basic point. Clearly, this point must satis esAg+1 X + bg+1 < 0.
Consequently, when the body of loop at Ling B is executed again, the test at Linf]4 fails
and the algorithm goes directly to Line[7. This shows that Algorithm @] does implement
the Parametric Constraint by Constraint algorithm.

By Lemma [3.18, the feasibility of a basis can be tested at Lin¢ 10 using the signs
of the minors of (A b). By Proposition and Corollary [6.4, the other operations in
Algorithm []can also be implemented with the signs of the minors of A b). O

As an immediate consequence of Proposition 6.5, theCBC algorithm has a tropical
counterpart, TropPCBC , which is described in Algorithm [4.

Theorem 6.6. Let A2 T™*™ ™ andb2 T™ be such that(A b) is sign-generic for the
minor polynomials and (A b) = Eogo , where Id is then n identity matrix. Then, the
algorithm TropPCBC correctly determines whether P (A; b) is feasible.

For all (A b) 2 sval (A b), the total number of bases visited by TropPCBGCA; b)
and by PCBC(A ;b) are equal.

Between two bases, TropPCBC perform€(n® + m?n?®) operations and uses a space
bounded by a polynomial in the input size of,;b.

Proof. Observe that Algorithm #]is exactly Algorithm 3]where we have replaced the
oracle giving the signs of the minors by its tropical counterpart. By Lemma[3.8 and
Proposition 6.5, it follows that TropPCBC (A;b) and PCBC (A ;b) produce the same
sequence of bases for anyA(b) 2 sval (A b). The correctness of TropPCBC then
follows from the correctness ofPCBC and Proposition [4.17.

Pivoting from one basis to the next consists of performing once the operations in
the loop between Lines[ B and 15. CallingSignRedCosfs and Pivot" requires O(n%)
and O(m?2n?) operations respectively by Proposition. The pivoting rule T returns
after O(n®) operations by Corollary . Checking the feasibility of a basis requires
the computation of O(m) determinants of sizen n (see Lemma 3.16), and each of
these determinants can be computed tropically inO(n®) operations by Lemma|3.11.
Hence, we needO(mn?) operations to test the feasibility of a basis. In total, we use
O(n%+ n*+ m?n%+ mn3) = O(n®+ m?2n®) operations. Moreover, these operations use
a polynomial space. O

6.2.1 Average-case analysis

Given (Ab)= 4% 2 KM M (") sych that no minor of the matrix (A°b9 is null,
the probabilistic analysis of [AKS87] applies to polyhedra of the form

Ps.so(A;b)= fx 2K"jx 0; (SA%Yx + Sb® o0g ;

with values in f+1; 1g such that each of them is equal to +1 (resp. 1) with probability
1=2. Equivalently, the 2™*" polyhedra of the form P s.so(A ; b) are equiprobable.
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Theorem 6.7 ([AKS87]). For any xed choice of (A b) = )4 8 2 K™ (™1 sych
that no minor of the matrix (A°%b9 is null, the total number of basic points visited by

the PCBC algorithm on P s.so(A ; b) is bounded byO(min(m?;n?)) on average.

Proof. This result is proved in [AKS87] for matrices (A b) with entries in R. We now
show that it holds for matrices (A b) with entries in an arbitrary real closed eld K.

Let (A b) be a matrix with entries in K that satis es the conditions of the theorem.
By Proposition B.5, the number of basic points visited by PCBC on the polyhedron
P (A;b) depends only on the sign pattern signMinorgA ;b) of the minors of (A b).
By completeness of the theory of real closed eld (Theorenj 2]2, there exists a matrix
(A b) with entries in R that realizes the sign pattern signMinorgA ; b) (see the proof of
Proposition for details). Clearly, (A b) satis es the conditions of the theorem.

Observe that the signs of the minors of .4 , 9 are entirely determined by S; S°

SAS 0sb
and the signs of the minors of A b). Consequently, the signs of the minors of SA% 0 Sob
and SK’SO gb coincides. It follows that the PCBC algorithm visits the same the number
of basic points onP s.so(A;b) and P s.s0(A; b). Since the theorem holds onR, it also

holds onK.. ]

As a consequence of Theorenis 6.6 arid 6.7, the algorithifropPCBC also visits a
quadratic number of tropical basic points on average. The tropical counterpart of the
probabilistic model of [AKS87] can be described as follows. GivenA b) = Eogo 2

T (D ands2f1; 1g™, s°2f1; 1g", we de ne
Psso(A;b)= fx2T"jx 0;(S A 8" x (s BH* (S A°SH x (s B g;

where S = diag(sy;:::;Sm), S°= diag(s};:::;s}). As above, we assume that thes;; s’
are i.i.d random variables with value equal to1 (resp. 1) with probability 1 =2.

Corollary 6.8. Suppose that(A b) = 14,9 2 T("*™ (™D s generic for the minor
polynomials and that every square submatrix ofA° %) has a nonO tropical determinant.

The total number of basic points visited by the TropPCBC algorithm onPs.so(A; b)
is bounded byO(min(m?;n2)) on average.

Proof. Let us pick any (A b) 2 sval (A b). Since (A b) is generic for the minor

polynomials, it is also sign-generic, and thusTropPCBC (A;b) and PCBC (A b) visits

the same number of basic points by Theorenj 6]6. It also follows from the genericity of
1% 9% that, for any S;SS the matrix

Id 0
S A s9s 1P (6.10)

is also generic for the minor polynomials. LetS 2 sval (S) and S° 2 sval (S9.
Clearly, ¢,90c00 is a lift of (5.10). Consequently, TopPCBC applied to Ps;so(A; b)
visits as many basic points asPCBC applied to P s.so(A;b) by Theorem . We
conclude with Theorem[6.7. O
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6.3 Application to mean payo games

Via the tropical parametric constraint by constraint algorithm, we translate the result
of Adler et al. to mean payo games. The probability distribution of games is expressed
over their payments matricesA; B, and must satisfy the following requirements:

Assumption D. (i) for all i 2 [m] (resp.j 2 [n]), the distribution of the matrices
A; B is invariant by the exchange of thei-th row (resp. j-th column) of A and B.

(if) almost surely, Ajj and Bj; are distinct and not equal to O for all i 2 [m], j 2 [n].
In this case, we introduce the signed matrixW = (W;) 2 T™ ", dened by
Wij = Aij if Aij >B ij and Bij if Aij <B ij -

(iii) almost surely, the matrix W is generic for all minor polynomials.

Let us brie y discuss the requirements of Assumption@. Condition @ corresponds
to the ip invariance property. It handles discrete distributions (see Figure as well
as continuous ones. In particular, if the distribution of the payment matrices admits a
density function f, Condition ([] can be expressed as the invariance of by exchange
operations on its arguments. For instance, ifm = 1 and n = 2, the ip invariance
holds if, and only if, for almost all a; ; by , f (ag;1;a1;2; by:1s br2) = f(byasbr2s @, ar2) =
f (b1 @12, @115 br2) = f (@15 b2 bra; as;2).

The requirements Ajj ;B 6 0 for all i;j in Condition ( ensure that the ip oper-
ations always provide games in which the two players have at least one action to play
from every position. The matrix W can be thought of as a tropical subtraction\A B",
and the conditions A 6 Bj ensure that W is well de ned. Then, the following result
holds:

Lemma 6.9. If Aj 6 By for all i;j, and W is de ned as in Condition of As-
sumption D}, then the initial state j 2 [n] is winning in the game with matricesA;B fif,
and only if the tropical polyhedron P(Wp;W[m] i) is not empty, WhereWp is the matrix
obtained from W by removing the columnj, and Wy, ; is the jth column of W.

Proof. By Theorem[1.3, the initial state j is winning if, and only if, the system
Xx;=0;A x B x; (6.11)

admits a solution. Given a;b;c;d2 T such that a 6 c, it can be easily proved that the
inequality max(a+ x1;b)  max(c+ xi;d) over x; is equivalent to b  max(c+ xj;d)
if a<c,and max(a+ x3;b0) dif a > c. Using this principle, we deduce that the
system {6.1]) is equivalent to

X; =0; W" x W X

Clearly, the latter system admits a solution if and only if the tropical polyhedron
P(WP;W[m]f jg) Is not empty. O
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Finally, Condition (i[i)|is the tropical counterpart of the non-degeneracy assumption
used in [AKS87] to establish the average-case complexity bound.

We point out that the set of matrices A; B that do not satisfy the requirements stated
in Conditions (fi)] and (ifi)|has measure zero. As a consequence, these two conditions do
not impose important restrictions on the distribution of A;B, and they can rather be
understood as genericity conditions.

We are now ready to establish our polynomial bound on the average-case complexity
of mean payo games.

Theorem 6.10. Under a distribution satisfying Assumption[D], the algorithm TropPCBC
determines in polynomial time on average whether an initial state is winning for Player
Max in the mean payo game with payment matricesA;B .

Proof. Without loss of generality, we assume that the initial state is the noden of Player
Min.

Let us x two payment matrices A;B satisfying Conditions (ii) and ( of Assump-
tion D] and let W be de ned as in Condition (ji}. Starting from the pair ( A;B) of
matrices, the successive applications of row/column exchange operations precisely yield
2m*n 1 dierent pairs of matrices. In particular, without loss of generality, we can as-
sume that the n-th columns of A and B have not been switched. Then, the pair of matri-
ces that we obtained are of the form AS?SO; BS;SO), wheres2f1; 1g™, s2f1; 1g" 1,
and ASs” and BS° are the matrices obtained fromA and B respectively, by exchanging
the rows i and the columnsj such thatsj = 1 and sjO = 1. The (i;j )-entries of ASS®
and BSS” are distinct, and so we can de ne a matrix WS’ in the same way we have
built W from A and B. Observe that WE‘;SO =S W, SCand W[fT;f]O i=S Wpm
where S = tdiag( si;:::;sm) and S° = tdiag(sd;:::;s ;). Thus, by Lemma 6.9, the
noden is winning in the game with payment matrices ASS”; BSS” if and only if the trop-
ical polyhedron Ps;so(Wq;Wm ) is not empty. By Theorem @ and Corollary ,
the TropPCBC algorithm solves the 2"*" 1 games obtained by the successive ipping
operations in O(2™*" 1 min(m?;n?)(n®+ m?n?)) operations and in polynomial space.

Let T be the random variable corresponding to the time complexity of our method
to solve the game with payment matricesA;B drawn from a distribution satisfying
Assumption @ Similarly, given s2f1; 1g™, s°2f1; 1g" 1, let Ts° be the random
variable representing the time complexity to solve the game with matricesASs”; BSiS’,
where A;B are drawn from the latter distribution. Thanks to Condition ()] E[T] =
E[TSS] for all s;s° and so:

1 _hX ! 1

_ s;50
E[T]_ om+n 1E T om+n 1

s;s0

(K 2™ " T min(m?;n?)(n% + m?n3))

for a certain constant K > 0. This concludes the proof. O
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Chapter 7

Algorithmics of the tropical
simplex method

In this chapter, we present e cient implementations of the tropical pivoting procudure,
and of the tropical computation of the signs of reduced costs. We show that these two
prodecures can be done usin@®(n(m + n)) tropical operations for a linear program
described by m inequalities in dimension n. The algorithms presented in this chapter
have been implemented in the library Simplet [Ben14].

The content of this chapter appeared in [ABGJ13Db].

7.1 Pivoting between two tropical basic points

In this section, we show how to pivot from a tropical basic point to another,i.e., to move
along a tropical edge between the two basic points of a tropical polyhedro® (A; b), where
A2T" "andb2 T™M, and T = T(G) is an arbitrary tropical semiring. The complexity
of this tropical pivot operation will be shown to be O(n(m + n)), which is analogous to
the classical pivot operation.

Pivoting is more easily described in homogeneous terms. FOV = ( A b) we consider
the tropical cone C= P(W;0). This cone is de ned as the intersection of the half-spaces
H, =1fx2 TN+ wrox W, xg for i 2 [m]. Similarly, we denote by H; the
s-hyperplanefx 2 T"™1 jw" x =W, xg. We also letG := P, (W;0) for any subset
I [m].

Throughout this section, we make the following assumptions.

Assumption E.  The matrix W is generic for the minor polynomials.
Assumption F.  Every pointin C nf(0;:::;0)g has nite coordinates.

Assumption [E| is is strictly stronger than the sign-genericity of W = ( A b) for the
minor polynomials, and hence, in particular, we can make use of Theorefn 4.22. Under
Assumption [F the tropical polyhedron P(A;b) is a bounded subset ofG". Indeed, asC
is a closed set, Assumptiorﬂ: implies that there exists a vectot 2 G"*1 such that x |

103
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for all x 2 C. Let tconv(P) tpos(R) be the internal description of P (A;b) provided by
Theorem|4.11. IfR contains a point r, then it is easy to verify that (r; 0) 2 C, which
contradicts Assumption |Fl Since everyp 2 P belongs toP (A;b), the point ( p; 1) belongs
to C and thusp;  |; forall j 2 [n]. It follows that P(A;b) = tconv( P) is a bounded
subset of G".

In rest of this section, we identify the conesC, H; and G of T"*1 with their image
in the tropical projective space TP" (see Secti02). Through the bijection given
in (4.12), the tropical basic point associated with a suitable subset  [m] is identi ed
with the unique projective point x' 2 TP" in the intersection G . Besides, when pivoting
from the basic point x', we move along a tropical edgeEx := G¢ dened by a set
K =1 nfigyg for someigy 2 1.

A tropical edge E¢ is a tropical line segment tconv' ;x'o). The other endpoint
x'° 2 TP" is a basic point for 1= K [f ieng, Whereien 2 [m]nl. So, the notation iout
and ien; refers to the indices leaving and entering the set of active constraintd which
is maintained by the algorithm. Notice that the latter set corresponds to the non-basic
indices in the classical primal simplex method, so that the indices entering/leavingl
correspond to the indices leaving/entering the usual basis, respectively.

