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En premier lieu, j’aimerais adresser mes remerciements à mon directeur de thèse, Olivier DRAPIER.
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ces trois années. Parmi ceux-ci, j’aimerais particulièrement remercier Frédéric FLEURET et Pascal
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Glossary

T2K: The Tokai to Kamioka experiment, a long-baseline experiment studying neutrino oscillation
through the production of muon neutrinos or anti-neutrinos.

INGRID: Interactive Neutrino GRID which is the on-axis near detector of T2K.

PM: The Proton Module, an INGRID-like module where the iron layers are removed.

SK: The Super-Kamiokande detector, which is the far detector from the T2K experiment.

POT: The number of Protons On Target. Number of protons that hit the T2K target.

CG: The Cone Generator setup, a device that generates a ring-shaped light pattern.

MPPC: Multi-Pixel Photon Counter which are the photo-detectors used in the T2K near detec-
tors to measure the charge deposition of a particle going through a scintillator.

TFB: Trip-T front end boards which are the electronics card used in the T2K near detector.

ADC: Analog-to-digital converters that are used to convert the MPPC output into a digital number
that can be stored in a PC.

p.e: The number of photo-electrons, a unit to measure the charge deposit collected and converted in
electrons by the MPPC.

CC: Interaction occuring through the exchange of a charged current (a charged W boson).

NC: Interaction occuring through the exchange of a neutral current (a Z0 boson).

CC0π: A CC interaction without any pion emission out of the interacting nucleus.

SME: The Standard Model Extension, which extend the Standard Model of particle physics by
adding possibility of spontaneous symmetry breaking of the Lorentz invariance.

LV: The Lorentz invariance violation, which is predicted by the SME.
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Introduction

T
he neutrino is a very singular particle among the known elemental constituents. It is the
only matter constituent that interacts through the sole weak interaction. Its story started
in 1896, when Becquerel accidentaly discovered the radioactive decays during his researches

on phosphorescence phenomena [1]. In 1914, Chadwick measured a continuous spectrum of the elec-
trons produced in a radioactive β− decay, which seemed to violate both energy, momentum and spin
conservations [2]. Different solutions were investigated, among which possible violations of the energy,
momentum and spin conservations. In 1930, Pauli postulated the existence of an unseen particle to
“save” these symmetries, the neutrino [3]. This particle should have a spin 1/2, a negligible mass
compared to the proton and weakly interact with matter since it had not been observed so far. In
particular, this particle should carry no electric charge to be invisible by all the existing experiments.
In 1934, Fermi invented the weak interaction theory to describe the β decay and incorporated the
neutrino [4].
This “ghost particle” has been only observed in 1956, by Reines and Cowan observing the antineu-
trino flux produced by the Savannah River reactor [5]. In 1962, a second neutrino type was observed
at Brookhaven [6], which highlighted the existence of electron and muon neutrinos associated to the
charged electron and muon weak interactions. The existence of a third neutrino flavour, the tau neu-
trino associated to the tau particle, has been observed later at the DONUT experiment in 2000 [7].
The LEP experiments have shown that only three neutrino flavours were produced in the Z0 boson
decay [8], which implies that the three νe, νµ and ντ are the only active and light neutrinos.
In the late 1960s, Davis observed the solar neutrino flux in the Homestake mine [9]. A neutrino
deficit was observed as compared to the predictions of the Sun Standard Model. This discrepancy
is known as the “Solar neutrino anomaly”. Among other solutions, a possible explanation was the
disappearance of the observed νe due to an oscillation into other neutrino flavours. This implies that
the neutrino should have a mass, which was not necessary in the original particle Standard Model.
Twenty years later, the Kamiokande and IMB experiments observed also a discrepancy between the
observed and expected flux of neutrino produced in the Earth’s atmosphere. It was in 1998 that the
Super-Kamiokande experiment proved that this atmospheric neutrino anomaly was due to their oscil-
lations [10]. In 2001, the SNO collaboration has definitely shown that the neutrino oscillation solves
the Solar neutrino anomaly, through the observation of the entire flavour content of the Sun neutrino
flux [11]. The neutrino oscillation is parameterised by six quantities: three mixing angles θ12, θ23
and θ13, two independent squared mass differences (∆m2

21, ∆m2
32) and one CP violation phase δCP. The

measurements through solar, atmospheric, reactor and accelerator experiments have measured the four
parameters θ12, θ23, ∆m2

21, |∆m2
32| (which sign is still unknown) but only set an upper limit on the θ13

mixing angle at the beginning of this thesis work. This measurement was crucial since a non zero θ13
value is necessary for any CP violation to happen in neutrino oscillation. The Tokai to Kamioka (T2K)
experiment has been designed primarily in order to measure this last remaining unknown mixing angle
θ13, and possibly constrain the δCP parameter. We will discuss in this thesis how the constraints on this
mixing angle, but also on the CP violation search, are affected by the cross section model uncertainties.

We will introduce the Standard Model of particle physics in order to present the neutrino speci-
ficities in chapter 1. In this chapter, we will especially describe the neutrino oscillation framework,
along with the status of the oscillation measurements before T2K started. In the second chapter, we
will describe the whole T2K experiment. In particular, we will focus on the on-axis near detector
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INGRID, that we have mainly used in this thesis work. We will also provide a description of the T2K
far detector, Super-Kamiokande, a calibration of which has been also peformed in this work. We will
finally introduce T2K oscillation measurements and highlight that the current main systematic error
comes from cross section models.

In the third chapter, we will present the calibration study we have done with the Super-Kamiokande
detector. This study is conducted using a device called “the cone generator”, which we have first stud-
ied before proceeding to a Super-Kamiokande detector calibration. This setup was constructed prior
to this thesis, with the goal to mimic the π0 induced Cherenkov rings to study them in the Super-
Kamiokande detector.
In the fourth chapter, we have conducted a charge calibration of the on-axis T2K detector INGRID
in order to identify the secondary particles that are produced in the interaction of the neutrino in the
detector. In particular, the charge deposition was not calibrated before, and is compulsory to perform
the analyses we will present in chapters 5 and 6.
We have used this calibration in chapter 5 in order to conduct the first double differential cross sec-
tion measurement at the on-axis T2K detector. We have especially studied the neutrino interaction
through quasi-elastic charged current, which is the dominant interaction at the T2K energy and pro-
vides the largest systematic error in the oscillation analyses. In this chapter, we will first introduce
the cross section model basics, in order to highlight the importance of cross section measurements
based on final states of interactions. Secondly, we will present the particle identification we performed
to identify the final state particles, together with the determination of the lepton momentum in this
non-magnetised detector. We will then present the cross section measurement and discuss the result
in the light of the current neutrino interaction models.
In the sixth chapter, we will present the Lorentz invariance violation search we performed at the T2K
on-axis detector. The Lorentz invariance violation is predicted in the theories beyond the current
particle Standard Model. We will introduce in this chapter the very basics of the impact of such a
violation on the neutrino flux detected at the on-axis INGRID detector, and in particular, a time neu-
trino oscillation. We will then present the development we have done to separate the neutrino flavours
at the near detector, and finally present the first Lorentz violation search at the T2K experiment.
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Chapter 1

Neutrinos in the Standard Model and beyond

What I see in Nature is a magnificent structure that we can comprehend only very imperfectly,
and that must fill a thinking person with a feeling of humility.

Albert Einstein

1.1 The Standard Model

T
he Standard Model of particle physics is the current theory that describes both the ele-
mentary matter constituents, the fermions, and their interactions through a unified field
theory. In the current situation, four fundamental interactions are known: the strong, the

electromagnetic, the weak and the gravitational interactions listed by decreasing intensities at low
energy scales (E � 100 GeV). The Standard Model is incomplete, since it only focuses on the first
three interactions, but cannot describe gravitation with the same formalism. The Standard Model is
essentially based on a surrounding Minkowsky spacetime ruled by the Lorentz symmetries. On top of
the spacetime structure, the Standard Model assumes the existence of local symmetries, called “gauge
symmetries”, whose generators are the vectors of the associated interactions. These mediator particles
are called bosons. We will present an overview of the three interactions the Standard Model:

• The “strong” interaction (quantum chromodynamics, “QCD”) is described by the S U(3)c gauge
group. This group has eight generators, that are called gluons. By definition, these generators are
the vectors of the strong interaction. Because of the S U(3) non abelian structure, its generators
do couple to each other. The gluons are massless particles in the Standard Model. Associated
to the three symmetries of this group, three quantities are conserved: the blue, red and green
colours. The denomination of “strong” interaction comes from the high value of the coupling
constant αS , compared to other interactions (see Table 1.1). Since αS ∼ 1, the cross section
estimation through perturbation theory is not as relevant as for other interactions. This is
especially true in the confinement region limit (L ∼ 10−15 m) where large αS values are involved.
A treatment of the non perturbative regime can be undertaken using the lattice QCD theory [12]
.

• The quantum electromagnetic interaction (QED) is described by the U(1)QED gauge group. It
has only one generator, which correspond to the observed photon. Since U(1) has an abelian
structure, the photon does not couple with other photons. Following Noether’s theorem, a
conserved quantity is associated: the electric charge. Since all gauge theories are local by
definition, the electric charge is imposed to be locally conserved by Noether’s theorem. The
intensity of the electromagnetic interaction is ruled by the fine structure constant α = e2

4πε0~c
(at

the tree level) for a particle of electric charge e as the electron (see Table 1.1). As we will see, the
U(1) description of the electromagnetic interaction is a part of a unified electroweak interaction,
which is equivalent to electromagnetism at E � 100 GeV, due to the mass of the weak vector
bosons.
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Interaction Coupling constant value
strong αS (mZ) ∼ 0.1185

electromagnetic α = e2/4πε0~c ∼ 1/137.04
weak GF/(~c)3 ∼ 1.1664 × 10−5 GeV−2

gravitation GN/(~c) ∼ 6.7084 × 10−39 (GeV/c2)−2

Table 1.1: Values of the coupling constants for the four known fundamental interactions. One notices that the
weak and gravitational coupling constants have dimensions. Values extracted from [13].

Fermions bosons
1st generation 2nd generation 3rd generation gauge Higgs( u

d

) ( c
s

) ( t
b

)
8 g

γ h0, h+( νe

e

) ( νµ
µ

) ( ντ
τ

)
Z0, W+, W−

Table 1.2: The particle scheme in the Standard Model.

• The electroweak interaction (EW) is described by the S U(2)L × U(1)Y gauge group. It has four
generators: the W1,W2,W3 bosons for S U(2)L and the B boson for U(1)Y . As in the case of
gluons, the W bosons can couple to each others because of S U(2) non abelian structure. We will
see that the effective vector bosons are not strictly the four mentioned, but stem from a rotation
of them in the four boson space. The effective vector bosons are massive, which limits their self-
coupling at low energy (E � MW) unlike the strong interaction. The three associated conserved
quantum numbers are the weak isospin norm I, its third components I3 and the hypercharge
Y. We will see that the electromagnetic charge can be deduced and constructed from Y and
I3, since the electroweak interaction gathers the description of both electromagnetic and weak
interactions.