As a tropical line segment,E¢ is known to be the concatenation of at mostn ordinary
line segments.

Proposition 7.1  ([DS04, Proposition 3]). Let Ex = tconv( x' ;x'°) be a tropical edge.

B«=[% 20 [ [9 9 where 1= x' and 1 = x'°:
Every ordinary segment is of the form:
[p; p+1]:fxp+ eJPjO 00 ;

where the length of the segment, is a positive real number,J, [n + 1], and thej-th
coordinate of the vectorel» is equal tolif j 2 Jp, and to O otherwise. Moreover, the

; (3 (Jg( [n+1]:

The vector €'r is called the direction of the segment [P; P*1]. The intermediate
[4.3, breakpoints are represented by white dots.

Note that, in the tropical projective space TP", the directions €’ and et
coincide. Both correspond to the direction of T" obtained by removing the (n + 1)-th
coordinate of either e jf (n+1) 2 J, or & otherwise.

7.1.1 Overview of the pivoting algorithm

We now provide a sketch of the pivoting operation along a tropical edgeEc . Geomet-
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each point P, for p 2 [g], we rst determine the direction vector e’, then move along
this direction until the point P*! is reached. As the tangent digraph at a pointx 2 C
encodes the local geometry of the tropical coné& around x, the direction vectors can
be read from the tangent digraphs. Moreover, the tangent digraphs are acyclic under
Assumption [E] This imposes strong combinatorial conditions on the tangent digraphs,
which, in turn, allows to easily determine the feasible directions.

We introduce some additional basic notions and notations on directed graphs. Two
nodes of a digraph are said to beconnected if they are connected in the underlying
undirected graph. A connected componenis a set of nodes that are pair-wise connected.
Given a directed graph G and a setA of arcs between some nodes @, we denote by
G[A the digraph obtained by adding the arcs ofA. Similarly, if A is a subset of arcs of
G, we denote byG nAthe digraph where the arcs ofA have been removed. By extension,
if N is a subset of nodes of5, then GnN is de ned as the digraph obtained by removing
the nodes inN and their incident arcs. The degreeof a node ofG is de ned as the pair
(p1; p2), where p1 and p, are the numbers of incoming and outgoing arcs incident to the
node.

For the sake of simplicity, let us suppose that the tropical edge consists of two
consecutive segments{ 9 and [ ¢ 99, with direction vectors € and e’° respectively.

Let us start at the basic point = xK[f iow9_ \We shall prove below that, at every basic
point, the tangent digraph is spanning tree where every hyperplane node is of degree
(1;1). In other words, for everyi 2 K [f iou0, the sets argW,* ) and arg(W, )
are both reduced to a singleton, sayfj;* g and fj; g. We want to \get away" from the
s-hyperplaneH; . Since the direction vectore’ is a 0=1 vector, the only way to do so
is to increase the variable indexed byj i’;m while not increasing the component indexed
by j; - Hence, we must havgj’ 2 J andj;, 62J. While moving along €’, we also
want to stay inside the s-hyperplaneH; for i 2 K. Hence, ifj;" 2 J for somei 2 K,
we must also havej; 2 J. Similarly, if j 62J, then we must also havej, 62J.
Removing the hyperplane node o, from the tangent digraph G provides two connected
components, the rst one, C,, containsj i*()m, and the second oneC containsj; . From
the discussion above, it follows that the set] consists of the coordinate nodes irC*.

When moving along €’ from , we leave the s-hyperplaneH; . Consequently, the
hyperplane nodei,: \disappears" from the tangent digraph. It turns out that this is the
only modi cation that happens to the tangent digraph. More precisely, at every point in
the open segment } Y, the tangent digraph is the graph obtained from G by removing
the hyperplane nodeio, and its two incident arcs. We shall denote this digraph by
G. q. By construction, G. ¢q is acyclic, consists of two connected components, and
every hyperplane node has one incoming and one outgoing arc.

We shall move from along €’ until \something" happens to the tangent digraph.
In fact only two things can happens, depending whether ®is a breakpoint or a basic
point. As we supposed °to be a breakpoint, a new arcaney Will \appear" in the
tangent digraph, i.e., Go= G. q[f anewd. Let us denoteanew = (] new; K), Where j ney is
a coordinate node andk 2 K is a hyperplane node. We shall see thajnew must belong
to J, while k must belong to the componentC . Hence, the arca,ew \reconnects"” the
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two componentsC. and C . Sincek had one incoming and one outgoing arc irg. q,

it has exactly three incident arcs in Go. One of them isanew = (] new; K); @ second one,
aold = (jold; K), has the same orientation asanew; and the third one, a®= (k;1), has an
orientation opposite to anew and agyg.

Let us now nd the direction vector €’° of the second segment P ). Consider the
hyperplane nodek with the three incidents arcs anew; 8¢ and a% By Proposition [7.1], we
know that J  JC hence we must increase the variabl@gnew. Since we want to stay inside
the hyperplane Hy, we must also increase the variable indexed by. On the other hand,
we do not increase the variablg q4. As before, all hyperplane nodes 2 K nfkg are of
degree (11). Removing the arcagg from the graph provides two connected components,
the rst one C? contains the coordinate nodeg new;! as well as the hyperplane node,
while the second oneC® containsjoq. The new direction setJis given by the coordinate
nodes inCY?.

The tangent digraph in the open segment ]¢ %} is again constant, and de ned by
G o og = Gonfagyg. Hence,G o og is an acyclic graph, with two connected components

C? and C°, where every hyperplane node has one incoming and one outgoing arc.

The basic point %is reached when a new s-hyperplani; 62K is hit. This happens
when the hyperplane nodd ¢ \appears" in the tangent digraph, along with one incoming
(j T ;ient) and one outgoing arc fent;j ). Observe that we must havej 2 J andj* 62].
It follows that the two components C? and C° are reconnected by addingien: and its
two incident arcs.

7.1.2 Directions of ordinary segments

Given a point x in a tropical cone D, we say that the direction €’, with ; ( J ( [n+1],
is feasible from x in D if there exists > 0 such that the ordinary segmentfx + e j
0 gis included in D. The following lemma will be helpful to prove the feasibility
of a direction.

Lemma 7.2. Let x 2 T"*1 with no 0 entries. Then, the following properties hold:

(i) if x belongs toH; nHj, every direction is feasible fromx in H; .

(ii) if x belongs toH;, the direction €’ is feasible fromx in the half-spaceH; if, and
only if, arg(W;” x)\ J 6 ; orarg(W; x)\J=;.

(iii) if x belongs toH;, the direction €’ is feasible fromx in the s-hyperplaneH; if, and
only if, the setsarg(W;” x)\ J and arg(W, x) \ J are both empty or both
non-empty.

Proof. The rst point is immediate. To prove the last two points, observe thatif x 2 H;,
then W' x =W, x> 0, thanks to Assumption [A|and the fact that x has no0

|
entries. Then, for > 0 su ciently small, we have:

W x)+ if arg(W," x)\ J6; ;

W' x otherwise ;

W (x+ ed)=
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and the same property holds forw, X. O

We propose to determine feasible directions with tangent graphs. It turns out that
tangent graphs in a tropical edge have a very special structure. Indeed, under Assump-
tion E] these graphs do not contain any cycle by Lemmd 4.26. In other words, they are
forests: each connected component is a tree. For such graphs, the following is known:

number of nodes = number of edges + number of connected components  (7.1)

Proposition 7.3. Let x be a point in a tropical edgeE«. Then, exactly one of the
following cases arises:

(C1) x is a basic point for the basisK [f iou0, Whereioy 2 [mM]nK. The tangent
graph G at x is a spanning tree, and the set of hyperplane nodes I§ [f igg. In the
tangent digraphG, every hyperplane node has degréé; 1). Let J be the set of coordinate
nodes weakly connected to the unique node 'ﬂirg(Wi‘;ut X) in the digraph G n figyuQ.
The only feasible direction fromx in E¢ is €.

(C2) x is in the relative interior of an ordinary segment. The tangent graph G is
a forest with two connected components, and the set of hyperplane nodesKs In the
tangent digraphG,, every hyperplane node has degréé; 1). Let J be the set of coordinate
nodes in one of the components. The two feasible directions from in Ex are € and

eJ - e[n+1] n.]_

(C3) x is a breakpoint. The tangent graphG, is a spanning tree, and the set of
hyperplane nodes iK . In the tangent digraph G, there is exactly one hyperplane node
k with degree(2;1) or (1;2), while all other hyperplane nodes have degrdé;1). Let a
and a° be the two arcs incident tok with same orientation. Let J and J° be the set of
coordinate nodes weakly connected tk& in G, nfag and G, nfa%, respectively. The two
feasible directions fromx in B¢ are € and €°°.

Proof. Sincex has nite entries, the graph G contains exactly n + 1 coordinate nodes.
Let n% be the number of hyperplane nodes inG,. Consider anyi 2 K. Sincex is
contained in the s-hyperplaneH; and x 2 R"*1, we haveW," x =W, x> 0. Thus
K is contained in the set of hyperplane nodes. Thereform® n 1. As there is at
least one connected component, there is at most + n® edges by [7.1). Besides, each
hyperplane node is incident to at least two edges, so that there is at leastr® edges in

G¢. We deduce thatn® n. As a result, by using (7.1), we can distinguish three cases:

() n®= n, in which case there is only one connected component i, and exactly 2n
edges. Besides, all the hyperplane nodes have degreeI1lin G.

(i) n°=n 1, the graph G, contains precisely two connected components andr® 2
edges. As in the previous case, every hyperplane node has degreel{lin G.

(i) n"°= n 1 and G, has one connected component. In this case, there arm2 1
edges. InG,, there is exactly one hyperplane node with degree (2) or (1;2), and
all the other hyperplane nodes have degree (1).



108 Chapter 7. Algorithmics of the tropical simplex method

We next show that these cases correspond to the ones described in Propositipn[7.3.

Case (i): Since n%= n, the set of hyperplanes nodes is of the fornK [f ioyg for some
iout 62K . Moreover, G is a spanning tree. As a consequence, it contains a matching
between the coordinate nodesr] and the hyperplanes nodeK [f ig,g. Such a matching
can be constructed as follows. LetG’ be the digraph obtained by directing the edges of
G, towards the coordinate noden + 1. In this digraph, every coordinate nodej 2 [n]
has exactly one outgoing arc to a hyperplane node (j), as there is exactly one path
from j to n+1 in the spanning tree G;. Moreover, every hyperplane node has exactly
one incoming arc and one outgoing arc inG> Indeed, i is incident to two arcs in G,
and exactly one of them leads to the path to coordinate noden + 1. We conclude that

()6 (j9 whenj 6 j° Thus the set of edgesf(j; (j)) jj 2 [n]g forms the desired
matching. Then by Lemma , the submatrix W° of W made with columns in [n]
and rows in K [f ioug satis es tper(jwW9) > 0. Furthermore, W0 = AKI[f iong- AS @
consequencex is a basic point for the setK [ igyQ.

Since the graph G; is a spanning tree where the hyperplane nodeéyy is not a leaf,
removing ioy from G, provides two connected component<C* and C , containing the
coordinate nodes in arg(lvi’;ut x) and in arg(W,; . x), respectively. LetJ be the set
of the coordinate nodes inC*.

We claim that the direction €’ is feasible fromx in E¢ . Indeed, if the hyperplane node
i 2 K belongs toC*, then arg(W," x) J and arg(W, x) J. In contrast, if

the nodei 2 K belongs toC , we have argv;" x)\ J = arg(W, )\ J = ;.

By Lemma , this shows that the direction €’ is feasible in all s-hyperplanesH; with

i 2 K. Itis also feasible in the half-spaceH;_, sincex 2 Hj,, and arg(\NiZul x) J.

Finally, for all i 62K [f iou0, the point x belongsH; nH;. Indeed, if x 2 H;, then i

would be a hyperplane node. Thus, by Lemm2, the directiore’ is feasible inH; .

As Ex =(\i2kHi)\ (\iex H, ), this proves the claim.

Sincex is a basic point it admits exactly one feasible direction inEx. Thus €’ is the
only feasible direction from x in Ex .

Case : In this case, G is a forest with two components C; and C,, and K is
precisely the set of hyperplane nodes. Lef be the set of coordinate nodes irC;. Then
Lemma shows that the directione’ is feasible fromx in E¢<. Indeed, the point x
belongs toH; nH; for i 62K. Besides, for alli 2 K, the sets argv;" x)\ J and
arg(W; x)\ J are both non-empty if i belongs toC1, and both empty otherwise.
Symmetrically, the direction e"*ln = ¢’ is also feasible inEx , as [n + 1] nJ is the
set of coordinate nodes in the componenC,. It follows that x is in the relative interior
of an ordinary segment.

Case : The graph G is a spanning tree. Letk be the unique half-space node of
degree (21) or (1;2) in G, and a; a’the two arcs incident to k with the same orientation.
Then G, nfag consists of two weakly connected component€, and C,. Without loss
of generality, we assume thatk belongs toC;. Let J be the set of coordinate nodes
in C1. We now prove that €’ is feasible fromx in Ex, thanks to Lemma|7.2. Indeed,
X 2H; nH; fori 6X . Besides, ifi 2 K, the sets argW," x)\ J and arg(W;, x)\ J
are both non-empty if i 2 Cy, and both empty if i 2 C,. Thus, €’ is feasible in the
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s-hyperplaneH;.