Therefore, each particle has a set of quantum numbers that describes how it transforms under
the Lagrangian gauge symmetries, i.e how it couples to the different interactions. On top of that,
the particles and their interactions take place in a flat Minkowsky spacetime. It implies that each
particle also posesses a spin and momentum that describe how the particle transform under spacetime
transformations (respectively rotations and boosts). The vector bosons are integer spin particles,
and follow to the Bose-Einstein statistics that allows them to occupy the same quantum states. A
contrario, the fermions are half-integer spin particles and obey the Fermi-Dirac statistics which is
ruled by the Pauli exclusion principle. At the present time, twelve fermions have been discovered.
The fermions are themselves arranged in two categories: the quarks which are subject to the strong
interaction, and the leptons which are not. Finally, the particles in the sub families are gathered in
weak isospion doublet, to form what is called “generation” or “flavour”. Three generations are known
both in the lepton and quark sectors (see Table 1.2).

A last piece is necessary in the Standard Model puzzle in order to generate the observed W, Z
bosons and fermions masses, without breaking the S U(2)L × U(1)Y Lagrangian symmetry. This is the
Higgs boson. We will give further detail on particle mass generation in Section 1.1.1.
In the Standard Model, the neutrinos are the only particles that are only sensitive to the weak
interactions. We will propose in this thesis a measurement of their cross sections in Chapter 5. Prior
to this, we will first introduce in detail the underlying electroweak interaction, and introduce the
neutrino oscillation phenomenon.

Fermi’s theory of weak interactions

In 1934, Fermi introduced the weak interaction in order to explain the neutron decay (β−) [4]:

n→ p + e− + νe (1.1.1)
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1.1. THE STANDARD MODEL

At this time, the neutrino had not been observed but introduced by Pauli to explain the contin-
uous electron spectrum in this decay [14]. The interaction Lagrangian density was assumed to be
“electromagnetic like”:

L = GF(upγ
µun)(ueγµuνe) (1.1.2)

where the different u are the particle spinors and GF is the Fermi coupling constant that replaces
the electromagnetic charge in these new “weak interactions”. The term “weak” comes from this
interaction cross section is smaller than for electromagnetic interactions at low energy (E � mW =

80.385 ± 0.015 GeV) which is theoretically due to the lower value of GF compared to electromagnetic
constant e (see Table 1.1). In Fermi theory, interactions were assumed to be point-like. In reality,
they can be described through the propagation of W+/− bosons, which can be well approximated by
a point-like interaction at low energy (E � mW) considering their large mass. This explains why
the Fermi coupling constant has a dimension, since it contains both the actual dimensionless weak
coupling constant (gw) and the W boson propagator which is approximated by a point-like interaction.

Weak interactions (maximal) parity violation

In 1956, Lee and Yang [15] suggested that this weak interaction does not behave as the others under
spatial parity transformation in order to solve the θ − τ puzzle. This puzzle corresponded to the
observation of two particles having very similar properties (same mass and lifetime) but which decayed
differently through the weak interaction. These particles are now known to be the very same charged
kaons, that can decay through (positive kaon):

θ+ → π+ + π0 and τ+ → π+ + π+ + π−. (1.1.3)

The two final states have opposite parities. The hypothesis of a similar particle that decays through an
interaction that violates parity conservation was not obvious at that time. As all the other interactions
were conserving parity, parity conservation was assumed to be an universal symmetry. Parity violation
would indicate that the weak interaction distinguishes left from right, i.e different conclusions would
emerge from an experiment and its image in a mirror.
In the very same year, the experimental evidence was shown by Wu’s experiment who observed the
weak decay of a polarised 60Co nucleus [16]. Not only Wu confirmed the Lee and Yang hypothesis,
but also tend to observe a maximal violation of the parity symmetry in weak interactions. Namely, if
an interaction occurs, its mirror image is totally supressed. More precisely, Wu has shown that the
electrons emitted in 60Co decay populate the angular region corresponding to a negative helicity state
(defined in following section). This has lead to re-formulate Fermi’s theory.

The chirality of fermions

The weak interaction ability to discriminate between left and right now imposes to know the particle
left or right nature (”handedness”). A new quantum number, the ”chirality”, is therefore introduced
for each particle. Two chirality states are possible: the left- (L) and right- (R) handed chiralities. The
chirality is defined using two projectors PL, PR based on the γ5 Dirac matrix:

PL =
1
2

(I − γ5) and PR =
1
2

(I + γ5). (1.1.4)

The Dirac matrices commutation directly implies that PLPRψ = 0 (a left particle has no right compo-
nent). It follows that a fermion field can be written with a left-only and right-only component:

ψ = ψL + ψR = PLψ + PRψ (1.1.5)

Note that this number is not an ”intrinsic” quantum number of the particle, i.e a Lorentz- and time-
invariant quantity of the particle, as can be the charges that derive from gauge symmetry (electric
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charge, isospin, colour...) applying Noether’s theorem. The chirality transformation operates sep-

arately on the left and right fermions representation changing the fermion field: ψL → e−iγ5
ψL and

ψR → eiγ5
ψR. The fermion mass term from the Dirac Lagrangian is:

Lmass
D = −

m
2
ψψ =

m
2

(ψLψR + ψRψL) (1.1.6)

since PLPR = 0. The mass term chirality transformation leads to a residual phase, showing that any
massive fermionic particle has not a definite chirality: the mass mixes the right and left chirality
states. Since the Lagrangian is not conserved, it implies that the chirality evolves with time for a
free particle. However, one shows that the chirality operator commutes with the rotation and boost
generators, which guarantee that the chirality is Lorentz-invariant.
It was tempting at that time to identify the particle handedness with its helicity. A particle helicity
is given by its intrinsic angular momentum projection h =

~p · ~s
|~p| with p and s the fermion momentum

and spin. Applying the parity transformation, the helicity becomes: hMirror =
~−p · ~s
| ~−p| = −h which makes

the helicity an ideal candidate for the quantum number that would define handedness. However, the
helicity is not Lorentz invariant in general: for a massive particle, one may always finds a reference
frame more boosted than the particle to observe a different momentum direction and a similar spin.
This cannot be done with a massless particle, and one demonstrates that the chirality and helicity are
the very same quantity in this case. As the weak interaction concerns not only massless particles, one
absolutely wants it not to vary with the referential. Therefore, the weak interaction theory must be
constructed with the chirality instead. However, the helicity is a useful quantum number since chirality
cannot be directly observed. For the electrons of the Wu experiment (∼ 1 MeV), their high energy
compared to their mass tends to make them quasi ultra-relativistic and one can therefore identify the
negative helicity states observed as left-handed chirality. For a massive particle, helicity and chirality
are very distinct numbers: the first is time conserved for a free particle but is not Lorentz invariant
while the latter is but is not conserved with time or through weak interaction.

V-A structure of weak interactions

The Fermi interaction can be modified to take into account the experimental observation that weak
interactions maximaly violates parity. The observations having shown that only the left-handed parti-
cles (and right-handed antiparticles) couple with the weak interaction, the structure is simply changed
to:

L = GF(upLγ
µunL)(ueLγµuνeL) (1.1.7)

= GF(upγ
µ 1

2
(I − γ5)un)(ueγµ

1
2

(I − γ5)uνe) (1.1.8)

This structure is called vector-axial (“V-A”) due to the additional axial γµγ5 current to the vector γµ

current, the latter being the only one observed in the strong and electromagnetic interactions.

Electroweak unification

In the 60s, Glashow, Salam and Weinberg have shown that the weak and the electromagnetic inter-
actions can be described as effective low energy theories of a unified electroweak interaction. This
interaction is based on the group symmetry S U(2)L×U(1)Y . The original Standard Model electroweak
Lagrangian is therefore composed of interactions transported by the three W bosons from S U(2)L

gauge group and the B boson from U(1)Y gauge group. The W bosons couple the left-handed particles
(and separately, right-handed antiparticles) with the gw coupling constants, while the B boson does
not discriminate between chirality and couple the particles with the coupling constant gB.

We’d like then to deduce the electromagnetic coupling constant α, the electric charge and the
photon Aµ from the electroweak coupling constants, conserved quantum numbers and vector bosons
respectively. We’d also like to retrieve the W+

µ and W−µ vector bosons of the weak interactions. One

shows that these two can be deduced by a linear combination of the W1
µ and W2

µ electroweak fields:

W±µ =
1
√

2
[W1

µ ∓ iW2
µ] (1.1.9)
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1.1. THE STANDARD MODEL

These fields represent the vector bosons of the weak charged current interaction (CC) that had been
presented before. The point-like interaction through GF is replaced by a vertex whose coupling constant
is gw and a W±µ propagator:

GF
√

2
→

g2
w

2
× i
−gµν + qµqν/M2

W

q2 − M2
W

(1.1.10)

which is equivalent when the boson momentum (q) is negligible with respect to MW , to:

GF
√

2
=

g2
w

8MW2
(1.1.11)

As for the photon, it cannot be the B field since the latter couples with electromagnetic neutral
particles (neutrino). However, it can neither be the charged W bosons, nor the W3 since the latter also
couples to neutrino (since it is a doublet of the whole S U(2)L). In fact, the photon is a linear combi-
nation of the neutral fields W3 and B. A rotation of the two fields within a “Weinberg base” defines
the photon, and inevitably another vector boson. A striking confirmation of the electroweak unifica-
tion was observed at the Gargamelle experiment in 1973, who observed the neutrino neutral current
interactions [17]. The associated boson Z0 has been only observed in 1983 at the UA1 experiment [18].
The Weinberg rotation is defined by the Weinberg angle θw:(

Aµ
Zµ

)
=

(
cos θw sin θw

− sin θw cos θw

) (
Bµ
W3
µ

)
(1.1.12)

The vector currents of the electroweak interaction Lagrangian can also be re-written in order to retrieve
the electromagnetic one. Starting from the electromagnetic current, one shows that the difference
with the charged current creates a residual current that is exactly the contribution of the hypercharge
current (can be deduced only if the isospin, charge and hypercharge of each particle is known):

jµQED − jµ3 =
1
2

jµY (1.1.13)

Using Noether’s theorem, it directly follows the Gell-Mann-Nishijima [19] relation between the con-
served quantities:

Q = I3 +
Y
2

(1.1.14)

The basic idea of the Lagrangian re-writing that allows to express the electromagnetic interaction from
the electroweak interaction is to maintain electromagnetic equal coupling for the left- and right-handed
fields of the fermions. No parity violation has been observed in the electromagnetic interactions, and
therefore, the left- and right-handed fields of the same fermion have the same charge and coupling
constant. From this constraint, one deduces the fundamental relation in the re-writing of the Lagra-
gian:

gw sin θw = gB cos θw = α (1.1.15)

Considering cos2 θw +sin2 θw = 1, we obtain the electromagnetic constant from the electroweak coupling
constants only (no role of the Weinberg angle anymore):

α =
gwgB√
g2

w + g2
B

(1.1.16)

and deduce the Weinberg angle from the coupling constant only:

cos θw =
gw√

g2
w + g2

B

, sin θw =
gB√

g2
w + g2

B

(1.1.17)

On top of retrieving the electromagnetic constant, we observe that the Weinberg angle is not an
additional parameter in the Standard Model but is fixed by the coupling constants. As we have
explained, this directly comes from the fact that the Weinberg angle is fixed by the observation of
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α CV CA

νe, νµ, ντ
1
2

1
2

e, µ, τ − 1
2 + 2 sin2 θw − 1

2
u, c, t −1

2 −
4
3 sin2 θw

1
2

d, s, b −1
2 + 2

3 sin2 θw − 1
2

Table 1.3: Vector and axial coupling coefficients that rules the fermions coupling with the Z0 boson.

parity conservation in the electromagnetic interactions. The remaining Lagrangian part that does not
belong to the electromagnetic or the weak charged current interactions corresponds to the neutral
coupling constant to the Z0 boson:

gNC =
gw

cos θw
=

√
g2

w + g2
B (1.1.18)

Charged and neutral current interactions

The CC interactions only occurs for left-handed states. On the contrary, the neutral current interac-
tions both affect the right and left-handed components due to their mixing with U(1)Y . However, on
the contrary to the electromagnetic interaction, the neutral current coupling constant differs for the
left and right-handed states of a particle. Parity is neither a symmetry of neutral current interactions,
nor maximally violated by them. For this reason, we define the coupling coefficients CV and CA (see
Table 1.3) to adapt the maximal violation terms of the charged current interactions (I − γ5) into the
general form (CV − γ

5CA) for the neutral current interactions. The two Lagrangian densities can be
written as:

LW
int = −

∑
α=e,µ,τ

gw
√

2
([ν′αγ

µ 1
2

(I − γ5)α′]W−µ + [αγµ
1
2

(I − γ5)ν′α]W+
µ ) (1.1.19)

LZ0

int = −
∑

α=e,µ,τ

gw

cos θw
[ν′αγ

µ 1
2

(Cα
V −Cα

Aγ
5)ν′α + α′γµ

1
2

(Cα
V −Cα

Aγ
5)α′]Z0

µ (1.1.20)

We will bring more details about these interactions in the Chapter 5 of this thesis where we will study
the charged current interactions of a muon neutrino. From this point, we will distinguish the fermion
mass and flavour states. The electroweak interactions occuring through the flavour states, we will
denote the flavour basis with a “ ’ ”. This notation has been omitted from the start but will now
always be used.

1.1.1 Generation of bosons and fermions masses

Boson masses in the standard model

The Standard Model Lagrangian is based on exact gauge theories. In fact, the introduction of a mass
term for any vector boson explicitely breaks the gauge invariance. The weak interaction therefore
intoduces a problem since the W and Z boson masses have been observed respectively at 80.385 ±
0.015 GeV and 91.1876 ± 0.0021 GeV [13]. In order to maintain the Lagrangian gauge symmetries, a
spontaneous symmetry breaking was proposed to explain the weak gauge boson mass. “Spontaneous
symmetry breaking” does not mean that the Lagrangian loses its symmetry properties, but that only
its solutions break them (here at low energy). This mechanism was proposed in 1964 by Brout,
Englert [20] and Higgs [21]. The Standard Model original Lagrangian is completed through the
introduction of a S U(2)L complex doublet Higgs field:

Φ(xµ) =

(
φ+(xµ)
φ0(xµ)

)
(1.1.21)

where φ+ (I3 = + 1
2) and φ0 (I3 = − 1

2) are respectively a positively charged and a neutral scalar
field. This form is imposed due to the fact that a doublet immediately requires two states with one
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e charge difference (W± transition) and we need these fields to have a neutral electric charge. The
broken solution will be along this neutral component in order not to affect the photon and give it a
mass. Following the Gell-Mann-Nishijima formula, the whole Higgs doublet has an hypercharge Y = 1.
The Higgs doublet is added to the Lagrangian Standard Model through:

LHiggs = (DµΦ)†(DµΦ) − V(Φ†Φ) (1.1.22)

where Dµ is the covariant derivative that takes into account weak gauge boson transformation to
maintain S U(2)L ×U(1)Y invariance. The coupling of the Higgs boson with the electroweak boson will
come through this term. V is the potential defined by:

V(Φ†Φ) = µ2(Φ†Φ) + λ(Φ†Φ)2 (1.1.23)

where λ is the autocoupling constant of the Higgs field and µ is a function of the Higgs field mass

which is ordinary defined in the Lagragian by
m2

h
2 Φ†Φ which implies mh =

√
−2µ2 with µ2 < 0 and mh

the mass of the Higgs boson. The potential is shown for a U(1) field φ instead of the S U(2)L field
Φ in Figure 1.1. The symmetry is broken due to the Higgs field falling in the potential minimum to
minimise its energy.

Figure 1.1: A Higgs-like potential in the case of a U(1) spontaneous symmetry breaking.

The minimum can be obtained deriving Eq 1.1.23 in S U(2)L and corresponds to the radius defined

by the potential of v2 ≡ 2 · Φ†Φ =
−µ2

λ (the factor 2 comes from normalisation). The value v is the
so-called vacuum expectation value (VEV) and corresponds to the ground state (vacuum) energy. The
Higgs field ground state is no more Φ0 = 0 but:

Φ0 =
1
√

2

(
0
v

)
(1.1.24)

where the VEV only affects the second component φ0 and not φ+ since the universe vacuum is ex-
perimentally electrically neutral as far as we know. Moreover, if the component along φ+ is broken,
the electromagnetic interaction symmetry U(1)QED should be somehow broken and the photon would
have a mass, which contradicts the observations. Note that the three other components (Im(φ0),Re(φ+)
and Im(φ+)) where symmetry is unbroken are the Goldstone bosons. They are essential in the Higgs
mechanism since they will be elegantly re-absorbed by the three massive bosons (W+, W− and Z0) as
their third spin component, since the original massless particles have only two spin components. The
impact of the Higgs mechanism on the whole Lagrangian is done by changing the Higgs field Φ into:

Φ(xµ) =
1
√

2

(
0

v + h(xµ)

)
(1.1.25)

11



CHAPTER 1. NEUTRINOS IN THE STANDARD MODEL AND BEYOND

where h is the physical Higgs boson. In this thesis, we will not go through the whole re-writing of
the Standard Model Lagrangian implementing the spontaenous symmetry breaking (it can be found
in [22]), but we will directly give the W and Z bosons masses that naturally emerge from the covariant
derivative coupling of the Higgs to the vector bosons:

mW =
gwv
2

and mZ =
gwv

2 cos θw
=

mw

cos θw
(1.1.26)

Fermion masses in the Standard Model

In the minimal Higgs mechanism we have introduced, the Higgs only couples with gauge bosons to
restore the Lagrangian gauge invariance. But the fermion masses only occur in the Lagrangian through
the mass term that couples the right and left-handed components of the fermion field (Eq 1.1.6). As
we have seen, the right-handed ψR components are singlets while ψL are doublets of the electroweak
interaction. It follows that the mass term is not invariant under S U(2)L transformations, i.e. is not
gauge invariant. On top of generating the boson masses, the Higgs field we introduced allows to
generate fermion masses while maintaining the Lagrangian gauge invariance. We will only focus on
the lepton masses though the same process could be similarly applied to quarks. In order to simplify
the notations, we denote the left-handed doublet as:

L′αL ≡
(
ν′αL

α′L

)
where α = e,µ, τ (1.1.27)

where ν′αL is the α flavour neutrino left-handed field (I3 = +1/2, Y = −1) and α′L the α-flavour fermion
left-handed field (I3 = −1/2, Y = −1). Note that these fields are the flavour fermion fields, described
using a ′ to distinguish them from the mass states. The singlet right-handed fields can be denoted as:

(ν′αR) , (α′R) with α = e, µ, τ (1.1.28)

Since they are singlets, the right-handed fields are isospin state I = 0 =⇒ I3 = 0. However, the
right-handed lepton has a negative electric charge, while the neutrino is neutral. From Gell-Mann-
Nishijima relations, it follows Yα′R = −2, while Yν′αR = 0. The right-handed neutrino is therefore sterile:
it does not couple with the W, Z and γ explicitely, nor with the gluons since it is a lepton. In the
strict definition of the Standard Model, as no neutrino mass has been observed, there is no need to
add a sterile right-handed neutrino field. In a first place, we consider that the neutrino is massless,
and no right-handed neutrino fields.
The lepton mass term is generated through an additional coupling with the Higgs boson (replacing
the mass term) through a Yukawa coupling [23]:

LYukawa = −
∑

α,β=e,µ,τ

(g′αβL′αL Φβ′R + g′αβ
∗α′RΦ†L′βL ) (1.1.29)

where g′αβ is the coupling matrix between the right and left-handed field. This matrix is a complex
3 × 3 matrix which is not diagonal in general due to possible differences between flavour (interaction)
and mass states of a lepton field. The Yukawa coupling term is invariant under S U(2)L × U(1)Y

transformations: the Higgs field is also a doublet of the electroweak interaction that can form a
S U(2)L singlet with the fermion field and has the hypercharge Y = +1 that cancels with the YLαL

= 1
and YβR = −2 to guarantee the U(1)Y invariance. One observes that the Higgs boson hypercharge
that has been set to guarantee no mass to the photon fits elegantly with the need to preserve gauge
invariance in fermion couplings. The lepton masses are then generated from the Higgs potential
symmetry breaking we explained, and their Yukawa couplings become:

LYukawa = −(
v + h
√

2
)

∑
α,β=e,µ,τ

(g′αβα
′
Lβ
′
R + h.c) (1.1.30)

where we can clearly observe the contribution of the VEV that will generate the lepton mass, and
the trilinear Higgs coupling with leptons. In order to exhibit the lepton masses, we will rotate the
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Lagrangian from the flavour to the mass state basis where the g′αβ matrix is diagonal by definition.
To simplify the rotation, we will re-write the lepton fields as a vector in the flavour and mass basis:

LYukawa = −(
v + h
√

2
)gl′Ll′R + h.c with l′L/R ≡


e′L/R
µ′L/R
τ′L/R

 (1.1.31)

We will denote lL/R the left- and right-handed lepton vectors in the mass states. As we discussed, this
basis is defined by the diagonality of the Yukawa coupling matrix. Its diagonalisation leads to the
mass eigenvalues that define the left and right transfer matrices V l

L/R:

g =

ge 0 0
0 gµ 0
0 0 gτ

 and g = V l†
L g′V l

R (1.1.32)

Though left and right components are mixed in the mass state, the rotation to flavour state is different
because they are not affected by the same interactions. Therefore, the left and right transfer matrices
are not the same. In the mass-states basis, the Yukawa coupling becomes:

LYukawa = −(
v + h
√

2
)glLlR + h.c (1.1.33)

where:

lL = V l†
L l′L and lR = V l†

R l′R. (1.1.34)

The Lagragian can be expanded for each flavour due to g matrix diagonality and finally provides
the lepton mass terms:

LYukawa = −
∑

α=e,µ,τ

vgα
√

2
(lαLlαR + lαRlαL) −

∑
α=e,µ,τ

gα
√

2
(hlαLlαR + hlαRlαL). (1.1.35)

The electron, muon and tau are rather defined by their kinematics and their masses, than through
their electroweak interactions. For this reason, we will prefer to define the mass states as the actual
lepton fields:

le ≡ e, lµ ≡ µ, lτ ≡ τ. (1.1.36)