Similarly, let J%be the set of coordinate nodes weakly connected to in G nfa%. Then
the direction €’° is also feasible. Note that] and J%are neither equal nor complementary.
Thus, there are two distinct and non-opposite directions which are feasible fromx in
Ex , which implies than x is a breakpoint. O

Example 7.4. Figure [4.7 depicts the tangent digraphs at every point of the tropical edge
Ec for K = fH 4JH2b, and this illustrates Proposition [7.3| The set| = fH 1|H2H30

of constraints determines the basic pointx' = (1;0;0). From its tangent digraph, we

deduce that the initial ordinary segment of the edgeEx is directed by ef29,

The tangent digraph at a point in ](1; 1; 0); (1; O; O)[ has exactly two weakly connected
components. They yield the feasible directions’29 and e 1349, which correspond to the
vectors (G;1;0) and (0; 1;0) of TS.

At the breakpoint (1;1;0), the tangent digraph is weakly connected, and the hy-
perplane nodeH| has degree (21). Removing the arc from coordinate node 4 tdH 4
provides two weakly connected components, respectivelfyl; 2g[fH ;g and f 3; 4g[fH 0.
The coordinate nodes of the component containinyields the feasible directionef 129,
Similarly, it can be veri ed that the other feasible direction, obtained by removing the
arc from coordinate node 2, is the vectoref 1:3:49,

7.1.3 Moving along an ordinary segment

We now characterize the length of an ordinary segment[; 9= + e7j0 g
of a tropical edge Ex . We shall see that the tangent digraph is constant in J; 9 and
that it \acquires" a new arc or a new hyperplane node when the endpoint %is reached.
Modi cations to the tangent digraph are determined by the following scalars. For all
i 2 [m], we de ne:

PG =AW ) max(Wi )

i (53)=0Wij ) rjnze}]x(Wij + )

where W = (Wj;).
By Assumptionsand we haveW;” > 0. In contrast, maxj23(W; + ;) and
max; 2 (Wij + j) may be equal to0, in which case we use the convention; =+ 1 and
i =+ 1, respectively. When ma>§23(Wij+ + j) and maxj23(W; + j) are dierent
from 0, the scalars [ (;J) and , (;J) are non-negative elements of the groupG,

where T = T(G). When it is clear from the context, [ (;J) and ; (;J) will be
+

simply denoted by [ and ; .
The scalars [ and | tells us when the tangent digraph changesj.e., when the

set argjWij x ) is modied. Indeed, let us denotex = + e’, and observe how
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W / W

| |
T T T T T T

Figure 7.1: Evolution of W* ( + e?) (inred)and W, ( + e?’) (in black) with

Owhen ;, < [ (lefyor , >  (right).
arg(jw;j x ) varies with 0. For anyi 2 [m], we have:
8
%arg(jwij ) for < min( [; ;)
argwij x )= _a9@Wij I argfjnz@JlX(J'WijJ'+ i) for =min( {5 ) (79
. argrr;a}x(jwijj+ i) for > min( [; ;)
j
When min( ; ;) > 0, then arg max;,; (jWiij + )\ arg(jWij ) = ;. Hence,

arg(jWij x ) is constant for < min( ), and gains at least one new element at

=min( {; ;). Otherwise, when min( ["; ;) =0, the set argmax j,;(jWjjj+ ;) is
included in arg(jWij )- Infact, argmax j,; (jWijj + ) = arg(jWij )\ J. In this
case, arg{W;j x )is constant for all > 0.
The distinction between  and [ will tell us whether the elements j that will
enter arg(jW;j x ) corresponds to tropically positive entriesWj; 2 T* or to tropically
negative entriesWj; 2 T . This distinction is crucial in order to detect when x saturate
a new inequality.

Indeed, the interpretation of ;" and ; diers when one looks at the evolution of

W x andW, x with 0 (see Figurg 7.11). We have:

+.
[

w.* if 0 *
Wi+ X = I+ + I + I
(W, )+ i f i
( w . (7.3)
w, x = T ! !
(W, )+ i f i
where ; = , +(W, ) (W' ). Inparticular i and equality holds when
i2K.
The endpoint °of the segment[; 9=f + e’ joO g is either a breakpoint

or a basic point. We will prove that it is a basic point if a new hyperplane nodeien; 62K
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\appears" in the tangent digraph. In that case the index iyt must belong to the following
set:
Ent(;J):=fi 2 [m]nK jarg(W" )\ J=:g:

Note that Ent( ;J ) can also be de ned as the set of 2 [m]nK such that | > 0.
We shall see that °is a breakpoint if a hyperplane nodek 2 K \acquires" a new
arc, and thus become of degree (A) or (1;2). Such a nodek must be an element of

the following set:
Br(;J):=fi2KjargW, )\ J=; and arg(W, Y\ J=;9:

Alternatively, i 2 K belongs toBr( ;J) if and only if min( ; ;) > 0.

We already mentioned that the notation ien: (and so, Ent( ;J )) and iqy is chosen by
analogy with the entering or leaving indices in the classical simplex method. Note that
the set Br( ;J ) does not have any classical analog. It represents intermediate indices
which shall be examined before a leaving index is found.

When this does not bear the risk of confusion, we simply use the notation8r and
Ent.

Proposition 7.5. Letf + eJjoO g be an ordinary segment of a tropical edge
Ex . The following properties hold:

(i) the length  of the segment is the greatest scalar 0 satisfying the following

conditions:
min( ;; ;) foralli2Br;
. . (7.4)
i for all i 2 Ent such that P
@iy if = - for someient 2 Ent, then + e is a basic point for the basisK [f ientg.
@iy if  =min( ;; ) for somek 2 Br, then + e J is a breakpoint.
Proof. Let x = + e’ for all 0. First, We claim that x belongs to E¢ if

satis es (7.4).To that end, we shall use repeatedly the evolution ofW;” x and
W x with  described in [7.3). We need to show thatx 2 H; for i 2 K and

that x 2 H,; fori 2 [m]nK. Consider ani 2 Br. Then , = . . Therefore, for all
0 min( {; ;) we havex 2H; since:

W' ox =W =W, =W, X :
Let i 2 K nBr. Then by Lemma. argW.* )\ J and arg(W, )\ J are both
non-empty. Thus [ = , = , =0. Therefore, x 2 H; for all 0 since in this
case:

W ox o =(WS )+ =W, x o

We now examine the half-spacesi; wherei 2 [m]nK. If i 62Entthen arg(W," )\ J 6
;. Consequently, 7 =0. Thus x 2H; for all 0 as we have:

W' ox = (W )+ max(W, (W )+ )=W, o x o
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If i 2 Entand O min( {; ;) thenx 2H, . Indeed :
W' ox o= w! max(W, (W' )+ )= W, X
Now if furthermore [ < , , then, for I, we have
wWrox o= (W )+ Tomax(w, W)+ )= W, x
We conclude that if i 2 Entand | < ; thenx 2H, for all 0.
Second, we claim that the solution set of the inequalities [(7.4) admits a greatest
element 2 R. By contradiction, suppose thatx 2 Ex for all 0. Recall that €’ and
el"*1nJ coincide as elements of P". Consequently the half-rayf e [n*1nJ | 0g
is contained in B¢, and thus in C. Since C is closed, it contains the pointy 2 Tn+l
dened by yj = jifj 2 J andy; = O otherwise. AsJ ( [n + 1], this contradicts
Assumption [F|
Third, we claim that = . To prove the claim is sucient to show that x is
either a breakpoint or a basic point of Ex . We distinguish two cases:
(@) = i . for someiey 2 Ent. Then W' x =W, x by ([7.3).

Moreover, Wf;m > 0 by Assumptions@ and As a consequenceien; 62K is a
hyperplane node in the tangent graphG, . By Proposition [7.3, we conclude that
X is a basic point for the setK [f ientg.

(b)  =min( ;; ,) for somek 2 Br. In that case, by (7.2), we have:

arg(iWij x )=arg(jWij I ar@_lzrgrﬂX(quJ'+ E
J

The hyperplane nodek 2 K has at least two incident arcs inG by Proposition .

Consequently, the set arg{Wij ) contains at least two elements. Moreover,
argmax;,; (jWj j+ j) contains at least one element. Hence, the set arg{vij x )

contains at least three elementd,e., in the tangent digraph G, , the hyperplane
nodek 2 K has at least three incident arcs. By Proposition 7.8, the pointx  must

be a breakpoint.

Note that the cases [&) and [B) above also prove[(ji) and(iif). O

Example 7.6. We now have all the ingredients required to perform a tropical pivot. Fea-
sible directions are given by Proposition[ 7.8, while Propositiorf 7.p provides the lengths
of ordinary segments and the stopping criterion.

Let us illustrate this on our running example. We start from the basic point (4; 4; 2)
(i.e., the point (4;4;2;0) in TP%) given by | = fH 1}[H2[Hsg, and we move along the
edge Ex, where K = fH;f[H2Jg. The tangent digraph at (4;4;2) is depicted in the
bottom right of Figure By Proposition 7.3|(C[L), the initial direction is € %239,
i.e., J = f4g. By de nition, Br is formed by the hyperplane nodes which are not adjacent
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to the coordinate node 4 in the tangent digraph. HenceBr = fH j}[H2lg. Moreover, in
the homogenous setting, the inequalitiedH 5l and [H 4 read

X2 X4
X1 max(xs; X2 3)

In both of them, the maximum in the left-hand side is reduced to one term, and it does
not involve x4. Thus, Ent = fH 3f[H4g. The reader can verify that:

=3 0=3 =3 (1 )=+1
[ﬁ__ﬂzz (1 )=+1 =2 0=2
[ﬁ_z]=4 (1 )=+1 mg=4 0=4
lﬁ_Z]:A' (1 )=+1 =4 0=4
As a result, the length of the initial ordinary segmentis =2, givenby = ] [‘?E]

As[HZ 2 Br, the point (4;4;2) 2ef1239 =(2:2;0) is a breakpoint.
The next feasible direction is €129 asJ = f3;4g. We still have Ent = fH 3;[H4g
but now Br = fH ;5. The length of this ordinary segmentis =1= . Consequently,

we reach the breakpoint (1 1;0) = (2;2;0) 1€/ 529, where the next feasible direction,
€29, is given by J = f1;3;4g. The set Br is now empty and Ent = fH 4. Clearly,
=1= Ha As[H4 2 Ent, the next endpoint (1;0;0) = (1;1;0) 129 is a basic point.
7.1.4 Incremental update of the tangent digraph

Our implementation of the pivoting operation relies on the incremental update of the
tangent digraph along the tropical edge. This avoids computing from scratch the tangent
digraph at each breakpoint, in which case the time complexity of the pivoting operation
would be naively in O(n?m).

Proposition 7.7. Let[; 9=f + e’ j0 g be an ordinary segment ofE .

(i) every point in ]; Y has the same tangent digrapt§ ;. o, which is a subgraph of
both G and Go.

(i) if is a basic point, i.e., = xXI[f fo«d for a givenioy 62K, then

(i) if Cis a breakpoint, then there exists a uniqué 2 Br such that = min( ; VoK)
and the setargmax;,;(jWk jj+ ;) is reduced to a singletonf| g. Moreover,

Go=G: q[f anewd;

where anew is an arc betweenk and | , oriented from | to k if ; < ,and
from k to | otherwise.
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________________________________________________

Figure 7.2: lllustration of Proposition (liy and (il)] with a sequence of tangent
digraphs around a breakpoint °between two consecutive segments;[ 9[ [ ¢ . The
direction of [ ; ‘1, from to 9is given by the set of coordinate nodesl, indicated in
green. The direction of the second segment, from®to %% is governed byJ° depicted in
orange.

(iv) if [% °9is the next ordinary segment inEx , then
G o og= Gonfagug:

where aqq is the unique arc incident to k with the same orientation asanew in
Go.

An illustration of (ifi) fis given in Figure

Proof. Letx = + e,

(i) Any pointin] ; 9is of the form x for some O< < . Consider such a . By
Proposition , the tangent digraph G, admits [n + 1] as its set of coordinate nodes,
and the set of hyperplane nodes always containk .
We now prove that the set of arcs is constant,i.e., we show that for any i 2 K, the
set arg(W;j x ) does not depend on 2 ]0; [. Consider ai 2 Br. We have <
then in particular < min( ; ;) by Proposition Hence, we have argWij
x ) =arg(jWij )by (7.2). Otherwise, leti 2 K nBr. Then, arg(w;" )\ J and
arg(W; )\ J are both non-empty, by Lemma. Consequently, min(;"; ;) =0
by de nition of [; ;. It follows that > min( [; ;). Hence, arg{W;j x ) =
argmax o3 (jWijj + ) by (F.2).

(i) By Proposition (Ca, G. q does not contain the hyperplane nodeioy. As

G qis asubdigraph ofG by (D, we deduce that it is also a subdigraph ofG nfiyyg. By
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Proposition again, the only subdigraph ofG nfigyyg that can be a tangent digraph
at a point in E¢x is G nfigyg.
(iii) Since Yis a breakpoint, we have = min( ;; ) for somek 2 Br by Propo-

+

sition @ First assume that = |, < | for somek 2 Br. In that case, observe
that
argmax (jWy;j + j) = arg max (Wk’] + )
j23 j23

Let | 2 argmaxj,; (W  + j). Thenforall 0 < < , we haveWy; +x; <W,” X,
while W +x, = W,” x . Itfollows that the arc ( I; k) does not belong toG . o, whereas
it appears in Go, oriented from | to k. We deduce thatG. q [f (I;k)g is a subgraph
of Go by (D Both are equal by Proposition . Moreover, if arg maszJ(W;j + )
contains two distincts elementsl; 1% Then, by the argument above,G. o[f (I;k); (1%k)g
is a subdigraph of Go. This contradicts Proposition .