The mass term definition of Eq 1.1.6 is therefore retrieved through a gauge invariant term. The lepton
masses are therefore given through their Higgs coupling constants and the vev:

mα =
gαv
√

2
with α = e, µ, τ (1.1.37)

We only went through this whole process for the charged leptons. The neutrinos are neglected since
they are massless, which implies that the Yukawa coupling matrix is null. We re-write Eq 1.1.20 in
the mass state basis of the charged leptons:

LW
int = −

∑
α=e,µ,τ

gw
√

2
([ν′αγ

µ 1
2

(I − γ5)V l
Lłα]W+

µ + [lαV l†
L γ

µ 1
2

(I − γ5)ν′α]W−µ ) (1.1.38)

LZ0

int = −
∑

α=e,µ,τ

gw

cos θw
[ν′αγ

µ 1
2

(Cα
V −Cα

Aγ
5)ν′α + łαγµ

1
2

(Cα
V −Cα

Aγ
5)łα]Z0

µ. (1.1.39)

We remark the neutral current interaction is the same in the flavour and mass states. This is expected
since this interaction is not sensitive to the lepton flavour.
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1.1.2 Neutrino masses in the extension of the Standard Model

As we will describe in Section 1.2, it has been experimentally confirmed in 1998 in Super-Kamiokande
that neutrinos oscillate. As discussed in the same Section, this is only possible if the neutrinos
are massive. In this case, right-handed neutrino fields can be added to the Lagrangian as for charged
leptons. These right-handed neutrino fields have no electric charge, are singlets of the weak interaction
(since right-handed) which leads to a null hypercharge using Gell-Mann-Nishijima relation. Since they
are leptons, it means these neutrino right-handed fields are not sensitive to any interaction, except
the gravitation. They are therefore called “sterile”. As was done for the charged leptons, we will now
discuss how massive neutrino fields can be added without explicitely breaking the gauge invariance.
We will see that the neutrino may acquire mass not only through the classic Higgs generation of a
Dirac mass we have already seen, but also through Majorana mass generation. This feature is only
possible for neutrinos which are the only known electrically neutral fundamental fermions.

Neutrino Dirac mass

This case is exactly symmetric with respect to what has been done for other fermions. The very
same deduction can be applied, defining an original right-handed neutrino flavour state on top of the
existing left-handed one:

ν′R ≡


ν′eR
ν′µR
ν′τR

 and the pre-existing ν′L ≡


ν′eL
ν′µL
ν′τL

 (1.1.40)

The exact same procedure leads to the neutrino mass states |ν1〉 , |ν2〉 , |ν3〉 defined by the neutrino
Yukawa coupling matrix that differs from charged lepton one (different masses):

gν =

g
ν
1 0 0

0 gν2 0
0 0 gν3

 and gν = Vν†
L g′νVν

R (1.1.41)

were the transfer matrices Vν
L/R are given by the mass eigenstates components in the flavour basis:

νR = Vν†
R ν′R ≡

ν1R

ν2R

ν3R

 and the pre-existing νL = Vν†
L ν
′
L ≡

ν1L

ν2L

ν3L

 (1.1.42)

The diagonalisation provides the neutrino mass state values according to the Higgs VEV and their
Yukawa coupling:

mi =
gνi v
√

2
with i=1,2,3 (1.1.43)

which leads to modify the interaction Lagrangian Eq 1.1.39 into:

LW
int = −

∑
α=e,µ,τ

∑
i=1,2,3

gw
√

2
([νiVν†

L γ
µ 1

2
(I − γ5)V l

Lłα]W+
µ + h.c)

= −
∑

α=e,µ,τ

∑
i=1,2,3

gw
√

2
([νiU†PMNS γ

µ 1
2

(I − γ5)łα]W+
µ + h.c)

LZ0

int = −
∑

α=e,µ,τ

gw

cos θw
[ναγµ

1
2

(Cα
V −Cα

Aγ
5)να + łαγµ

1
2

(Cα
V −Cα

Aγ
5)łα]Z0

µ

(1.1.44)

defining the Pontecorvo-Maki-Nakagawa-Sakata matrix as:

UPMNS = Vν
LV l†

L (1.1.45)

which is in fact the 3 × 3 transfer matrix from the lepton flavour basis to the neutrino flavour one.
Therefore, a charged lepton does not interact with a neutrino massive state, but with a linear com-
bination of the massive states that define a flavour state. The very same effect occurs in the quark
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sector, through the CKM matrix (Cabbibo-Kobayashi-Maskawa) but within the d, s, b components i.e
the isospin I3 = −1/2. This is equivalent in the quark sector to describe this mixing with the I3 = +1/2
components, but unfortunately, the convention is the opposite and has been chosen before the lepton
sector. In the lepton sector, the convention was chosen differently given the very large masses of the
charged lepton component compared to the neutrino one, that prevent the first to reasonably oscillate
at observable large distances (on top of the difficulty to identify a charged lepton weak interaction to
project on flavour state).

Neutrino Majorana mass

The neutrino Dirac mass generation requires an additional right-handed neutrino field, that cannot
be observed except in gravitational effects. On top of this, the mass ratio between two states of a
isospin doublet is 105 at least (for the νe and e) in the lepton sector. This is very particular to leptons
since the mass of the two components of the first generation quark doublet are within the same order
of magnitude, in the case of the up and down quarks. This will require the Yukawa coupling to be
several orders of magnitude lower for the neutrinos than for any other existing particle. This gap is
not seen for the charged leptons and for the quarks, which tends to outline that the neutrino mass
generation process could be different than for the other particles. In fact, Majorana has shown [24]
that the propagation of a spin 1/2 fermion is not necessarily described by the Dirac equation. In fact,
in the latter, the particle is a four components (which are scalar and complex) spinor:

ψ =

(
ψL

ψR

)
=


ψL(+1/2)
ψL(−1/2)
ψR(+1/2)
ψR(−1/2)

 (1.1.46)

The description of a particle with only a two-component spinor (Weyl spinor), ψL for example, only
holds for a massless particle since the Dirac mass term couples ψL and ψR (Eq 1.1.6). Majorana has
shown that the right- and left-handed components are not necessarily independent, but that one can
be obtained from the other through particle-antiparticle conjugation:

ψR = ηψc
L = η′CψL

T
(1.1.47)

where C is the charge conjugation matrix, ψc
L is the ψL field antiparticle conjugate, and η is a Majorana

phase whose choice has no impact on observations, and will be then chosen as η = 1. This leads to
the antiparticle conjugation:

ψR = ψc
L = CψL

T
(1.1.48)

Assuming the observed conservation of electric charge, the Majorana description can therefore only
hold for a neutral elementary particle, since the electric charge of ψR and ψL are opposite. The only
elementary fermionic particle that matches this neutrality requirement is the neutrino. For a neutrino
field ν, its four degrees of freedom in the Dirac description now become:

ν = νL + νR = νL + νc
L (1.1.49)

which implies that only the two components of the νL spinor describe the neutrino. The Eq 1.1.49
implies therefore that:

ν = νc (1.1.50)

which means the neutrino is its own antiparticle. This unique feature among the leptons is only
seen in the boson sector for the neutral photon and the Z0 bosons. The two unobserved νR degrees
of freedom are removed, which simplifies the neutrino description and follows elegantly the Occam’s
razor assumption, at least in the present state of observations since we cannot experimentally probe
the gravitational interactions of neutrinos. The Majorana description contains both the left-handed
neutrino and right-handed neutrino behaviours. The Dirac mass term of Eq 1.1.6 can therefore be
changed in the Lagrangian to the Majorana description:

LL
M = −

1
2

ML(νc
LνL + νLν

c
L). (1.1.51)
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This Lagrangian obviously breaks the S U(2)L gauge invariance i.e the isospin conservation by a factor
of two. This was also the case for the Dirac description, but we have shown that the Higgs isospin scalar
doublet allows to maintain the Lagrangian isospin symmetry. In the case of the Majorana description,
one shows that the same scalar doublet cannot be used. Taking for example the hypercharge quantum
number, we have seen that the Higgs field hypercharge is YΨ = 1, while YνL = −1. If we re-write the
mass term in Eq 1.1.51 with a similar Yukawa coupling to the Higgs field as for the Dirac description,
we obtain:

LL
M ∼ gMa joranaνc

LΨνL + h.c (1.1.52)

which has a total hypercharge YLM = +1 which also violates the UY invariance. One shows [25] that
the addition of a new Higgs isotriplet (that can be generated from two Higgs doublets for example) on
top of the existing Higgs can solve this issue, at the cost of changing the VEV due to the new Higgs
potential broken symmetry. This would modify the W and Z boson masses which are measured with
high accuracy, and therefore, is only possible if the VEV of the new Higgs field (u) is smaller than the
existing uncertainties on the Z0 and W± masses (∼ 1 − 10 MeV).
Independently from any Higgs mechanism, we observe also that the lepton number conservation is
violated in the Majorana Lagrangian (Eq 1.1.51). Applying the lepton global symmetry νL → eiθνL,
one deduces this conservation is violated by a factor two. This violation should be very small due to
the neutrino mass, and is actively searched for especially in neutrinoless double beta decay searches. It
is interesting to mention that this scenario occurs in the Grand Unified Theories that try to unify QCD
with electroweak interactions at higher energy. In particular, the number of leptons and baryons are
not separately conserved, but their difference is (L − B) which can be interpreted as a global “matter
(fermion) conservation”.

The see-saw mechanism

Given the Majorana and Dirac descriptions of the neutrino we discussed, the neutrino mass can be
generated by three mechanisms:

• If only the left-handed neutrino field νL exists, the neutrino is a Majorana particle. This con-
clusion is difficult to draw considering the issue on gravitation we described.

• If no violation of lepton number conservation is observed, the neutrino should be a Dirac particle.
The νR is theoretically observable.

• In the most general case, the neutrino may have both Dirac and Majorana mass terms, and in
this case, a Majorana particle.

In fact, the Lagrangian construction in Quantum Field Theory is based on the assumption that any
possible term that does not violate the acceptable symmetry should be incorporated. This is opposite
to the Occam’s razor and simplicity, but has been historically also widely used. If we accept the idea
of a very small violation of the lepton number conservation, the neutrino mass can emerge both from
the Dirac and Majorana terms. The Dirac term explicitely requires a νR field, and the Majorana
description can be extended to the right-handed sector in addition to Eq 1.1.51 without particular
effort:

LR
M −

1
2

MR(νc
RνR + νRν

c
R) (1.1.53)

Since there is no coupling between the right and left-handed neutrino fields in the Majorana description,
there is no requirement that the left and right masses are equal. Summing the contributions from
Majorana (Eqs 1.1.51 and 1.1.53) and from the Dirac mass term in Eq 1.1.6, we obtain the Dirac and
Majorana Lagrangian mass term for N lepton mass states:

LD+M
mass = −

1
2

(nT
LCMnL + h.c) (1.1.54)

where nL is the neutrino state doublet:

nL =

(
νL

(νR)c

)
=

(
νL

(νc)R

)
(1.1.55)
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and M the mass matrix:

M =

(
ML mD

mT
D MR

)
. (1.1.56)

We will describe the case of only one mass term (one generation) to gain in clarity. In this case, the M
matrix is a 2 × 2 matrix and mT

D = mD is the neutrino Dirac mass, ML and MR are respectively its left
and right Majorana mass terms. The fields νL and νR are two Weyl spinors (two degrees of freedom),
which in total correspond to four degrees of freedom, as in the pure Dirac case. To obtain the real
mass states, we diagonalise the mass matrix. The eigenvalues are:

m1,2 =
MR + ML

2
∓

√
(
MR − ML

2
)2 + m2

D (1.1.57)

These masses are real but can be of either sign depending on CP parity of the eigenvector. Their
positiveness will be restored in what follows. The eigenvectors χ1,2L are generally obtained through
the 2D rotation in the mass states plane:

nL =

(
νL

(νR)c

)
=

(
cos θS S sin θS S

− sin θS S cos θS S

) (
χ1L

χ2L

)
(1.1.58)

and the diagonalisation fixes the eigenvector values by setting the “see-saw” θS S angle:

tan 2θS S =
2mD

MR − ML
(1.1.59)

which leads to re-write the Lagrangian density in the diagonal mass sector:

LD+M
mass = −

1
2

(m1χ
T
1LCχ1L + m2χ

T
2LCχ2L) + h.c =

1
2

(|m1|χ1χ1 + |m2|χ2χ2) (1.1.60)

Having defined χ1,2 as:
χ1 ≡ χ1L + η1(χ1L)c , χ2 ≡ χ2L + η2(χ2L)c (1.1.61)

where η1,2 = 1 for m1,2 > 0 and η1,2 = −1 for m1,2 < 0. One observes in the latter definition that χ1 and
χ2 have two degrees of freedom each, and are two Majorana neutrinos. For this reason, in the most
general case of a Dirac and Majorana neutrino, the effective mass states are Majorana neutrinos. This
was expected since we started with νL and νR fields which have two degrees of freedom each, and since
the mass matrix has two different eigenvalues, it has two distinct eigenvectors that should have two
degrees of freedom each. We will now analyse the latter result in different limit cases:

• The Dirac description is retrieved if ML = MR = 0 which implies a mixing angle θS S = 45◦

and |m1| = |m2| = mD with opposite CP parities. The eigenvectors (Majorana mass states) are
therefore degenerated. Only one mass state having four degrees of freedom implies necessarily
that the equivalent neutrino is a Dirac neutrino having a mass mD. It is a linear combination of
the degenerated Majorana states χ1,2.

• The Majorana case is instead retrieved for mD = 0. The mass matrix is diagonal in the original
Majorana basis and the “Majorana only” description is retrieved. There is no mixing (θS S = 0).

• The pseudo-Dirac limit corresponds to mD � ML,MR. This is very similar to the pure Dirac
case, and we find θ ∼ 45◦ with two masses |m1| ' |m2|. In this limit, the two Majorana masses
states are almost degenerated and behave mostly as a unique Dirac field. Due to Majorana very
small masses, the pseudo-Dirac neutrinos only contribute to the double beta decay in proportion
of MR+ML

2 . In this case, the current no-observation of such a process may be explained if the
neutrino mixing is in this limit.

• The so called “see-saw” state where ML � mD � MR. This is called the see-saw mechanism since
it explains the very small masses of the observed neutrino states through a Dirac mass which
has similar order of magnitudes than the charged lepton one, and a very heavy right Majorana
mass. The latter has not any constraint as for the Dirac mass, since the right-handed Majorana
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term does not violate the isospin invariance (it is not coupled to any electroweak interaction)
and therefore, no Higgs mechanism is needed to explain it. On the contrary, we have seen it is
quite complicated to preserve the gauge invariance along with the introduction of a left-handed
Majorana term, though not impossible. In the type I see-saw mechanism, it is therefore assumed
ML = 0. We will keep ML , 0 here since the gauge invariance can be preserved in some Standard
Model extensions we discussed. We therefore obtain the mass eigenvalues:

m1 ' ML −
m2

D

MR
, m2 ' MR (1.1.62)

and the eigenvectors:

χ1 ' νL + η1(νL)c , χ2 ' (νR)c + η2νR (1.1.63)

The mixing angle in this case is very small θS S '
mD
mR
� 1 since the admixture of the νR singlet in

χ2 is almost maximal. On the other hand, though this singlet admixture is small in χ1 (∼ mD
mR

), it
is not negligible compared to the very small ML, though the latter has a large admixture. The χ1
small mass is therefore guaranteed by the Majorana left term small mass, but also, by the high
νR Majorana mass that suppresses the Dirac mass contribution: this is the heavy right-handed
neutrino that makes the left one light. This is an elegant explanation of the small masses of left-
handed neutrinos: their small masses is not due to an abnormally small Yukawa coupling with
the Higgs, but to their right-handed term that have a very large mass (which is allowed since
not related to the Higgs mechanism). Assuming for example a Dirac mass similar to the electron
∼ 0.5 MeV, a neutrino mass compatible with the current limits mν ∼ 0.1 eV [26] would imply
MR ∼ 104 GeV. For a neutrino having a Dirac mass equal to the heaviest known particle (the top
quark), mD ∼ 200 GeV would require MR ∼ 1015 GeV which corresponds to the typical energy of
Grand Unified Theories. We note here that the number of sterile right-handed neutrinos has no
necessity to be equal to the number of active neutrinos for the see-saw mechanism to happen,
as the squared matrix can be replaced by a rectangular one.

1.1.3 Limits of the Standard Model

As we have seen, the Standard Model is built on gauge interactions occuring in a flat Minkowsky
spacetime. But gravitation is understood through general relativity as a local spacetime deformation
by a massive (in fact, energetic) object. Therefore, gravitation cannot be treated as the other inter-
actions through gauge theories on a flat spacetime, but is related to the spacetime structure itself. A
dimensional analysis [27] shows that a naive treatment of gravitation leads to a non-renormalisable
theory, which is due to the non vanishing dimension of the gravitation constant. It indicates that
the gravitation theory should be replaced for high energy, explicitely for energies around the Planck
scale Ep ∼ 1019 GeV where running coupling constants should lead to a non-negligible gravitational
contribution. Considering the energy at which physics will be studied in this thesis, we will assume
that gravitational effects can be neglected.

1.2 Neutrino oscillations in vacuum

1.2.1 The general theory of oscillations

In the most general case, particle propagation states (massive states) may not correspond to the
particle detection states (or flavour states). In this case, we have seen a mixing occurs between the
flavour and the mass neutrino states throught the PMNS matrix we defined in Eq 1.1.45. This mixing
lead to the phenomenon named neutrino oscillation.
A flavour state |να〉 produced in a charged current interaction as µ− → e− + ν̄e + νµ can be written as
a mixing of massive states:

|να〉 =

N∑
i=1

U∗αi |νi〉 (1.2.1)
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with N and |νi〉 the number and corresponding massive neutrino states. U∗αi is the matrix that trans-
forms the flavour neutrino state basis into the massive neutrino state one, the so-called PMNS matrix.
At the present time, three neutrino flavour states have been observed: |νe〉, |νµ〉 and |ντ〉 that implies
F ≥ 3 with F the number of flavour neutrino states. In fact, the number of neutrino state is constrained
by the LEP Z0 boson decay width as shown in Figure 1.2. For this reason, the constraints on the
number of neutrino only apply to light and active neutrinos. The behaviour of F flavour independent

Figure 1.2: Measurement of the hadron cross sections around the Z resonance at the LEP. Different neutrino
scenario are fitted assuming Standard Model coupling and negligible mass. Extracted from [8].

neutrino states can be described in terms of N independent massive neutrino states only if F=N, i.e
the PMNS matrix is square. In this section, we will describe the neutrino oscillation scheme for any
number of flavour neutrino states (keeping F=N).
By definition, the neutrino massive states are the eigenvectors of the free Hamiltonian (we will describe
the neutrino propagation through matter in Section 1.3):

H |νi〉 = Ei |νi〉 . (1.2.2)

Using the Schrödinger equation, we can deduce the massive neutrino states time evolution from t = 0
to t:

i
d
dt
|νi(t)〉 = H |νi(t)〉

invacuum
= Ei |νi(t)〉 . (1.2.3)

The time evolution of a single massive neutrino state can therefore be described as a plane wave:

|νi(t)〉 = e−iEit |νi〉 (1.2.4)

where we have denoted νi(t = 0) ≡ νi. We can deduce the time evolution of a flavour neutrino state by
using Eq 1.2.4 to re-write the Eq 1.2.1:

|να(t)〉 =

N∑
i=1

U∗αi |νi(t)〉 =

N∑
i=1

U∗αie
−iEit |νi〉 . (1.2.5)

The time evolution of a flavour neutrino state can be written only in terms of initial flavour neutrino
state using the unitarity of PMNS matrix to invert Eq 1.2.1 which becomes:

|νi〉 =

F∑
β=1

Uiβ |νβ〉 (1.2.6)
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and finally leads to:

|να(t)〉 =

N∑
i=1

F∑
β=1

U∗αiUiβe−iEit |νβ〉 . (1.2.7)

This shows that a neutrino produced in the initial flavour state |νβ〉 will evolve into a superposition
of N=F=3 flavour states if the PMNS matrix is not diagonal (i.e, flavour are not mass states). The
probability of an initial flavour state |να〉 to evolve into a flavour state |νβ〉 (t) is then:

Pνα→νβ(t) ≡ | 〈νβ(t)|να〉 |
2 =

N∑
i=1

N∑
j=1

U∗αiUiβUα jU∗jβe
−i(Ei−E j)t. (1.2.8)

One observes that we retrieve the expected Pνα→νβ(0) = δαβ using the PMNS matrix unitarity. In this
whole thesis, we will assume that neutrinos are ultrarelativistic particles considering their negligble
mass regarding their velocity. In this case, the energy of a neutrino mass state can be approximated
by:

Ei =

√
p2

i + m2
i ' pi +

1
2

m2
i

pi
. (1.2.9)

We will assume here that all neutrino mass states have the same momentum but a different mass
(pi = p, ∀i). This leads to:

Ei − E j =
m2

i − m2
j

2p
=

∆m2
i j

2p
(1.2.10)

with ∆m2
i j ≡ m2

i − m2
j the neutrino squared mass difference between the mass states j and i. In the

case of ultrarelativistic neutrinos that we describe, the neutrino momentum p = E and the distance of
the neutrino from its source are directly related to the time elapsed L=t. The propagation phase in
Eq 1.2.8 is then written under this hypothesis:

Pνα→νβ(t) '

N∑
i=1

N∑
j=1

U∗αiUiβUα jU∗jβe
(

∆m2
i j

2E )L. (1.2.11)

We observe an oscillating term between the different flavour neutrino states. The oscillating phase φ
is:

φ =
∆m2

i j

2E
L. (1.2.12)

The oscillationg phase suggests we can measure the neutrino squared mass differences through neutrino
oscillation phase measurement at a given neutrino energy E and for a given distance from the neutrino
source L (baseline). The PMNS matrix can be also determined through neutrino oscillations since
their amplitude only depend on it. We finally separate the i and j mass states in Eq 1.2.11 depending
if i = j or not and obtain:

Pνα→νβ(t) '
∑

i

|Uαi|
2|Uβi|

2 + 2Re
∑
i> j

U∗αiUiβUα jU∗jβe
−2πi L

Losc
i j (1.2.13)

which separates the contribution of a constant and oscillating term which depends on the “oscillation
length” parameter:

Losc
i j =

4πE
∆m2

i j

. (1.2.14)

This oscillation length can be defined as the wavelength of the oscillation. The role of the constant
term is not clear in the plane wave approximation we have shown. In fact, assuming a neutrino
detector having a spatial extension Ldet > Losc, the oscillating term does not disappear unless Ldet is
a multiple of the oscillation wavelength, i.e Ldet = λLosc. This is just to say the obvious fact that the
integral of a plane wave is zero only in the case of an integration interval equal to a multiple of the
wavelength. In reality, we will see it is not the case and the oscillation term effect may be lost for

20



1.2. NEUTRINO OSCILLATIONS IN VACUUM

Ldet > Losc (which is rather impossible except for the case of high ∆m2).
In fact, the plane wave is only an approximation. In reality, the neutrinos are emitted by a non
permanent source and are spatially localised as a particle should be. The plane wave approximation
should therefore be changed into the wave packet formalism. The calculation in Quantum Field Theory
is rather complicated and detailed in [22]. It leads to replace Eq 1.2.13 by:

Pνα→νβ(t) '
∑

i

|Uαi|
2|Uβi|

2 + 2Re
∑
i> j

U∗αiUiβUα jU∗jβe
−2πi L

Losc
i j
−( L

Lcoh
i j

)2−2π2η( σx
Losc

i j
)

(1.2.15)

where η ∝ 1 and depends on the production/detection and Lcoh
i j is the coherent distance of the inter-

ferences defined by:

Lcoh
i j =

4
√

2E2

|∆m2
i j|
σx (1.2.16)

where σx is the uncertainty (resolution) on the particle localisation, whose square is the quadratic sum
of the spatial uncertainties on the production and detection processes of the particle: σ2

x ' (σP
x )2+(σD

x )2.
It is more intuitive to think about the production and detector resolution in momentum, which is
related to the spatial uncertainty through the Heisenberg relation σxσp = 1

2 . Let’s describe the
different phases that rule neutrino oscillations in the case of a wave packet in Eq 1.2.15:

• 2πi L
Losc

i j
which is the standard oscillation term we observed in the plane wave approximation. It

describes an oscillation between neutrino flavours with the distance according to the wavelength
Losc

i j ∝
E

∆m2
i j

which depends on the mass states.

• A term describing the loss of coherence between the different mass states (i.e wavelength) that
tends to suppress the oscillation at long distance for L � Lcoh

i j . Since the different mass states
have the same energy with different masses, their momenta are slightly different and they do
not propagate exactly at the same speed. When the distance is too large compared to their
energy and mass differences that rule their relative speed, the oscillation effect is lost and only
the constant term will remain. We show here that the coherence length can be retrieved through
simple hypothesis. In the two-flavour case, we will describe the wave packet by the weighted
sum of the plane wave associated to |ν1〉 and to |ν2〉. In fact, these two packets are not exactly
plane waves since the neutrino flavour energy has an uncertainty that will impact σx, the spatial
uncertainty. The mean position of a massive state i at the time t can be given by: xi(t) = vt =

pi
E ,

assuming that the neutrino energy is the same as the flavour initial state, and the momentum
difference comes from the mass difference. We can then express the difference between the two
plane wave positions at a time t:

∆x ≡ x2(t) − x1(t) =
p2 − p1

E
t (1.2.17)

We can re-write the momentum difference in terms of the squared mass difference. A mass term

momentum is given by pi =

√
E2 − m2

i . Assuming the neutrino is ultrarelativistic, we obtain

pi ' E −
m2

i
2E which leads to change Eq 1.2.17 in terms of squared mass differences:

∆x '
m2

1 − m2
2

4E2 t =
∆m2

12

4E2 L since L=t (1.2.18)

Intuitively, the coherence is lost if the average packet position difference between the two mass
states is large compared to one packet spatial extension. Assuming the two mass state packets
have the same spatial extension which is close to σx, we deduce that the coherence is lost if:

∆x
σx
� 1 ⇐⇒

∆m2
12

4E2σx
L � 1 ⇐⇒ L �

4E2σx

∆m2
12

(1.2.19)

We have retrieved the coherence length definition given in Eq 1.2.16 with the difference of a
factor

√
2 through our very naive calculation. This clearly illustrates that two neutrinos with
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a large squared mass difference will quickly loose their coherence, as for neutrinos of relatively
small energy since their mass difference will have a larger impact on their velocity difference.
We also observe that this term disappears when we have absolutely no spatial resolution on
the neutrino (σx = ∞) at the production or the detection. This is expected since we retrieve
the plane wave description in this case (perfect energy resolution, infinite spatial extension).
However, the coherence is lost if the neutrino is detected and produced with a perfect resolution
on the particle position (σx = 0). In this limit, neutrinos do not have any spatial extension, and
cannot oscillate since they do not have a wave behavior.

• Finally, a localisation term 2π2η( σx
Losc

i j
)2 describes the wave packet localisation itself compared to

oscillation wavelength. One observes that the coherence is lost (and the oscillation term disap-
pears) if σx

osc
i j i.e if the detector or the production is large enough to contain several oscillations.

We observe that the plane wave description is therefore wrong in such a case, since the wave
packet description implies the oscillation to disappear for large sources or detector vertex res-
olution lower than the oscillation wavelength. This can be understood since the oscillation is
directly averaged in this case, and we expect to only observe an effect on the rate as shown in
Eq 1.2.15.

We observe that the plane wave approximation is right only in the case of Lcoh
i j and σx

osc
i j , which is

almost always verified practically. Given the present three-flavour neutrino scenario, the measurements
lead to ∆m2

12 ∼ 10−5eV2 and ∆m2
13 ∼ 10−3eV2. As for the Lcoh

i j hypothesis, we can imagine that the most

probable case in which the coherence is lost is for the solar neutrino which have a low energy (∝ 1 MeV)
and very long baseline 1 a.u ∼ 1.5×1011 m. The worst case occurs for a short coherent distance, which
also means small space uncertainty. Let’s assume that the creation process is localised in the Sun (with
a point-like spatial resolution) and a detector vertex resolution of ∼ 1 cm, which implies σx ∼ 1 cm.
Under these unrealistic hypotheses, we obtain Lcoh

i j ∼ 107 m � LS un→Earth. This indicates we expect the
coherence to be lost for the solar neutrinos detected on Earth. We will see in Section 1.4 that this is
experimentally the case. We observe that in the case of atmospheric, reactor or accelerator neutrinos,
the baselines are too short (and the speed/energy are too high in the case of atmospheric/accelerator)
to observe the wave packet decoherence. As for the localisation term, it disappears in the case of
low detector vertex resolution and for small oscillation wavelengths Losc

i j = 4πE
∆m2

i j
. As an example, let’s

imagine a detector with a poor 1 m vertex resolution which aims to observe reactor neutrino oscillation.
It corresponds to a less favourable case to observe oscillation since it implies small oscillation length
due to low energy E ∼ 1 MeV and a relatively high frequency ∆m2

13 ∼ 10−3eV2. We find Losc ∼ 1 m,
which means that the coherence may be lost if the vertex resolution is several times larger than 1 m.
For example, the Double Chooz vertex resolution is ∼ 10 cm [28], which guarantees that the coherence
is kept and that the oscillation effect can be seen. Note the decoherence may also concern the possible
sterile neutrino, since an oscillation at very short distance (high frequency ∆m2

41 ∼ 1 eV2) is predicted.
In all cases where coherence is lost, the oscillation is reduced to the constant term with baseline and
neutrino energy:

Pνα→νβ(t) '
∑

i

|Uαi|
2|Uβi|

2 (1.2.20)

In general, an oscillation experiment tries to avoid the decoherence since the constant rate is only
an averaged effect, whose variations are less important than at the oscillation maximum. Moreover,
decoherence prevents from any relative shape study (with different energy E) that often helps to cancel
most of the systematic errors. In this thesis, we will apply the plane wave formalism in all cases, except
for solar neutrino observation.

1.2.2 Three flavour neutrino oscillation in vacuum

As we have explained in Section 1.1, the current knowledge in the neutrino field leads to the three
active flavour neutrinos as the most likely scenario. Unless the opposite is specified, we will not
consider any sterile neutrino in this Section. In the standard neutrino scenario, six flavour mixings
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are possible:
νe 
 νµ 
 ντ 
 νe (1.2.21)

Through the very same way we proceed in the two flavours case, we can show that a N × N unitary
complex matrix does have 2N2 − N2 = N2 complex degrees of freedom. It can be shown [22] in general
that the mixing matrix U can be parametrised through the choice of independent degrees of freedom:

N(N − 1)
2

mixing angles (1.2.22)

N(N + 1)
2

phases (1.2.23)

In the three neutrino case, it leads to three mixing angles and six independent phases. Using the
conservations of the number of leptons fields (global U(1) invariance), it can be shown as in the
two neutrino case [22] that only one of these six phases is a physical observable independent degree
of freedom, considering Dirac neutrino. The three-flavour oscillation probability can therefore be
described by:

• 3 mixing angles in the PMNS matrix, θ12, θ23 and θ13.

• 2 independent squared mass differences ∆m2
21 and ∆m2

32, since ∆m2
31 = ∆m2

32 + ∆m2
21

• 1 CP violating phase δCP. Unless the opposite is specified, we will assume δCP = 0 in most of
the figures that will be shown in this thesis.

The 3D mixing matrix U can be written as the product of three 2 dimensional rotations:

U =

1 0 0
0 c23 s23
0 −s23 c23

 ×
 c13 0 s13e−iδCP

0 1 0
−s13eiδCP −0 c13

 ×
 c12 s12 0
−s12 c12 0

0 0 1

 (1.2.24)

U=

 c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13
s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13

 (1.2.25)

where we defined:
ci j = cos θi j and si j = sin θi j (1.2.26)

The complete expression of the oscillation probability can be derived from Eq 1.2.13. Figure 1.4 shows
the main behaviour of the oscillation probability Pνµ→νe with L/E, given the oscillation parameters
current values (see Table 1.4). We will go through the essential points of the three flavour oscillation:

• As we have seen, the neutrino oscillation varies with the baseline/Energy ratio (L/E). Neutrinos
with higher energies have therefore larger oscillation wavelengths.