Second, If = |, < ; , then the arguments above show thatGo = G. q [f (k;1)g,
where| is the unique element in the set

argmax (jWy jj+ j)=argmax (W, ; + ;)
j2Jd j23d

Third, if | = ; then, by the arguments above, the hyperplane nodeé would have at
least two incoming and two outgoing arcs in the tangent digraph at © a contradiction
with Proposition

Finally, suppose that =min( ; ,)=min( o o) for two distincts k;k°2 Br. Then,
the hyperplane nodesk and k®would both have at least three adjacent arcs inG o, again
a contradiction with Proposition 7.3]

(iv) By applying i o the segment [ % °}, we know that G o oq is a subdigraph of
Go. By Proposition , the hyperplane nodek has degree (11) in G o oq. Thus, the
digraph G o og is either equal to Gon fanewg or Gonfaggg. As the former corresponds
to the tangent digraph G, o, we deduce thatG o o = Gonfaggg. Indeed, the segment
[ % 9 is directed by J% By Proposition [7.3, the set J° correspond to the coordinate
nodes in one of the connected components @ o oq. Similarly, the set J governing the
direction of [ ; 9 correspond to a connected component irG. o. By Proposition ,
we haveJ 6 JC Consequently, the graphsG. o and G o oq must be distinct. O

Proposition 7.8. Let[; 9[ [ ¢ °} be two consecutive ordinary segments d& , where
[; 9=f + e’ jO gand[® %9=f %+ e3°j0 %Y. Moreover, let k
be the unigue hyperplane node d& o of degree(2; 1) or (1;2) and let agq; anew be the two
arcs incident to k with the same orientation. Denote byD the connected component of
Gonfagyg; anewd that contains k . Then:

() J°=J[fj2[n+1]jj is a coordinate node inDg
(i) Br( 239 = Br(;J)nfi2][m]jiis a hyperplane node inDg
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@iy arg(W* 9 =arg(W," ) foralli2Ent(%J9.
(iv) Ent( 239 =fi2Ent(;J)j < (;J3)andargW" )\ (I%J)=g.
(v) forall i 2 Ent( ©J9[ Br( ¢J9, we have:

Wi+ 0_ Wi+
F(539=min TG W) max(W )
((%3%=min(53) 5 W) max(Wy + )

Proof. (i) According to Proposition (CE}, the digraph G o og consists of two
weakly connected componentsC; and C , and J is the set of coordinate nodes in one
of these components, safC .

Let | 2 J be the coordinate node incident toanew, as described in Propositior] 7.F [(iii).
The tangent digraph at Cis equal to Go= C;+ [ C [f anewg. SinceGo is connected,
and| 2 C., the hyperplane nodek belongs toC . Thus the arc agq also belongs to
C . Observe that D is a subgraph ofC . In fact, C nfagqg can be decomposed into
two connected componentsf:0 and D, where D contains k .

In the next segment, the tangent digraph isGo oq = C+ [ C [f anewg nfaog. It
consists of two connected components. LeC? denote the component that contains the
hyperplane nodek . Then observe that C® = C, [ D[f anewd. Moreover, the second
connected component ofG o og is C°.

The two feasible directions in 1¢ %, aree’” and €’° Ml The set J%is set of
coordinate nodes in eitherC? or C°, by Proposition (C@). We know that J  J%by
Proposition . Hencelis the set of coordinate nodes inC? and thus J°= J[ .

(i) By de nition of Br, we have min( [ (;J); ; (;J)) > 0 foralli 2 Br(;J).
Using ), it follows that arg(jWij ( + e?)) = arg(jWij ) for all > 0 small
enough. ConsequentlyBr(;J)= Br( + e”;J)for > 0 small enough. HenceBr( ;J)
is exactly the set of hyperplane nodes in the connected componel@ of G, o, where
C is de ned above. Similarly, Br( ¢J9 is exactly the set of hyperplane nodes in the
connected componentC? of G o oq. The dierence between these two sets corresponds

to the hyperplane nodes inD.

(iii) First observe that Ent( 2J9 Ent(;J). Indeed, consider ani 2 K nEnt( ;J ).
Then arg(W,* )\ J 6 ;, which implies arg(W.* 9 J. Using the inclusiond  J°
we obtain that arg(W;* 9\ J°6 ;, and thereforei 62Ent( %J9.

Second ifi 2 Ent( ;J ) satis es 7 (;J) then arg(W," 9 intersects J  JY thus
i 62Ent( ¢J9. As a consequence:
Ent( %39 fi2Ent(;Jd)j < F(;J)g: (7.5)

Finally for any i 2 Ent( %39, we have < [(;J) and therefore argW," 9 =
arg(W;" ).
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(iv) Using (F.5) let us consider ani 2 Ent(;J) such that < [(;J). Then, as
above, argW," 9 =arg(W," ). Moreover,i 2 Ent( ;J)impliesarg(W,” )\ J =;
Thus arg(W," 9\ J°%=; if and only if arg(W," )\ (3°nJ)=;

(v) Consideri 2 Ent( 339 [ Br( %39. I1f i 2 Ent( 239 then < [(;J) by (7-5).
Otherwise, ifi 2 Br( 2J9, then i 2 Br( ;J ) by ([ij and thus 7 (;3) by (F-4). In
both cases, we obtamW 0= w;*
Let us rewrite 7 ( %J9 as follows:

Q10 = i :
(%39 =min (Wt 9 rjnza}]x(wijff+ Daw 9 Jrznj%ag(wIJ + 9

We saw that W;* %= W . Furthermore, 2= ;+ ifj 2Jand ?= ;j otherwise.

Thus the rst term of the minimum above is equal to:
(W ) mz%x(wij* + + )= (;J)
i

The second term satis es:

WA Wi+ 9= W W i)
( i Cb J g}%r)f] ( ij 0) ( ) ] g}%n)f] ( J )
The same argument holds for ; ( %J9. O

7.1.5 Linear-time pivoting

We now present an algorithm (Algorithm B) allowing to move along an ordinary segment
[ 9=f + e’ jO g of the tropical edge E¢x . This algorithm takes as input
the initial endpoint , together with some auxiliary data, including the set J encoding
the direction of the segment [; 9, the tangent digraph in]; 9, the setsEnt( ;J ) and
Br(;J), etc. We also de ne, forj 2 [m], the sets

i(;3)="fi2Ent(;J3)jj 2argW," )g:

It also uses a Boolean matrixM, such that Mj = true for the pairs (i;j) 2
Ent(;J) [n+1]if and only if j 2 arg(W," ). We shall see in the main pivot-
ing algorithm that we will not need to update this matrix when pivoting over the whole
tropical edge.

Algorithm §]returns the other endpoint © On top of that, if Cis a breakpoint of B,
it provides the set J° corresponding to the direction of the next ordinary segment [% 9
of Ex , some additional data corresponding to ¢ J° (for instance the setsEnt( ¢J9 and
Br( %J9), and the digraph G o. o.

Several kinds of data structures are manipulated in Algorithm[3, and we need to
specify the complexity of the underlying operations. Arithmetic operations overT are
supposed to be done in timeO(1). Tangent digraphs are represented by adjacency lists.
They are of sizeO(n), and so they can be visited in time O(n). Matrices are stored as
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two dimensional arrays, so an arbitrary entry can be accessed i®(1). Vectors and the
values W;* , 7(;3)and ; (;J)fori2 [m]are stored as arrays of scalars.

Apart from = J%nJ, sets are represented as Boolean arrays, so that testing
membership takesO(1). The set s stored as a list, thus iterating over its elements
can be done inO(j j).

Proposition 7.9.  Algorithm plis correct, and its time complexity is bounded byO(n +
mjJ°nJj).

Proof. The correctness of the highlighted parts of the algorithm straightforwardly follows
from the corresponding results given in annotations.

Complexity: At Lines B]and[10, the operations of removing or adding an arc can be
performed in O(n) by visiting the digraphs. Identifying the arc ayq at Line amounts to
iterate over the arcs incident to k , and there is exactly 3 such arcs by Propositior} 7]3.

Computing the sets and  between Lineg 1] and 14 use®(n) operations, as the
graph Go contains O(n) nodes and edges. Moreover, the sets [n + 1] and K
are of sizeO(n), thus updating J and Br usesO(n) operations.

At Line we visit the O(m) elementsEnt( ;J ). For eachi 2 Ent( ;J), we rst
testin O(1) whether < [ (;J). Second, we iterate over the element§ 2  and test
whether j 2 arg(W;" ) using the Boolean matrix M . Since there isjJ°nJj elements
in , and since any entry ofM can be accessed (1), we obtain an overall complexity
of O(mjJ°nJj).

Computations at Lines and[19 are done by iterating over element§ 2 and
then retrieving the values of W™, W;", W; and ;. Since these values are stored
in arrays, they can be accessed to in constant time. Therefore,; ( 4J%9 and ; ( 4J9
are computed in time O(j j) = 0O(jJ°nJj). The complexity of other operations is easily
obtained. In total, the complexity of the algorithm is O(n + mjJ°n Jj). O

Theorem 7.10. Algorithm B]allows to pivot from a basic point along a tropical edge in
time O(n(m + n)) and spaceO(nm).

Proof. First observe that the matrix M initially de ned at Line § Hoes not need to be
updated during the iterations of the loop from Lines@ to . Indeed, let [; 9 and
[ ® 9 be two consecutive ordinary segments of directiore’ and €’° respectively. By
Proposition , we have the inclusionEnt( 2J9 Ent( ;J ) and the equality arg(W,;"

9 =arg(w" )foralli2 Ent(%J9. It follows thatif Mj determines whether
j 2 arg(w;’ ) for all i 2 Ent(;J), it can be used as well to determine whether
j 2argW,"  9Yforalli2 Ent( %J39.

Then, the correctness of the algorithm follows from Proposition i) (for the
computation of G 1, [ at Line @) Proposition (for the computation of J at Line @)
and Proposition [7.9.

The complexity of the operations from Lines[1 to[7 can easily be veried to be in
O(mn). Let g n be the number of iterations of the loop from Lines[8 and 11, and let
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Algorithm 5:  Traversal of an ordinary segment of an tropical edge

Input : An endpoint  of an ordinary segment [; 9 of a tropical edge Ex and:
the set J encoding the direction €’ of [; 9=f + e’ jO g
the tangent digraph G. o in the relative interior of [ ; 9
the sets Ent(;J ) and Br(;J)
the scalars W,* , 7(;3)and ; (;3)fori2Br(;J)[ Ent(;J)
a Boolean matrix M such that M = true only for the i 2 Ent(;J ) and j 2 [n + 1] such that
j 2arg(w; )
Output : The other endpoint °and,
if Cis a basic point, the integer ien 62K such that °= xK [ fems:
if Cis a breakpoint:
the set J° encoding the direction €'° of the next ordinary segment [ % %
the tangent digraph G o. og
the sets Ent( %J% and Br( %J9
the scalarswW.*  ° *(%J3%and ; (%39 fori2Br( %J9[ Ent( %J9
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Algorithm 6:  Linear-time tropical pivoting algorithm
Input : A basic point x' of P(A;b), the associated setl, and an integer iou 2 |

Output : The other basic point x' ° of the edgeE it i,,.g, and the integer ient 2 | Nnfiouwg such that
1°= (1 nfiowd) [f ientg

1 compute G O(mn)
2 G2 Ga nfioug O(n)
3J coordinate nodes weakly connected to the element of argwi;ut x")in G. q o(n)
4 compute E Ent(x';J)and B Br(x';J) o(mn)
5 compute W x', f(x';Jd)and | (x';J) fO( ali2E[ B O(mn)

true if j 2 arg(W," x')

false otherwise

7 input  x';3,G 1 2 BBy (WS X)izers;( (X' 3))izerei( (X'53))izers;M
8 while true do at most n iterations
L call Algorithm {Pn (input; M) and stores the result in output

6 M am (n+1) matrix dened by Mj = Oo(mn)

©

10 if output is of the form ( %ien) then return  ( %ient)
11 else input  output
e’1:e'2;:::; el be the directions of the ordinary segments followed during the successive

calls to Algorithm §] By Proposition 7.9] the total complexity of the loop is
O(ng+ mjJz2nJdaj+ mjJgndzj+  + mjlgndq 1j);

which can be bounded byO(n(m + n)). Finally, the space complexity is obviously
bounded by O(nm). O

7.2 Computing reduced costs

In this section, we introduce the concept of tropical reduced costs, which are merely
the signed valuation of the reduced costs over Puiseux series. Then, pivots improving
the objective function and optimality over Puiseux series can be determined only by the
signs of the tropical reduced costs. We show that, under some genericity assumptions,
the tropical reduced costs can be computed using only the tropical entrie\ and c in
time O(n(m + n)). This complexity is similar to classical simplex algorithm, as this
operation corresponds to the update of the inverse of the basic matri, .

7.2.1 Symmetrized tropical semiring

To de ne the tropical reduced costs, we need a signed tropical version of the system
of linear equations ). To that end, we use a semiring extension of signed tropical
numbers called thesymmetrized tropical semiring introduced in [PIu90]. It is denoted
by T , and is de ned as the union of T with a third copy of T, denoted T . The latter

is the set of balanced tropical numbers Its elements are written a , wherea 2 T. The
numbersa, aanda are pairwise distinct unlessa = 0. Sign and modulus are extended
to T by setting sign(a)=0and jaj= a.
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The addition of two elementsx;y 2 T , denoted byx v, is de ned to be max(jxj;jyj)
if the maximum is attained only by elements of positive sign, max(jxj;jyj) if it is
attained only by elements of negative sign, and maxj;jyj) otherwise. For instance,
(1) 1 (3=1 ( 3)= 3. The multiplication x y of two elementsx;y 2 T
yields the element with modulus jxj + jyj and with sign sign(x) sign(y). For example,
(1 2= 3and( 1) ( 2)=3butl ( 22=3 . Anelementx 2 T not equal
to 0 has a multiplicative inverse x 1 which is the element of modulusj xj and with the
same sign asx. The addition A BLand multiplication A B of two matrices are the
matrices with entries Aj  Bjj and Ak By, respectively.