• We remind that neutrino oscillation is due to the phase difference between the mass states since
these states do not propagate with the same velocity due to their mass differences. This naturally
implies that neutrinos of larger energy oscillate at longer distances since their propagation speed
(their energy) is less affected by their mass difference than for lower energy neutrinos. For a
given neutrino energy, the phase shift between the mass term with distance is ruled by the
inverse of the squared mass difference. The measured squared mass differences are such that
|∆m2

12| � |∆m2
23|. This implies that the oscillations are mainly ruled by |∆m2

23| for small L/E ∼ 1 km
MeV

as it is the case for T2K. On the other hand, the |∆m2
12| low frequency rules the oscillation for

large L/E ∼ 100 km
MeV . For the reasons explained in previous Section, the effect of the phase change

between the first/second and third mass states will be averaged out and contribute as a rate
term. These two effects can be clearly seen comparing Figure 1.3 and 1.4 which respectively
show the flavour oscillation coming from the phase shift between the first/second mass state and
the third, and between the first and second mass terms. We notice that only the absolute value
of the squared mass difference impacts on the oscillations in vacuum.
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• The flavour oscillation amplitudes are ruled by the mixing angles. The θ13 mixing angle is far
smaller than the other mixing angles (see Table 1.4). The impact is the very small amount of
νµ oscillation to νe from Tokai to Super-Kamiokande (L/E ' 500 km/GeV), as can be seen in
Figure 1.3. On the other hand, the θ23 angle is compatible with a maximal mixing case (θ23 ' 45◦)
given the current knowledge we have on this angle. This can be observed in Figure 1.3 since this
angle is the main contributor to the νµ disappearance observed at Super-Kamiokande.

• The CP violation phase effects come in factor of the other mixing angle amplitude product. It
follows that CP violation in the lepton sector affects neutrino oscillations only if none of the
mixing angles is null, which has been lately verified for θ13 [29], [30], [31]. This implies the CP
violation phase can only be measured after the other parameters are very well known. The mea-
surement of the CP violation phase can only be performed through appearance measurements,
since Pνα→να is obviously CP invariant (from CPT invariance). Thus, δCP can be measured in
a single appearance experiment comparing neutrino and anti-neutrino oscillation probability,
but can also be deduced from the appearance experiment given the knowledge on other mixing
parameters from δCP insensitive experiments (disappearance). The impact of δCP on the νµ → νe

oscillation in T2K is shown in Figure 1.5. The maximal deviation from the non CP violation is
obviously obtained for maximal CP violation δCP = 90◦ or 270◦ which respectively correspond
to the lowest and highest oscillation probability in neutrino mode (the contrary will occur in
antineutrino mode). Due to accelerator and cross section issues, it is easier to obtain a high
statistics in neutrino than in antineutrino mode in accelerator based experiments. Several rea-
sons cumulate to explain this effet. In the case of T2K, the beam is produced with a proton
collision on a target. The charge conservation, but also the quark content of the target (valence
u-d quarks, no u) will favour the K+ and π+ production, which mainly decay in νµ (see Chapter 2).
On top of this, the antineutrino cross section is supressed by a factor two to three compared to
neutrino, due to different vertex contributions in the Feynman diagrams. For this reason, the
most favourable scenario for T2K to measure CP violation effect would be for δCP = 270◦. We
notice the difference between δCP = 0◦ and δCP = 180◦ only impacts the oscillation wavelength,
which would require a very accurate measurement of |∆m2

32|.

• We have summarised the whole T2K oscillation probability in Eq 1.2.27 in which the contri-
bution of each term is identified by a different colour. The leading order term (magenta) is
differently affected by the CP odd term (red) when changing from neutrino to antineutrino
beam. The matter effects (dark blue) are also changed due to an opposite potential that is seen
for antineutrino than neutrino (a→ −a). The matter effect contribution will be further detailled
in Section 1.3. Finally, additional CP even term (green) and small contribution of far solar term
(light blue) oscillations are taken into account.

P(νµ → νe) = 4c2
13s2

13s2
23 sin2 ∆31

+8c2
13s12s13s23(c12c23 cos δ − s12s13s23) cos ∆32 sin ∆31 sin ∆21

−8c2
13c12c23s12s13s23 sin δ sin ∆32 sin ∆31 sin ∆21

+4s2
12c2

13(c2
12c2

23 + s2
12s2

23s2
13 − 2c12c23s12s23s13 cos δ) sin2 ∆21

−8c2
13s2

12s2
23

aL
4E

(1 − 2s2
13) cos ∆32 sin ∆31

+8c2
13s2

13s2
23

a
∆m2

31

(1 − 2s2
13) sin2 ∆31

(1.2.27)

1.2.3 Two-flavour approximation in the three neutrino case

Nowadays, any fits of the oscillation probability is done in the three-flavour framework (if no sterile
neutrino). However, the two-flavour approximation has been highly used in the past as the θ13 value
was known to be small. It allows to draw simpler conclusions, and we will see it may be applied as
a good approximation of the three neutrino description. In this case, the mixing matrix is a 2 × 2
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Figure 1.3: Three flavour oscillation considering the parameters summarised in Table 1.4 and assuming a
pure νµ beam production. This is a reasonable approximation of T2K running in neutrino mode. The Super-
Kamiokande detector is located at the first oscillation maximum L/E ' 500 km/GeV.

parameter best fit (2008) best fit (2014)
sin2 2θ12 0.846+0.033

−0.026 (0.304+0.022
−0.016) 0.846+0.021

−0.021
sin2 2θ23 1.00+0.00

−0.02 (0.50+0.07
−0.06) 0.999+0.001

−0.018
sin2 2θ13 0.040+0.062

−0.036 (0.01+0.016
−0.011) 0.093+0.008

−0.008
∆m2

21(eV2) 7.65+0.23
−0.20 × 10−5 7.53+0.18

−0.18 × 10−5

∆m2
32(eV2) 2.40+0.12

−0.11 × 10−3 2.44+0.06
−0.06 × 10−3

Table 1.4: Summary of the knowledge on mixing parameters in 2008 (Ref [32]) compared to 2014 (Ref [13]).
In parenthesis is shown the sin2 θ value of each angle to simplify the link with Figure 1.22 for the reader. The
errors shown correspond to the 1σ errors. The whole measurements are done assuming δCP = 0.

unitary complex matrix which has four independent real degrees of freedom. One shows [22] that the
four degrees of freedom correspond to one real amplitude (mixing angle θ) and three phases through
the re-parametrisation:

U =

(
cos θeiω1 sin θei(ω2+η)

-sin θei(ω1−η) cos θeiω2

)
=

(
ω1 0
0 ω2

) (
eiη 0
0 1

) (
cos θ sin θ
-sin θ cos θ

) (
e−iη 0

0 1

)
(1.2.28)

It can be shown that some of these phases are not observable since they correspond to a global rotation
of the lepton fields. Since the number of leptons is conserved in the Standard Model, these phases will
be re-aborbed in the field definitions to finally give the mixing matrix:

U =

(
cos θ sin θ
-sin θ cos θ

)
(1.2.29)

The oscillation probability in the two flavour case is deduced from Eq 1.2.13 and gives:

Pνα→νβ(t) =
1
2

sin2 2θ(1 − cos ∆m2 L
2E

) = sin2 2θ sin2(
∆m2L

4E
) (1.2.30)

Pνα→να(t) = 1 − sin2 2θ sin2(
∆m2L

4E
) (1.2.31)

where ∆m2 is the squared mass difference between the two mass states. The oscillation probability can
be drawn only after retrieving the SI units from the natural unit we have used. A dimension estimation
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Figure 1.4: Long distance three-flavour oscillation considering the parameters summarised in Table 1.4 and
assuming a pure νµ beam production. One observes the long distance effect of the “solar oscillation”.

shows that: [∆m2L
4E ≡ ~

c3 ] which implies that the correct factor to have a dimensionless oscillation phase

is: ∆m2Lc3/4~E. This phase can be approximated for convenience to:

1.27
∆m2[eV2]L[km]

E[GeV]
(1.2.32)

Figure 1.7 illustrates the νµ disappearance that occurs in T2K in the case we neglect matter effect
(Section 1.3) and assuming two-flavour approximation. Super-Kamiokande position is located at the
first oscillation maximum (295 km at 0.7 GeV) and one observes the coherence loss at long distance that
we introduced in the previous Section. As has been illustrated in Figure 1.3, the νµ disappearance can
be relatively well approximated by a two-flavour oscillation between νµ and ντ. It is a combination of
both θ13 � θ23 and ∆m2

32 � ∆m2
12 that allows this approximation. Since ∆m2

32 � ∆m2
12, we can separate

oscillations at small L/E ∼ km
MeV where the νµ oscillates through νe with sin2 2θ13 sin2 θ23 amplitude to

large L/E ∼ 100 km
MeV where the oscillation amplitude is 1/2 × sin2 2θ12. Since T2K experiment focuses

on L/E ∼ km
MeV , the second oscillation has not still developed and νe appearance is only affected by

the factor sin2 2θ13 sin2 θ23. Since θ13 � θ23, the contribution of this appearance to the whole νµ
disappearance (∼ sin2 2θ23) is negligible. Therefore, we can approximate the νµ disappearance as a
νµ → ντ oscillation. In these 2 conditions, the oscillation probability may be re-written (defining
∆m2 ≡ ∆m2

32) as:

Pνα→να = 1 − 4|Uα3|
2(1 − |Uα3|

2) sin2(∆m2 L
4E

) (disappearance) (1.2.33)

Pνα→νβ = 4|Uα3Uβ3|
2 sin2(∆m2 L

4E
) (appearance) (1.2.34)

Note this approximation also holds to study νe disappearance at large L/E � 100 km
MeV , as for the solar

neutrinos. The oscillation due to ∆m2
23 is averaged out by the finite detector resolution. Only the

oscillation between the first and second mass states will remain (no more degenerated at this L/E)
with a limited amplitude coming from the averaged mixing of the third mass state with the observed
flavour states. In the case we observe solar neutrinos, the oscillation amplitude will be only slightly
shrinked by a factor cos4 θ13 (see Eq 1.4.4, similar to solar neutrino oscillations) which allows to study
θ12 and ∆m2

12 values independently from the other parameters.
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Figure 1.5: Impact of different CP violation phases on the νe appearance at T2K assuming a pure νµ beam
production. One observes a maximal effect for δCP = 270◦, but also the effect increases at larger L/E for the
following oscillation maxima.
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Figure 1.6: The flavour and mass state mixing given the mixing angle in Table 1.4.

1.3 Three-flavour neutrino oscillation in matter

1.3.1 General oscillation in matter

We described in Eq 1.2.4 the time evolution of the neutrino mass states. If the propagation does not
occur in vacuum, the Hamiltonian will not only be a free Hamiltonian anymore but should take into
account the “interaction of neutrino mass states” through matter. However, the neutrino interaction
with matter naturally occurs through weak interaction of the flavour states. We therefore write this
interaction Hamiltonian HM as diagonal in the flavour states, while the free Hamiltonian HV is diagonal
along the neutrino mass states. The complete Hamiltonian:

H = HV + HM (1.3.1)

will therefore be not diagonal in any of the mass or flavour basis. We will first detail the form of HM

in order to bring further conclusions on the interplay between propagation (HV) and matter effects
(HM), i.e between neutrino flavour and mass states. We will assume the standard three active flavour
scenario. When the neutrino interacts in matter, two outcomes are possible: either the flavour neutrino
is changed in the associated charged lepton through W boson exchange with a nucleon (protons or
neutron), or it is coherently scattered through the exchange of a Z0 boson with a proton, neutron
or matter electron or W boson with an electron. Figure1.9 shows the possible Feynman diagrams.
As for charged current (CC) or neutral current (NC) interaction of a neutrino with a nucleon, each
flavour will be equally scattered or supressed. The same goes for NC interactions of a neutrino on
a matter electron. Note that this equal suppression is not entirely true for CC interaction with a
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Figure 1.7: The coherence loss in the two-flavour scenario and assuming a mass squared difference ∆m2
32.