The set T also comes with there ection map x 7! x which sends a balanced
number to itself, a positive number ato a and a negative number a to a. We will
write X yforx ( y). Twonumbersx;y 2 T satisfy the balance relationx r y when
X vy is a balanced number. Note that

Xrys=) x=y forall x;y 2 T

The balance relation is extended entry-wise to vectors inT". In the semiring T , the
relation r plays the role of the equality relation; in particular the next result shows that
a version of Cramer's Theorem is valid in the tropical setting, up to replacing equalities
by balances.

The tropical determinant of the square matrix M 2 T" " is given by

M
tdet( M ) = tSIgn( ) M 1) M n (n)
2Sym(n)
Observe that this de nition of the tropical determinant extends the de nition given in

Section[3.2.] Also observe that a square matrix o™ " is sign-generic for the determi-
nant polynomial if and only if tdet( M) is a balanced number.

Theorem 7.11 (Signed tropical Cramer Theorem [PIu90]) LetM 2 T" "andd2 T".
Every solutiony 2 T" of the system of balances

M yrd (7.6)
satis es '
tdet(M) yjr ( 1) " tdet(My, d); forall j 2 [n]:

Conversely, if the tropical determinants tdet(M) and tdet(MrJ d) for j 2 [n] are
not balanced elements, then the vector with entriey; = (1) n+] tdet(Mp d)
(tdet(M)) ! is the unique solution of [7.6) in T".

This result was proved in [PIu9Q]; see alsd [AGGQ9] for a more recent discussion. A
di erent tropical Cramer theorem (without signs) was proved by Richter-Gebert, Sturm-

fels and Theobald [RGSTO05]; their proof relies on the notion of a coherent matching eld
introduced by Sturmfels and Zelevinsky [SZ93].

Remark 7.12 The quintuple (T ;max;+; O0;T )is an example of a \fuzzy ring" in the
sense of[[Dre86, De nition 1.1]. In the notation of that reference, T is \the group of
units" and T is the set denoted K".
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4-..11.4#

0 D
0

Figure 7.3: The Cramer digraph for the system of balances in7). Column nodes are
squares and row nodes are circles. Arcs with weightlt ~ are omitted. The maximizing
permutation is given by the red arcs. Arcs of the digraph of longest paths from the
column nodey, are solid. The coordinatey; of the signed solutiony of (7.7) is obtained
by the multiplication (in T ) of the weight on the longest path fromy, to ;.

7.2.2 Computing solutions of tropical Cramer systems

The Jacobi iterative algorithm of [PIu90] allows one to compute a signed solutiony of
the systemM y r d; see also[[AGG14] for more information. We next present a
combinatorial instrumentation of this algorithm, in the special case in which the entries
of M anddareinT .

Suppose thattdet(M ) 6 0, and let be a maximizing permutation in jtdet(M)j. The
Cramer digraph of the system associated with is the weighted bipartite directed graph

arc to the column node (i) with weight M, (1i , and an incoming arc from every column
nodej 6 (i) with weight Mj whenj 2 [n], and weight di whenj = n +1.
Example 7.13 The maximizing permutation for the system of balances ) below is
(1)=1; (2=3and (3)=2. The Cramer digraph is represented in Figure[7.3.
1 0 1 o0 1

(1) 1 1 Vi 2
@ 1 (2 0A @,Ar @poA (7.7)
() O 1 %] 1
Note that all the coe cients M; () are dierent from 0. In the sequel, it will be

convenient to consider the longest path problem in the weighted digraph obtained from
the Cramer digraph associated with by forgetting the tropical signs, i.e., by taking the

modulus of each weight. Note in particular that there is no directed cycle the weight
of which has a positive modulus (otherwise would not be a maximizing permutation

in the tropical determinant of M). Consequently, the latter longest path problem is
well-de ned (longest weights being either nite or 1 , butnot + 1 ).
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The digraph of longest pathsfrom a node v refers to the subgraph of the Cramer
digraph formed by the arcs belonging to a longest path from nodev. This digraph is
acyclic and every of its nodes is reachable from the node (possibly with a path of
length 0). As a result, it always contains a directed tree rooted atv. Such a directed
tree can be described by a map which sends every node (except the root) to its parent
node. Note that by construction of the Cramer digraph, a column nodej has only one
possible parent node 1(j). Consequently, we will describe a directed tree of longest
paths by a map that sends every row node to its parent column node.

Proposition 7.14. Let M 2 T" " such thattdet(M) 6 O andd 2 T". Let be a
maximizing permutation in the tropical determinant of M. In the Cramer digraph of
the systemM yr d associated with , consider the digraph of longest paths from the
column noden +1. In this digraph of longest paths, choose any directed subtree rooted
at the column noden + 1. Then, the following recursive relations
( .
d MG )
Mi iy M, o YO otherwise

when (i)=n+1;

Y @) = (7.8)

provide a solution in T" of the systemM yr d.

Proof. Since the column noden +1 reaches all column nodes in the directed tree de ned
by , Equation ([7.8) de nes a point y in T". The modulusjy;j is the weight of a longest
path from the column node n + 1 to the column node j. By the optimality conditions
of the longest paths problem, for anyi 2 [n], we have:

IMi i+ dy ol dis
IMi i+ iy @i § Myj+jyj forallj2[n]:

Furthermore, we havejM; (,)]"‘Jy (,)j = jM; (,)]"‘Jy (,)] when (i) 6 n+1 and jM; (i)j+
JY (iyi = jdij otherwise.

Thus, if (i) 6 n+1, the terms M; ) Yy ) and M 4y Yy ¢y have maximal
modulus among the terms of the sumM;; vy1 Min Yo di. Moreover, )
ensures thatM; ¢y Yy oy M ) Y () is balanced. Similarly, if (i) = n+ 1, then
Mi i) Y @ di isbalanced and the termsM; ¢y VY ;) and di have maximal modulus
in Mi1 v1 Min  ¥Yn di. In both cases, we conclude thatM; vy r d. O

A digraph of longest paths for Example[7.13 is shown in Figurd 7]3. From the
relations (7.8), we obtain the signed solutiony = ( ( 1); 1;0).

Complexity analysis

We now discuss the complexity of the method provided by Propositior[ 7.14. First, a
maximizing permutation  can be found in time O(n3) by the Hungarian method; see
[Sch03,x17.2]. Second, the digraph of longest paths, as well as a directed tree of longest
paths, can be determined in timeO(n?®) using the Bellman{Ford algorithm; see [Sch03,
x8.3]. Last, the solution x can be computed in time O(n).
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However, we claim that the complexity of the second step can be decreased @(n?).
The idea is to consider a variant of the Cramer digraph with non-positive weights, and
then to apply Dijkstra's algorithm to solve the longest paths problem. We exploit the
fact that the Hungarian method is a primal-dual method, which returns, along with a
maximizing permutation , a pair of vectorsu;v 2 T" such that

jMijj uj + v forall i;j 2 [n]; (7.9)
iM; (|)] = Ut Vo) foralli2[n]: .

The pair (u;v) is in fact an optimal solution to the dual assignment problem:
X X

i=1 j=1
iMjj u+v foralli;j 2 [n]:

Suppose we have a pair ;) satisfying (7.9). We make the diagonal change of
variablesy; = v; z, for all j 2 [n], where the z; are the new variables. We consider
the matrix M%= (M?) obtained from M by the following diagonal scaling, M =

Loyt mMmij v 1 where is a real number to be xed soon, together with the
vector d® with entries &= * u. ' d for all i 2 [n]. Then, dividing (tropically)
every row i of the systemM y r dby and by u;, and performing the above
change of variables, we arrive at the equivalent systenM® z r d® By choosing

:= max(max;(jdij ui);0), we get that jdJ 0, andjMj O foralli;j 2 [n]. The
longest path problem to be solved in order to apply the construction of Propositior] 7.1j
to M® zr d®now involves a digraph with non-positive weights.

It follows that the latter problem can be solved by applying Dijkstra's algorithm
to the digraph with modi ed costs. Moreover, the directed tree provided by Dijkstra's
algorithm is also valid in the original problem.

7.2.3 Tropical reduced costs as a solution of a tropical Cramer system

In the rest of this section, we suppose that Assumptior{ F holds, so we only consider
basic points x' with nite entries. We also make the following assumption.

Assumption G.  The matrix (AT cT) is sign-generic for the minor polynomials.

Let | be a feasible basis of the tropical linear program LPA;b;c). Consider the
system of balances:

Al yr ¢ (7.10)

By Assumption [G] and Theorem[7.1], the system of balanceq (7.10) admits a unique
solution y' in T' , and this solution coincides with the tropical reduced costs by Propo-
sition #.34 and. So applying to this system the algorithm described in Sectioh 7.2|2 does
provides the vector reduced costs of LPA; b; ¢) for the basis| .
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Algorithm 7:  Computing tropical reduced costs

Input : A basic point x' of P(A;b), the associated setl , the objective function ¢
Output : The tropical reduced costs y'

1 G tangent graph at x' O(mn)
2 maximizing permutation in tdet( A,) obtained by a traversal of G o(n)
3u x! o(n)
4v Al X o(mn)
5 max(max; 2 (¢ uj);0) O(n)
6 M° tropically signed matrix with entries m{ = * u ' ai v * 0o(n?)
7 d®° tropically signed vector with entries do= ' u ' ¢ o(n)
8 C  Cramer digraph of the system M°® yr d°for the permutation 0 (n?)
9 apply Dijkstra's algorithm to C from column node n +1 0O(n? + nlog(n))

10 the tree of longest paths returned by Dijkstra's algorithm

11 z  signed vector obtained by applying ( to the tree O (n)

12 return y' the signed vector with entries y| = v;  z o(n)

Theorem 7.15. Algorithm [f]computes the tropical reduced costs. Its time complexity is
bounded byO(n(m + n)).

Proof. The maximizing permutation is computed from G, in Line 2| as follows. We
rst determine a matching between the coordinate nodes 1:::;n and the setl of hy-
perplane nodes using the technique described in the proof of Propositign 7.3, Casg (i).
By Lemma, this matching provides a maximizing permutation injtdet(A,)j. It can
be obviously computed by a traversal ofG,: starting from coordinate noden + 1. Since
Gy contains 2n + 1 nodes and 2 edges (see the proof of Propositioh 7]3), this traver-
sal requiresO(n) operations. The complexity of the other operations of this algorithm
are straightforward and are given in annotations. We conclude that the overall time
complexity is O(m(n + n)).

Let v = A x'. For any hyperplane nodej 2 | and anyi 2 [n], we havey;
JAi] + xi'. Moreover, equality holds for every edge i) in the tangent graph. In
particular with the permutation , we havev ¢y = jA (jyij+ x{. By Assumptionsand
we havev and x does not have0 entries. Thusu = x' and v satisfy TPM = A7.
It follows from the discussion in Section[7.2.P that the operations between Lin¢]3 and
compute the tropical reduced costs. O
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Chapter 8

Tropicalizing the central path

In this chapter, we apply the tropicalization process to the central path in linear pro-
gramming.

We consider linear programs de ned on the Hardy eld K. SinceK is real closed, the
central path of a linear program onK is well-de ned. The elements ofK are real-valued
functions. As a result, a linear program overK encodes a family of linear programs over
R, and the central path on K describes the central paths of this family. The tropical
central path is then de ned as the image under the valuation map. Thus, the tropical
central path is a logarithmic limit of a family of classical central paths. We establish
that this convergence is uniform on closed intervals.

The tropical central path has a purely geometric characterization. We show that
the tropical analytic center is the greatest element of the tropicalization of the feasible
set, the tropical equivalent of a barycenter. Thus, the tropical analytic center does not
depend on the external representation of the feasible set. Similarly, any point on the
tropical central path is the tropical barycenter of the tropical polyhedron obtained by
intersecting the values of the feasible region with a tropical sublevel set induced by the
objective function. This is in stark contrast with the classical case, where the central path
depends on the halfspace description of the feasible set. In this way, Deza, Nematollahi,
Peyghami and Terlaky [DNPTQO6] bent the central path of the Klee-Minty cube by adding
redundant halfspaces in its representation, so that it visits a neighborhood of every vertex
of the cube.

A maybe surprising feature is that the tropical central path can degenerate to a path
taken by the tropical simplex method. We can even provide a quite general su cient
condition under which the tropical central path coincides with the image of a path of the
classical simplex method under the valuation map. Consequently, the tropical central
path may have the same worst-case behavior as the simplex method.

A main contribution of this chapter comes from studying the total curvature of the
real central paths arising from lifting tropical linear programs to the Hardy eld K. The
curvature measures how far a path diers from a straight line. Intuitively, a central
path with high curvature should be harder to approximate with line segments, and thus
this suggests more iterations of the interior point methods. We disprove the continuous

127
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analogue of the Hirsch conjecture proposed by Deza, Terlaky and Zinchencko by con-
structing a family of linear programs with 3r + 4 inequalities in dimension 2r + 2 where
the central path has a total curvature in  (2"). This family arises by lifting tropical
linear programs introduced by Bezem, Nieuwenhuis and Rodrguez-Carbonell [BNRCO08]
to show that an algorithm of Butkovc and Zimmermann [BZ06] has exponential running
time. The tropical central path shows a fractal-like pattern, which looks like a staircase
shape with (2") steps.

Most of the contents of this chapter are covered in[[ABGJ14], but it includes an
improvement of the curvature analysis of the counter-example from (2"=r)to (2").

8.1 Description of the tropical central path
In this chapter, LP (A;b; c) will denote linear programs of the form:

minimize ¢ X

LP (A;b;c
subjectto Ax+b 0;x 0;x2R"; (A;b;0)

whereA 2 R™ ", b2 R™, and c2 R". The dual linear program reads:

maximize by
subjectto A’y+c Oy 0, y2R™:

In the following, we shall assume that the polyhedronfx 2 R" j Ax b;x 0Ogis
bounded with non-empty interior. Given a positive 2 R, the barrier problem is

X xn
minimize ¢x log(x;) log(w;)
- - (8.1)

subjectto Ax + b=w; x> O;w> O

The objective function in ( is continuous, strictly convex, and it tends to in nity
when (x;w) tends to the boundary of the bounded non-empty convex setf (x;w) 2
R™MjAx + w= b;x> 0;w > Og. Hence, the problem [8.1) admits a unique optimum
(x ;w ) in the latter set. By convexity, this optimum is characterized by the rst-order
optimality conditions:

AX + b=w

Ay+c=s
Wiy = forall i 2 [m] (8.2)
XjSj = forall j 2 [n]

X;w;y;s> 0:

Thus, for any positive real number , there exists a unique solution & ;w ;y ;s ) 2
R" R™ R™ R" to the system of polynomial equations [8.2). Thecentral path is
the image of the mapCapc : R>0 ! R?™*2" which sends a positive real number to
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the vector (x ;w ;y ;s ). The primal central path is the projection of the central path
onto the (x; w)-coordinates. Similarly, the dual central path is gotten by projecting onto
the (y; s)-coordinates.

8.1.1 Dequantization of a de nable family of central paths

Let K = H(RR) be the Hardy eld of the o-minimal structure RR. We considerA 2
KM "-p2 K™ and ¢ 2 K". Throughout, we will make the following assumption.

Assumption H.  The setfx 2 K" jAx + b 0;x 0gis bounded with non-empty
interior.

Clearly, the latter set is closed. However, inK" a closed and bounded set is not
necessarily compact.

Under Assumption [H] the central paths of the linear programsLP (A (t); b(t); c(t))
over R are ultimately well-de ned. For a xed real number M let us de ne the map
C: (M;+1) R ! R?*2" which sendst 2 (M;+1)and 2 Rto C(t; ) =
G (ty:bt)cry (t ). For any t large enough, the map 7! C(t; ) is a parameterization
of the central path of LP (A (t);b(t);c(t)). Our goal is to investigate the logarithmic
limit

c: 7 im log, Ot; ) ;

where log is applied component-wise. The mapCT is called the tropical central path of
LP (A;b;c). We shall prove the following theorem.

Theorem 8.1. The family of maps (log; C(t; )): converges uniformly on any closed
interval [a;l] R to the tropical central path C'.

Consider the following linear program over the ordered eldK:
minimize ¢ x

LP (A;b;c
subjectto Ax +b 0;x 0, x2K": ( )

The problem LP (A ; b; ¢) encodes the family of linear programs P (A (t); b(t); c(t)))¢.
The next lemma shows that the central path of LP (A b;c) is well-de ned, and that
it describes the family of central paths of LP (A (t); b(t); c(1))):.

Lemma 8.2. Forany 2 R, the mapt 7! C(t; ) is de nable in RR. Its components
are given by the unique solution(x ;w :y ;s )2 K2M*20 of the system of polynomial
equations

AX + b=w
A’y c=s
Wiy = for all i 2 [m] (8.3)
Xjsj = for all j 2 [n]

X;wWiy;8> 0

where =1t .
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Proof. For an ordered eld K and integersm and n, consider the following statement:

\Forany A 2 K™ "b2 K™ and ¢ 2 K" which satisfy Assumption[H and
any positive 2 K, there exists a unique solution k%w®y®s9 2 K 2m+2n
to the system of polynomial equations [(8.8)."

This is a rst-order sentence, , which is true in the structure R, i.e., for K = R. As
RR is an expansion ofR, we haveRR = . Thus, by Proposition 2.7, the sentence is
also true in the structure H(RR). This means that the induced statement holds in the
eld K = K = H(RR). In particular, forany 2 R, it holds for =1t 2 K.

Let (x ;w ;y ;s ) 2 K2™*2N pe the unique solution of (8:3) for =t . Then,
for all t large enough, & (t);w (t);y (t);s (1)) 2 R®™*2" js a solution of (8.3) for
A = A(t), b= b(t), c = c(t), = (t). Since (8.2) admits a unique solution, we
conclude that C(t; )=(x (t);w (t);y (t);s (t)) for all t large enough. O

Sincet 7! C(t; ) is de nable in RR, its image under the (component-wise) valuation
map is well-de ned, which proves the point-wise convergence of the family (logC(t; ))t.
Furthermore, for any 2 R we have

t!Ii[rnl log, C(t; )=val(x ;w ;y ;s );

where =1t ,and (x ;w ;y ;s ) is the unique solution of (8.3).

For xed t, let zz be a component of the map 7! log; C(t; ). To prove uniform
convergence, we will use the fact that for all large enough, the maps z; are \almost"
1-Lipschitz.

Lemma 8.3. For t large enough and any; °2 R, we have:

jiz( ) z( 9 log(2n+2m)+ ] 9:

Proof. Let (x;w;y;s) 2 K2M*2" and (x%wSy%s9 2 K2M*2" pe two solutions of (8.3)
obtained for two parameters =t and 0=t ° Asin [VY96| Lemma 16], by combining
the de ning equations, we obtain:

X X0 X X .
xjsP+  xPsp+ wiyP+ wli=(n+m)(t +t) (8.4)
j=1 j=1 i=1 i=1

Since the summands on the left-hand side of[(8]4) are all positive, every summand

is smaller than (n + m)(t + t 0). In particular, for any j 2 [n], we have XijO

(n+ m)(t +t°) and xPsj  (n+ m)(t +t %. Sincex;s; =t and xPs) = t ° we
deduce that:

xj (n+m)a+t x°

x?  (n+ myL+t° )x;:
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To prove the lemma, it is su cient to consider O Inthis case,t ° 1, which
implies:

xj 2mn+mit x°

x?  2(n+ m)x; :
Applying log, to these inequalities yields the conclusion for the componentg 1;:::;Xxn
The same proof readily applies to the other components. O

Proof of Theorem([8.]. Let z be the point-wise limit of the functions z; ast approaches

in nity. Consider any closed interval [ a; b R. Let " > 0, and choose a partition

a=a<ajz< <ak <ag+ = bsuchthatas & " foralli2 [K]. Now let
2 [a;b and let i be the index such that 2 [a;;a+1]. Then,

jz2() z() J z() z(a)i+jz(a) z(a)i+jz(a) z()j:
By Lemma|[8.3, we have:
jz2( ) z(a)] logi(2n+2m)+ a logi(2n+2m)+ "

Thus, there exists at- such that jz;( ) z(&)j 2" for all t t-. Furthermore,
Lemmal8.3 also shows that:

jiz( )  z(a&)] a "
Finally, since the functions z; converge pointwise toz, there exists at? such that jz (a;)
z(a)j "forallt t2andalli2 [k]. We conclude that (z); converges uniformly on
[a; . O

8.1.2 Geometric description of the tropical central path

We now use barrier functions on the Hardy eld H (RR) to characterize the central path.
In order to obtain de nable barrier functions, we use the structure Reyp Which expands
the ordered real eld structure R by adding the exponential function. The structure Rexp
is o-minimal [vdDMM94]. Note that every power function is de nable in Reyp, thus the
de nable functions of RR are also de nable in Rexp. As a consequence, the Hardy eld
H (Rexp) contains K = H (RR). The exponential is de nable in the structure H(Rexp)
of the Hardy eld H(Rexp), and thus the logarithm is also de nable in this structure.
Hence, iff 2 K is positive, log(f ) belongs to the ordered eld H (Rexp). Consequently,
given A 2 KM "p2 K™;c2 Kand 2 K; > 0, the following optimization problem

on (x;w) 2 K" K™ is well-de ned if the objective function is interpreted in H (Rexp).

>

X0
log(x; ) log(wi)
j=1 i=1 (8.5)

subjectto AXx +b=w; x>0, w>0:

minimize
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Lemma 8.4. Let (x ;w ;y ;s ) be the unique solution of (8.3). The point (x ;w )
is the unique solution of (B.5).

Proof. Let R be the expansion of the structureReyp in which we added a symbol log.
The latter is interpreted as the map x 7! log(x) for positive elementsx and x 7! O for
non-positive elements. The structureR is still o-minimal, since the sets de nable in R
and Rexp are the same. Givemn; m, the following statement is a sentence in the language
of R.

\Forany A 2 K™ ":p2 K™ and ¢ 2 K" which satisfy Assumption [H and
any positive 2 K, the optimization problem (B.5) has a unique solution.
It is given by the point (x%w?9, where (x®2w®y©®s9 is the unique solution

of 8.3)."

We already noted that this sentence is true whenK = R, i.e., in the structure R. Since
the latter is o-minimal, by Proposition this sentence is also true inH(R), i.e., when
K = H(Rexp). Now if A;b;c and have entries inK  H(Rexp), the system (8.3)
admits a unique solution with entries in K by Lemma|[8.2. O

Let P be a non-empty bounded tropical polyhedron inT". Then, there is a unique
element in P which is the coordinate-wise maximum of all elements inP. We call it
the tropical barycenter of P. Indeed, P = tEonv(V) for some nite set V T" by
Theorem[4.11. HenceP contains the point  ,, v, which is greater than any other
point in P with respect to the partial order of T". In particular if P is a non-empty
bounded Hardy polyhedron included in the positive orthant, then val(P ) is a bounded
tropical polyhedron. So val(P ) has a well-de ned tropical barycenter.

Theorem 8.5. Let (x ;w ) be the point on the primal central path of the Hardy linear
program LP(A;b;c) at 2 K with > 0, and let be that LP's optimal value. Then
val(x ;w ) is the tropical barycenter ofval(P ) where

P =f(x;w)2K"™™jAXx + b= w; cx +(n+m) ; x O w O0g:
Proof. Let (x ;w ;y ;s ) be a point on the central path. By (B.3), we have
X =(s)"x +(y )AX =(s)x +(y ) (w b
X xn
= ssX; + y;w; b’y =(n+m) by
Furthermore, y is a feasible solution of the dual linear program:

maximize b’y
subjectto A’y+c Oy O y2K™:

By weak duality (Theorem , we have b’y . Consequently, c” x +(n+
m) .
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Now by Lemma[8.4, k ;w ) is the unique solution of the barrier problem (8.5). By
the discussion above, we can add the constraint™ x +(n+m) to the problem (8.5)
without changing its optimal solution. Moreover, adding the constant = to the
objective function still does not change the solution of the problem. Thus & ;w ) is
the unique solution of

>y xn
minimize @~ — log(x;j) log(w;)
j=1 i=1 (8.6)
subjectto AXx + b=w; c”x +(n+m) ; x>0, w>0:

Let P, be the feasible set of [(8]6) and consider a feasible solutiorx(w) 2 P ,,.

Since ¢’ x (n+ m) , the term (c”x )= is the germ of a function which
is asymptotically ct for some ;¢ 2 R with 0. On the other hand, log(x;j) is
asymptotically val(x;)log(t) for any j 2 [n]. Sincet = o(log(t)) when 0, the
objective value of ) is asymptotically

0 1

X0 X
@  val(xj)+  val(wi)A log(t) :
j=1 i=1

As a consequence, vaK ;w ) is the supremum ofP j”=1 Xj + P ., Wi as (x;w) ranges
over the set val(P . ;). Now, let (x ;w ) be the tropical barycenter of val(P ). Then,
X val(xj )and w;  val(w; ) for all i 2 [m], j 2 [n]. In particular, x; > 1 and
w; > 1 . Itfollows that (x ;w ) 2 val(P ), and:

xn
val(xj )+ val(w; ) Xi + w;
j=1 i=1 j=1 i=1

We conclude that val(x ;w )=(x ;w). O
The analytic center of the polyhedron
P=f(x;w)2K"jAx +b=w;x O w O0g

can be de ned as the unique minimum point (X;w) of (, when ¢ = 0. Then, the
tropical analytic center is de ned as the image of the analytic center by the valuation
map. By specializing the characterization of the tropical central path to ¢ = 0, we get:

Corollary 8.6. The tropical analytic center of the polyhedronP coincides with the
tropical barycenter of the image of this polyhedron by the valuation map. O

Hence, even if the analytic center is an algebraic notion (it depends on the external
representation of the setP), the tropical analytic center is, suprisingly, completely
determined by the setP . We shall see that the whole tropical central path also has a
purely geometric description. We begin with a case where the geometric description can
be obtained explicitely from val(P ) and val(c).
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Corollary 8.7. Suppose that the optimal value ofP (A;b;c) is =0 and that c has
nonnegative entries. Then, the tropical central path at 2 R is the tropical barycenter
of the set

P = f(x;w) 2 val(P)jmax(xs+val(ci);:::; Xy +val( cp)) g:
Proof. Let = t . By Theorem [8.5, the tropical central path at is the tropical
barycenter of val(P ). Clearly, val(P ) P . Thus, we only need to prove that

the tropical barycenter (x ;w ) of P admits a pre-image by the valuation map which
belongs toP

By de nition, there exists (x ;w ) 2 P such that val(x ;w ) = (x ;w ). |If
cx =0, then cx (n+ m) andthus (x ;w ) 2 P . Otherwise, the germcx
is asymptotically t for some; 2 R with 6 0. Since c and x has nonnegative
entries, > 0 and we have

If <n + m,thenclearlycx < (n+m)t =(n+m) andthusx 2P
We now treat the case n+m. Let (x ;w ) be an optimal solution of LP (A ; b;c).
Consider the point:

(x;w)=1(x w )+ 1 1 x ;w):

As > 1, we have k;w) 2 P by convexity. Moreover, cx = 1cx sincecx =0 by
assumption. Thuscx is asymptotically t . Since , we obtainthatcx  (n+m)t =
(n+ m) , hence that (x;w) 2 P . It remains to show that val(x;w) = (x ;w ).
To this end, observe that val(x;w) (x ;w ) since X ;w ) and (x ;w ) both have
nonnegative entries and > 1. Furthermore, val(x;w) (x ;w ) as val(x;w) 2
val(P ) P . This concludes the proof. O

In the general case, the tropical central path still admits a geometric description, but
this description involves an optimal solution of the dual of LP (A b;c).

Corollary 8.8. There exists a pair(y ;s )2 T™ T" such that the tropical central path
at any 2 R is given by the tropical barycenter of the set:

f(x;w) 2 val(P) jmax(Xs+ Sq;iiiiXn + SpyWi+ Y0l Wm + V) g:
Proof. Let (y ;s ) be an optimal dual solution and (x;w) 2 P. Then, we have:
cx= by +(s)x+(y)Yw:
Furthermore, b’y = by strong duality. Thus,
P =f(x;w)2Pj(s)’x+(y)w (n+m) g:

Since § ;s ) 0, applying the arguments of the proof of Corollary[8.7 provides the
result. O



8.1 Description of the tropical central path 135
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Figure 8.1: Tropical central paths on the Hardy polyhedron (8.7) for the objective
function min x 1 (left) and min tx1 + X2 (right).

Example 8.9. Consider the Hardy polyhedron ofK? de ned by:

X1+ X2 2
X1
tx 2 (8.7)
X1

X1;X2 O:

Its value val(P ) is the tropical set described by the inequalities:

max(x1; X2)
1+ X3

1+ %o

X1

0

max(0; 2 + x2)
max(0; 3 + X1)
2+ X :

(8.8)

Tropical central paths on the polyhedron ), for two objective functions, are depicted
in Figure [8.1. The hyperplanes associated with the rst four halfspaces in[(8]7) induce an
arrangement in the positive orthant K2 . Figure depicts the tropical central paths on
the cells of this arrangement for the objective functions mintx; + X, and maxtxy + Xo.
Observe that the central paths trace the arrangement of tropical hyperplanes associated
with the tropical halfspaces in ), as well as the linef( 1+ ; )j 2 Rgassociated
with the objective function.
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o © L/
1J /

1 =
N

t 1 toxl 4 3 2 1 0 X1

Figure 8.2: lllustration of the tropicalization of the central paths of the full-dimensional
cells included in the positive orthant induced by the arrangement of hyperplanes associ-
ated with (, for the objective function min tx 1+ X2 and maxtx 1+ x». Right: the real
central paths for a real parametert. Middle: the image of real central paths under the
logarithmic map in baset. Right: the corresponding tropical central paths, where the
parts of the paths that lie on the boundaries are slightly shifted inside their respective
cell.

8.2 A tropical central path can degenerate to a tropical
simplex path

In this section, we will restrict our attention to the x components of the tropical
central path. To x the notation, we consider a Hardy linear program LP (A;b;c), and
the polyhedron P = f(x;w) 2 K"jAx + w=b; x 0; w 0g. From this viewpoint,
the tropical central path may visit the boundary of the (projection on the x-space) of
the set val(P). We will show that under some assumptions, the tropical central path
lies on the image by the valuation map of the graph of the polyhedronP .

When the signed valuation of (A b) is sign-generic for the minor polynomials, we
have a purely tropical description of the set valP ) by Theorem[4.22. Furthermore, that
result also shows that the images of the faces & under the valuation map also have a
tropical description. In particular, this holds for the basic points and the edges ofP , see
Section[4.3. Using the notation of Theorenj 4.22x 2 val(P ) is the value of a basic point
(hence of a vertex by Proposition) if and only if it satis es a system ofn equalities
Al x b =A x b wheretdet(A) 6 0.

Proposition 8.10. Consider a Hardy polyhedron,P = fx 2 K" j Ax + b  0g,
contained in the positive orthant such thatsval(A b) is sign-generic for the minor poly-
nomials, andA = (min( Aj ;0)) has at most one non-zero coe cient in each row. Then
the tropical analytic center of P coincides with the value of a vertex oP .

Proof. By Theorem [4.22, the tropical polyhedron val(P) is described byfx 2 T" j
A" x b" A X b g. SinceA has at most one non-zero coe cient in each
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row, for every i 2 [m] the tropical inequality A7 x B A; x b is of the form;

max(Af] + x1;:: 5 AL + xns ) max(Ay + Xkl ) ;

for somek 2 [n].
Let x be the tropical analytic center of P. By Corollary B.6] x is the tropical
barycenter of val(P). By Assumption E’ X; nite for each j 2 [n]. Thus, there must

j
exist ani 2 [m] such that Aj 61 and
max(Af] + Xq3 i AR+ X ) = Ay + X (8.9)

Consequently,x satises a setl of n equalities, one for each coordinatg 2 [n]. By
construction we have tdet(A, ) 6 0, thus tdet(A,) 6 0. Consequently,x is the value of
a vertex by Theorem([4.22. O

Vertices of P are connected by edges, which are sets of the forhix 2 P jAx x+bk =
Og whereK  [m]is of cardinality n 1 andAg isofrankn 1. Under the conditions
of Theorem[4.22, the image of the edges under the valuation map are exactly the sets
described byfx 2 val(P) jAy  x by = Ay X bc.gwhereK [m]is of cardinality
n 1 andAg has a maximal square submatrix with non0 tropical determinant.

Proposition 8.11. Let P be a Hardy polyhedron which satis es the conditions of Propo-
sition B.10, Consider a linear program of the form:

minxg s.t. x 2 P ; LP

for some k 2 [n]. If the optimal value of LP is =0, then the tropical central path of
LP is contained in the image by the valuation map of the graph d® .

Proof. By Corollary the point x on the tropical central path at 2 R is the
tropical barycenter of the tropical polyhedron fx 2 val(P) j xk g. As in the proof
of Proposition , for eachj 2 [n]nfkg the point x must satisfy an equality of the
form (. Thus, x satises a setK of n 1 equalities and it is straightforward to
check that the minor of A, formed with the columns indexed by ] nfkg has a nite
tropical determinant. O

The latter proposition is illustrated in Figure §.1](left).

8.3 Central paths with high curvature

Bezem, Nieuwenhuis and Rodrguez-Carbonell [BNRCOB] constructed a class of tropical
linear programs for which an algorithm of Butkovc and Zimmermann [BZ06] exhibits
an exponential running time. We lift each of these tropical linear programs to the
Hardy eld K = H(RR) which then gives rise to a one-parameter family of ordinary
linear programs over the reals. The latter are interesting as their central paths have an
unusually high total curvature.
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Let r be any positive integer. We de ne a linear program,LP ,, over the Hardy eld

K in the 2r + 2 variables ug;Vvo;U1;V1;:::;u;; Vv, as follows.
min Vo
st. uUp t
Vo t?
1
vi tha(ui 1+vig) forl i or LP
ui tuj a ford i r
up tvj g fora i r
ur O vy O
Clearly, the optimal value of LP , is =0, and an optimal solution is u = v = 0. It

is straightforward to verify that the feasible set is bounded with a non-empty interior.

Moreover, the feasible set is contained in the positive orthant and the B+4 inequalities

listed de ne facets. In particular, the remaining non-negativity constraints u; 0 and
vi Ofor0 i<r are satised but redundant. We will denote the feasible region of
LP, asP,.

Replacing t in LP, by any positive real number gives rise to an ordinary linear
program. Fort su ciently large the polytope of feasible points is combinatorially equiv-
alent to the polytope of feasible points of the Hardy linear program. Figure[8.8 shows
an example forr =1 and t 2, which is su ciently large in this case.

(it 2;0;t572 + 1372)

0;t2;0;t372)

\“~-}(t:t2;0:0)

(t;tz;tz;o)

(0;0;0;0)

(O;tZ;O;O)

Figure 8.3: Schlegel diagram for =1 (and t  2), projected onto the facetu; = 0; the
points are written in (Ug; Vo; U1; V1)-coordinates
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8.3.1 Tropical central path

We next compute the tropical central path arising from the linear program LP ; over the
Hardy eld K. To this end, we introduce slack variables:

min Vg
St. Ug+2zp=1t
Vo+ hg = t2
vi+ hj = tt zi'(ui 1+ Vi 1) ford i r LP?
uj+ z; =tu; 1 forl i r
uj + z2= tvi 1 ford i r
Zg O, hg O
ui Ovi 0z 0z° 0h 0 forl i r:

For each positive parameter 2 K, we denote by @ ;v ;z ;(z9 ;h ) the point of
the primal central path with parameter . Recall that the tropical central path CT is
such that CT( ) is the image by the valuation of (u ;v ;z ;(z9 ;h )for =1t . The
valuation of every point of the feasible setP ¢ of the program LP ? satis es the following
equalites:

max(uo; Zp) = 1

max(Vo; ho) = 2

1 .
max(vi; h;) =1 §+max(ui 1;vi 1) forl i r
max(ui;z) =1+ u; 1 ford i r (8.10)
max(ui;z) =1+ v; 1 forl i r
u2T;vi2T;z2T;hj2T forO i r
22T ford i

Proposition 8.12. For all 2 R, the tropical central path at , coincides with the
maximal point (u( );v( );z( );z% );h( )) satisfying the constraints (8.10) and vo
It is determined by:

Up=20=1

ho =2

Vo =min(2; ) (8.11)
vi=h =1 2—1i+max(ui v 1) forl i or

u=1l+min( U 1;vi 1) forl i r

Proof. By Corollary CT( ) is the maximal point of the intersection of val(P 9) with
the tropical half-space

H =fuv;z;28h) 2@ 1 11w g
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Using the homomorphism property of the valuation map, every point of H \ val(P ?)
satis es Vo as well as [8.1D).

It is straightforward to verify that (8[11)|de nes the maximal vector satisfying Vo
and (8:10). Therefore,C™( )  (u( );v( );z( );zY );h( )). To show that the opposite
inequality holds, using Corollary again, it su ces to lift ( u( );v( );z( );z% );h( ))
to an element of P °. Such a lift can be obtained as the unique solution of the following
system:

Ug= Zo= }t
0= 20= 5
1 . 5
= = et
Vo 2mm( )
h(): tz Vo
1, 1 .
Vi = hj = ét 2 (Uj 1+ Vi 1) forl i r
1 . .
uj = émln(tui 1tV 1) forl i r
Zi = tuj 1 U forl i r
z%=tvi 1 u; forl i 1

It follows from Proposition that (ui( );vi( ))o i r completely determine the
other components of the tropical central path. Observe thatv;( ) is equal to the max-
imum of u; 1( ) and v; 1( ) translated by 1 2% while uj( ) follows the minimum of
these two variables shifted by 1; see Figur4. Since the translation o sets di er byz%,
the componentsu; and v; cross each other (2') times. More precisely, our next result

shows that the curve (ui( );vi( )) has the shape of a staircase with (2') steps.

Proposition 8.13. Leti 2 [rlandk2f0;:::;2 1 1g. Then, for all in the interval

4K . 4k+2
[55 2;,'], we have
. 2k . 2k+1
u( )=1+ §andvi()=l+ 5
while for all 2 [#2; 44 ] we have
. 2k+2 _ 2k +1
ui():|+Tandvi():|+ 5 :

Proof. We proceed by a bounded induction on 2 [r]. Starting with i =1 and k =0 we
consider the tropical central path point at any 2 [0;2]. Our goal is to determine the
tropical analytic center. It follows from (§.11) that

. 1 :
up=1+min(l; ); vy = §+max(1;m|n(2; ) :

Thus for 2 [0;1],u1=1+ andvy=1+ % For 2 [1;2] we haveu; =1+ % and
vi=1+ % Consequently, the claim holds fori = 1.
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Figure 8.4: Evolution of the components of the tropical central path of LP 4 with

By induction, suppose the result is veried for i <r . We will show that it is also
true for i +1. Consider any integer, k, in f0;:::;2' 1g. If k is even, letk®= k=2. Then,

. . 0 0. . .
for all in the interval [ o%-; 24 = [ 45; 2521, we have by induction:

. k0 k o 2k0+1 . k+1
up =i+ ?—I+ o and vi=i+ 5 =i+ o

Thus,
. . kK+1 k . k+1 k
Uj+1 = I+1+min o o and vjy; = i+1+max o o

Separating the cases 42 and 42 leads to the desired conclusion.
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If k is odd, k = 2k%+ 1, then for any =~ 2 [ 3] = 4";"2 : 4";:“4] we have:

o 2k0+2 Kk +2
| + - =1+ -

2 2
_ 2k0+1 k+1
vi=i+ o = i+ o
Thus,
_ . . k+1 k+2
Ui+1 = I +1+min ]
. k+1 k+2 1
Vi+1 = I +1+ max o o ol
As above, by separating the cases 12',‘%12 and 12',‘%12 we conclude that the inductive
claim holds fori + 1. m
Remark 8.14. A similar induction shows that for 2 the tropical central path is at
the tropical analytic center, de ned by ug=1;vg=2 and
, . 1 ,
u=i+1 and vi=|+1+§ foralll i r:
For 0, the tropical central path is a tropical half-line towards an optimum. We have
Uo( )=1;vo( )= aswell as
. .1 .
u()=1i+ and vi():|+§ foralll i r:

We will now show that the tropical central path of LP , coincides with the image of
a path of the simplex method under the valuation map. Our proof is elementary and
independent of Proposition[8.11.

Proposition 8.15.  Under projection on the (u; v)-components, the tropical central path

of LP, is contained in the image of the vertex-edge graph d?, under the valuation

map. The tropical central path at 2 R is the value of a vertex if and only if 2or
= % for somek 2f1;:::;2g.

Proof. We prove the claim by induction on r. Suppose thatr = 1. This situation in
four dimensions is depicted in Figure 8.3. For 2, the tropical central path is at the
tropical analytic center of LP ;:

Up=1,v9=2;u1=2;vy1=5=2:

This is the value of the vertex (t; t2;t%;t572 + t372) of the Hardy polyhedron P 1 which is
uniquely de ned by the conditions

Uog= t;Vvo= t%us = tug;vy = t¥2(ug + Vo) : (8.12)
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For =1 the tropical central path is at the point with coordinates
Up=1;vo=1;u1=2;v1=3=2;
which corresponds to the vertex €;t;t 2; 2t372) of P 1, the unique solution of:
Ug=t Vo=t Uy =t Vo, V1= t*(ug+ Vo) : (8.13)

It is straighforward to check that the tropical central path for 2 [1;2] is the image
by the valuation map of the edge between the vertices[(8.12) and (8.13). Similarly, for
2] 1 ;1], the tropical central path:

Up=1;v9= ;u1=1+ ;v1=3=2:
is the value of the edge between the verticed (8.13) and;(0; 0;t3%) of P ; de ned by
Up=t vo=0; U1 = tvg; vi = t*2(ug + Vo) : (8.14)
Now suppose that the claim holds forr 1. For 2, the tropical central path of

havevi+1 =1  1=2"*1 +max(u,;Vv;) and ur+1 = 1+ u,. By induction, (Ug;Vo;:::;Ur;Vr)
of P, along with the equalities v,+1 = t* 2™ (u, + v;) and u,41 = tu, clearly have
a unique solution which is feasible forLP ;1. Thus it de nes a vertex of P,4;. It is
straightforward to verify that the valuation map applied to this vertex yields the tropical
analytic center. Similarly, the argument above shows that the tropical central path of
LP 41 is the value of a vertex when = 3¢ = - for somek 2f 1;:::;2'g.

Fixak2f1:::;2° 1g. Then central path of LP; at 2 [3¢; Z2] = [ A 2]
is the value of a point on an edge oP ;. This edge inK?*2 de nes a 3-dimensional face
F of P,+1 in KZ** . The intersection of F with the three hyperplanes

—or +1
L =t 12

Vit (Ur + Vi) Ursr = tuy and U = tuy (8.15)

yields a vertex of P ;4+1, and it can be checked that the value of this vertex is on the tropi-

cal central path of LP (4, for = ‘;'51'12. It follows that the tropical central path of LP [+
4k . 4k+2 4k+2 . 4k+4

at 2 [+ osr] and 2 [5=5; 5] corresponds to points on two distinct edges of
P.+1. These two edges are obtained by intersecting with vr+1 = t3 27 (u, + vy)

and either u;+1 = tu, or ur4+; = tv,. It remains to consider 2%1. By induction,
the tropical central path of LP, for 2% = 2% is the set of values of an edge of

P .. As above, this edge yields a 3-facé& of P,;. Intersecting F with the three
hyperplanes ) yields a vertex whose value is the tropical central path oEP .1 at
= 2. Intersecting F with v+ = t? =2 (4, + v;) and U;41 = tv, yields an edge
of P 1+1 whose set of values is the tropical central path at 2 [55r; 5 ]. For 5T
the tropical central path is the set of values of the edge obtained as the intersection of
F with vie = t2 527 (U, + vp) and ursg = tuy. O
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8.3.2 Curvature analysis

Let [a; b be an interval of R, and : [a;h ! RY be the parametrization of a path in
RY. Assume that is twice continuously di erentiﬁble. Forany 2 [a;h], the arc length
of the path  between (a)and ( )is ( ):= ] "()jd . Let :[0;°(b]! RYbe
the parameterization of ([a; b)) by its arc length, i.e., (( )):= ( )forall 2 [a;h.
As a consequence, (( )= ()3 ()j. Thyis, " describes a path on the unit sphere
sd 1 RY The length of the latter path, O(b)j “()jd , is the total curvature of
between (a) and (b).

The total curvature can also be de ned in terms of angles. Given pointdJ;V; W 2 RY,
we shall denote byA UV W the measure 2 [0; ] of the angle between the vectors/ U

and W V, so that
os = pY_ U)W V)
kv Uk’kw Vk '’
where h; i denotes the standard scalar product ofRY, and k k denotes the associated
Euclidean norm.
If :[a;b! RYparametrizes a polygonal line K %; X ][ [X ;X 2][ :::[X 9; X 9*1], the
total curvature ( ; [a; ) is de ned as the sum of angles between consecutive segments:

X
Glah) = VX Ixkxket
k=1

A polygonal line :[a;b ! RYisinscribed in a path :[a;b ! RY if there exists a
subdivisiona= %< 1< < @1 =psuchthat Xk= (X forall0 k q+1.

The total curvature (; [a;h]) can be de ned for an arbitrary curve , as the supre-
mum of ( ; [a;b]) over all polygonal curves inscribed in . When is twice contin-
uously di erentiable, this coincides with the previous de nition of the total curvature,
see Chapter V of [AR89] for more background.

Tropical lower bounds on the curvature of a de nable family of paths

Now consider an interval fa;l of R and :[a;b! K9Ya pathin K9. Since the elements
of K are real valued functions, the path parametrizes a family of paths inRY. For a
xed real number M letusdenethemap :(M;+1) [a;b! RYby (t; )= ( )(t).
For eacht large enough, (t; ) parametrizes a path in R%. We now derive lower bounds
on the total curvature of the paths (t; ) using T =val( ).

Lemma 8.16. Let :[a;b! K9beapathinKdand ;< ,< jthree scalars in the
interval [a;l]. Suppose that T =val( ) satis es :

max [( 1)< max {( 2)< max [(3); and argmax [( 2)\argmax {( 3)=;:
1id 1id 1id 1i d 1 d

Then,
tllilm \ (1) (6 2) (6 3)= 5
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Proof. By de nition of the valuation map, for all > 0 small enough, we have the

inequalities
t7O " () tTO*" foralli2[dand 2 [aH:

For k = 1;2;3, let my be the maximum of the entries of T( ), and denote I :=
argmax, ; 4 ( «). Also denote by

m? :=maxf [( «)ji2[dnlkg
the value of the second maximal coordinate of T( ). We can choose' > 0 such that

m;>mq+3"
my>m9+3":

Consider the vector = ( ?) (1), and anyi 2 I,. By our choice of", we have
m, > T( 1)+3". Consequently, we can bound the norm of as follows:

P (i) Teoi ot it
M2 (1t M2t (127
t" @t

Now consider the normalized vector := =k k. By our choice of", forany j 2 [d]nl,
we have:

mz> [( 1)+3"

my> J( 2)+3":
Consequently, for anyj 2 [d]nl, the component j of the normalized vector satis es:

th( 2" 4t T+  ma+ T 22" +t M2t TC 2 o " 2

P —=mea o0 1t It t 1

Consequently, ;(t) tends to O ast tends to innity for j 2 [d]nl,. Observe that
the mapt! (t)is de nable in the polynomially bounded structure RR. Sincej j =1,
we deduce that (t) has a limit (1) ast tends to in nity. Clearly, ;(1 ) =0 for all
j2[dnl,.

Similarly, let = ( 3) (2)and = 5 j. We deduce that ;(1 ) =0 for all
j 2 [dlnl3, where (1) denotesthelimitoft?7! (t)ast!l . Asl,\ I3=;, we have

(1) (1)=0. We deduce that

dm (6 1) (6 2) (6 g)=lim arccos((t) (1) =arccos( (1) (1))= 5 : 0
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We de ne the combinatorial angle\ ¢ T( 1) T( 2) T( 3)ofthe points T( 1), T( 2)
and T( ) to be 1 if the conditions of Lemma[8.16 are satis ed. Otherwise, the com-
binatorial angle is de ned to be 0. Given a subdivisiona = ¢ < < g1 = bofan

VO Tk 1) TCw) T( ken)
k2[d]

Finally, we de ne the total combinatorial curvature of T over the interval [a; ], denoted

interval [a; b.
Theorem 8.17. For all real numbers a < b, we have
i - Y-[a- cr T.rq- .
Jim (6 )i [asH) ( lab)s
Proof. Consider any subdivisiona = ¢ < < q1 = b By Lemma [8.1§, for all
k 2 [q], we have:
JmA (k1) (6 W) (6 k) VTl D) TCR) T )7
It follows that,
. X -
Jim (6 ) [asd) ImA (@ k) (€ ) (6 ke)
' K21dl '

VE Tk ) TCR) T ke)
k2[d]

Finally, the conclusion of the theorem is obtained by taking the maximum over all
subdivisions. O

In general, the information provided by the valuation may not be enough to infer
the total curvature, and so, the bound of Theorem[8.1} is not expected to be tight in
general.

8.3.3 Application to the counter-example

Given any integerr 1, the Hardy linear program LP , gives rise to a family real linear
programsLP ((t) for t large enough, that are parametrized byC(t; ). With the notation
of Lemma[8.2, we de ne a path

C:R! (K3 k' k™
70 u ;v iz (29 :h where =t

Hence,C(t; ) = C()(t) parametrize the central path of LP ,(t).
We rst analyze the curvature of the (u;v) components of the central paths. We
dene to be the projection of C on the (u;v) components.
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Theorem 8.18. We have

m (€02 @ D¢

Proof. Consider the subdivision 0 = § < < = 2given by = 4k=2" for
k =0;:::;2". can readily check from Proposition[8.18 that the combinatorial angles
Ve T T T(2), ...,V ¢ T( o 2) T( > 1) T( o) are all equal to one. Actu-

ally, the maximum of the coordinates of T( ) is attained alternatively by the compo-
nents u, and v;, depending on the parity of k, and it is a strictly increasing function of
k. Then, the conclusion follows from Theoren{ 8.1]7. O

We now turn to the whole central path C of LP ,(t).

Theorem 8.19. We have
i -\ 10O r 1 .
t|!Ilm (At ) 06,2) (2 1)2 :

Proof. Dene now | = 4k=2", for k = 0;:::;2" 1. It easily follows from Proposi-

orem[8.17. O
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Chapter 9

Conclusion and perspectives

In Chapter B} we tropicalized the simplex method. The key idea is to compute the sign
of a polynomial by tropical means. This idea could lead to the tropicalitation of other
kinds of algorithms, even unrelated to linear programming. More precisely, one could
tropicalize in this way any semi-algebraicalgorithm, i.e., that rely only the signs of poly-
nomials evaluated on the input. However, in order to obtain a tropical algorithm which
runs in polynomial time, the polynomials must satisfy some conditions. In particular,
the \size" of the polynomials, measured by the magnitude of their exponents, should
not be too large.

It would also be interesting to consider the quantization of tropical algorithm, i.e., to
apply tropical algorithms to classical problems. Under which conditions does a tropical
semi-algebraic algorithm provide an algorithm for arbitrary classical problems? For
example, the policy iteration algorithm for mean payo games could provide a new
algorithm for classical linear programming. This question is related to the realizability
of classical polyhedra as tropical polyhedra discussed below.

In Chapter ] we used the tropicalization of the simplex method to solve arbitrary
tropical linear program. Our main tool is a perturbation scheme that rely on groups of
higher order rank. Our perturbation transforms an arbitrary problem into a problem
which is generic forany polynomial. Hence, this approach could be used with the tropi-
calization of other algorithms than the simplex method. This perturbation scheme could
have further applications in tropical geometry. In particular, it would be worthwhile to
compare it to the concept of stable intersection.

In Chapter B| we obtain a transfer principle from classical linear programming to
tropical linear programming via the simplex method. We showed that a polynomial
time pivoting rule for the simplex method could yield a polynomial time algorithm
for tropical linear programming. The most natural question is whether the converse
statement holds. From our point of view, this question boils down to the realizability of
classical polyhedra as tropical polyhedra.

Question 9.1. Is any (non-degenerate) classical polyhedra combinatorially realizable as
a tropical polyhedra?

149
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A positive answer to the this question would entail a transfer principle from tropi-
cal linear programming to classical linear programming. This could show that Smale's
problem on the existence of a strongly polynomial algorithm for classical linear pro-
gramming somehow reduces to the NR co-NP problem of tropical linear programming
and mean-payo games. Indeed, Theorenj 5]4 indicates that polynomial algorithms for
tropical linear programming could provide strongly polynomial algorithms for classical
linear programming.

Chapter [§ also presents a class of classical linear programs on which the simplex
method is polynomial in the bit model. This class is obtained by quantization of edge-
improving tropical linear programs. However, it does not seem easy to decide whether a
classical linear program belongs to this class. It would be interesting to study alternative
characterizations of these problems. Since the simplex method is polynomial on this
class of instances, this suggests that polyhedra with large diameter doot belong to
it. Moreover, given such a classical instance, one can ask for a way to compute the
corresponding tropical problem. Indeed, this would permit to use the tropical simplex
method to solve these classical instances.

The tropicalization of the shadow-vertex rule in Chapter [§ allowed us to derive the
rst algorithm with a polynomial average-case complexity for mean payo games. The
shadow-vertex rule is used in several signi cant results. Can we tropicalize the ran-
domized polynomial-time algorithm of Kelner and Spielman [KS06]? Or the smoothed-
complexity result of Spielman and Teng [ST04]?

In Chapter [/} we proposed an e cient implementation for the tropical pivoting oper-
ation and the computation of tropical reduced costs. These procedures us@(n(m + n))
tropical operations for a linear program described bym inequalities on n variables. It
would be interesting to take advantage of sparsity. Preliminary results indicate that
these procedures could be implemented i©(k + mlog(m) + n) operations, wherek is
the number of non 0 entries of the input.

Finally, in Chapter 8]we studied the tropicalization of the central path. We showed
that the tropical central path has a geometric description, and that it may coincide
with a run of the tropical simplex method. This could lead to a \central path" pivoting
rule for the simplex method. We also disproved the continuous analogue of the Hirsch
conjecture by exhibiting a family of real linear programs constrained by 3 +4 inequalities
in dimension 2r +2 with a total curvature of  (2"). This family is parametrized by a real
numbert that must be large enough. A necessary next step is to bound the minimal value
of t for which the total curvature is  (2"). Preliminary results indicate that t =272 is
enough. An interesting question is also to what extent the total curvature can be worse
than (27)? Can we obtain a total curvature of (22'), or even of arbitrary tower of
exponentials? A step in this direction would be to carry the idea underlying the tropical
linear program used in Chapter[8 over to tropical semirings of higher rank, and then lift
to the Hardy eld of the structure Reyp.
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