This is a reasonable approximation of the νµ disappearance at T2K, where the Super-Kamiokande far detector
is located at L/E ' 500 km/GeV. One observes the mixing angle has been chosen maximal (θ = 45◦) to
reproduce the effect of θ23 according the constraints shown in Table 1.4.

nucleon due to the different masses of the outgoing leptons, but we can neglect this cross section effect
for high (E � 1 GeV) energy neutrinos. This leads the matrix HM to be diagonal and have the same
eigenvalues for each flavour, meaning the matter effect will not change the flavour composition (i.e
HM ∝ I). However the matter (in the Earth or the Sun) naturally contains only nucleons and electrons
but no µ− or τ−. For this reason, the νe neutrinos will have a singular behaviour in comparison with
the other species due to the very last diagram: a CC interaction with an e− that can only occur for
the νe neutrinos. The νe interacting more with matter than the other flavour, we expect this specy to
have a higher “equivalent interacting mass” in matter than the other flavour species. In conclusion,
all neutrino flavours do have an interacting mass that depends on the amount of nucleons/electrons in
the matter (i.e density) while the νe has an additional term that depends only on the electron density.

Considering only the neutrino interactions where the neutrino is scattered, it leads [22] to a matter
Hamiltonian (in the flavour basis):

HM =


√

2GF(Ne −
1
2 Nn) 0 0

0 -
√

2GF
1
2 Nn 0

0 0 -
√

2GF
1
2 Nn

 (1.3.2)

where GF is the Fermi constant (weak interaction coupling), Ne and Nn are respectively the electron
and neutron densities in the material. Note this form is valid under the three hypothesis of matter:

• neutral (Ne = Np)

• unpolarised

• non-relativistic

With a proper Lagrangian derivation, one shows [22] that the proton and electron NC contributions
are cancelling due to opposite vector coupling (gV) and same content of matter in electrons and protons
(valid in the case of neutral matter). The opposite sign in the CC contribution of the electron and
NC of the neutrons comes from the different vector coupling constants due to neutrons and electrons
different hypercharge. While the CC interaction with electrons adds a supplementary energy to the
existing neutrino free energy, the interaction with neutrons contributes negatively. Reverting the
oscillation point of view in the flavour basis instead, it follows that the equivalent νe energy is higher
than the other flavour states, which means a time evolution of the wave amplitude at higher frequencies
(Eq 1.2.4). We will come back on this issue in the two-flavour approximation. We note that in the
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Figure 1.8: The coherence loss in the two flavour scenario and assuming a mass squared difference ∆m2
21 and a

mixing angle θ12. This is a reasonable approximation of the νe disappearance of solar neutrino. One observes
the averaging of the oscillation prior reaching the Earth.

case of sterile neutrinos, they will not be affected anyhow by the passage through matter. We will now
deduce the impact of the matter term on the neutrino flavour oscillation. For this, we must describe
directly the time evolution of the flavour states this time. As the free variation is given in the mass
state basis, we have applied the inverse PMNS matrix to obtain its form in the flavour basis, where
matter effects are decoupled. It follows that:

HF |να〉 = HF
V |να〉 + HF

M |να〉 (1.3.3)

where F denotes the flavour basis (and upper M will denote the mass state basis). HF
M = HM we

previously defined, and HF
V = UPMNS HM

V U∗PMNS where HM
V is the diagonal vacuum oscillation matrix

in the mass state we defined in Eq 1.2.4. The different oscillations of the neutrino in matter as
compared to in vacuum due to this Hamiltonian additional term, and the possible resonance that
we will describe, is refered to as the Mikheyev-Smirnov-Wolfenstein (MSW) effect [33]. In order to
simplify1 the illustration of this effect, we will here consider a two-neutrino case (νe and νµ). We will
illustrate the MSW effect that happens in the Sun. The matter effects will be denoted as:

A ≡ 2
√

2EGF Ne. (1.3.4)

The calculation of HF from Eq 1.3.3 gives:

HF =
1

4E

(
−∆m2 cos 2θ + A ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ − A

)
(1.3.5)

in the case of a neutrino produced with the energy E. The Hamiltonian is then diagonalised which
defines a natural basis diagonal to the free and matter effects, that we will denote with N. The
diagonalisation finally leads to [22]:

HN =
1

4E

(
−∆m2

N 0
0 ∆m2

N

)
(1.3.6)

where ∆m2
N is the effective mass splitting in matter (oscillation frequency in L/E) defined by:

∆m2
N =

√
(∆m2 cos 2θ − A)2 + (∆m2 sin 2θ)2. (1.3.7)

1in the three flavour case, the calculation and length of the formula makes them impractical to show in this thesis
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Figure 1.9: The Feynman diagrams of the flavour neutrino and antineutrino interactions in the “normal” matter
(no µ−, no τ−, no anti-matter). We have drawn the quark state rather than the nucleon state. One observes the
singular treatment of νe and ν̄e in comparison with the other flavour states due to the lack of µ− and τ− in matter.

Here we defined ∆m2
N as positive, assuming the neutrino mass state defined as 2 is the more massive

one by definition. The eigenvalues found in the diagonalisation give the transfer matrix UN from the
flavour to the diagonal basis HN = U∗N HFUN :

UN =

(
cos θN sin θN

− sin θN cos θN

)
(1.3.8)

where θN is the effective mixing angle of neutrinos in matter given by:

tan 2θN =
tan 2θ

1 − A
∆m2 cos 2θ

. (1.3.9)

The eigenstates are no more the neutrino free mass states |ν1,2〉 but some equivalent mass states that
are the independent states when the neutrino passes through matter with a given density. Note that
these eigenstates do change with the density, and that we retrieve the neutrino free mass states in
the case of zero density (tan 2θN = tan 2θ). The same goes for the oscillation frequency (mass spliting).
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We’d like to present this result in a slightly different form to simplify the conclusions:

∆m2
N = ∆m2

√
(cos 2θ −

A
∆m2 )2 + (sin 2θ)2 (1.3.10)

= ∆m2

√
(cos 2θ −

2
√

2LoscGF Ne

4π2 )2 + (sin 2θ)2 (1.3.11)

= ∆m2
√

(cos 2θ −
Losc

Lint
)2 + (sin 2θ)2 (1.3.12)

where we define the oscillation length in vacuum Losc as in Eq 1.2.14 and the mean interaction length
of a flavour νe in matter as:

Lint =
4π
A
. (1.3.13)

Note the difference with the interaction Lagrangian, Lint. We have allowed us to use this definition since
GF Ne indicates the average interaction probability in matter (interaction probability on an electron
times the number of electrons). In the same way, we have re-defined the mixing angle:

tan 2θN =
tan 2θ

1 − Losc

Lint cos 2θ

(1.3.14)

• For Losc � Lint which corresponds to negligible matter effects, the matter does not impact on
neutrino oscillation and the mixing angle and mass squared differences in matter are equal to
their value in vacuum tan2 2θN = tan2 2θ and ∆m2

N = ∆m2 respectively. Assuming θ12 = 33.4◦

(Table 1.4), the νe is mainly constituted of ν1. If ∆m2
21 > 0, it implies that the equivalent “mass”,

or energy of the νe flavour state is lower than for νµ state.

• For Losc � Lint which corresponds to large matter effect, lots of neutrino interactions with
matter happen within one oscillation wavelength. If the mass effect is high enough (A � |∆m2

21),
it follows that the equivalent energy for a νe is higher than for a νµ. If we define ν2 the higher
mass state also in matter, it follows this mass state oscillations also occurs for shorter distances
than for ν1. The νe energy (probability amplitude frequency) will be therefore far closer to the
ν2 than to the ν1, which implies that the νe will be exclusively ν2. This maximal mixing is
expressed through tan2 2θN → 0 but with tan2 2θN ≤ 0 which indicates θN = 90◦. Because ν2 is
the higher mass state, and corresponds to νe, it scales with the mass effects that enhance the νe

energy without any bound, and so does the subsequent mass splitting ∆m2
N .

• For Losc = Lint cos 2θ, the mass splitting original difference in ν1 and ν2 is almost cancelled out by
the energy gain of νe compared to νµ. Since the two flavour and mass states will exhibit a similar
“effective” energy, their phase changes with the same frequency, which leads to a maximum
mixing between the different flavour states: θN = 45◦ i.e:

|νe〉 = 0.71 |ν1〉 + 0.71 |ν2〉 , |νµ〉 = −0.71 |ν1〉 + 0.71 |ν2〉 (1.3.15)

This leads to a minimum in the mass splitting between ν1 and ν2, ∆m2
N = ∆m2

21| sin θ| since almost
similar energies. Note that this is only possible since νe mostly contains ν1 in vacuum which is
the lighter mass state. In the opposite case (if νe were mainly composed of ν2 in vacuum), the
energy gain from interaction would have only increased the mass state energy difference. We will
then retrieve the large matter effects without going through a resonance. For this reason, the
resonance can only occur if θ12 < 45◦. For a given mixing angle, the sign of the mass hierachy
between ν1 and ν2 will therefore impact differently the oscillation due to matter effects. We will
see that this resonance is crucial to explain the observation on Earth of solar νe disappearance,
leading to the measurement of the sign of ∆m2

12

Figure 1.10 shows the behaviour of the mixing angle with the matter density, along with the mass
state components of each flavour state. The evolution of the effective mass of each state is shown
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in Figure 1.11 and clearly indicates what has been explained. For very high electron densities, the
νe is produced with a much larger energy (“equivalent mass”) than the other flavour states. The ν2
being the most massive state by definition, it will then only be mixed with the νe flavour. The lower
the density, the lower the effective νe “effective mass” difference with νµ. The ν2 most massive states
will no longer be constituted of only νe but also of νµ whose proportion increases with the decreasing
density. It therefore exists a resonance if vacuum νe equivalent mass is lower than νµ, i.e if νe is more
mixed with the smaller mass state ν1. The resonance is reached when νe and νµ have an equivalent
effective mass, which therefore implies ν2 is constitued of the same νe and νµ proportions, as ν1. For
densities smaller than the resonance, the most massive state “equivalent mass” is therefore not mainly
ruled by νe but by the higher νµ proportions that have a fixed mass in the medium. On the contrary,
the mass of the lighter state ν1 is now ruled by the νe equivalent mass that continues to decrease
until it reaches the no density state (vacuum) at which ν1 = mVacuum

1 . Note this description is possible
only in the adiabatic approximation, meaning no oscillation ν1N 
 ν2N occurs in matter, but only
flavour mixing changes. This is realised if the spatial density variations are small as compared to the
oscillation length in matter.

Figure 1.10: Mixing angle variations with the electron potential in matter, for a mixing angle in vacuum θvac =

16◦. The maximal mixing occurs for a potential A = 1, at which the minimal mass splitting is observed
(Figure 1.11). Reproduced from the original [22].

1.3.2 The neutrino mass hierarchy

We have seen that in vacuum, the oscillation probability frequency (in L/E) is only sensitive to the
absolute value of the squared mass differences. But this is not the case in matter. In the previous
section, we observed that the resonant mixing only appears in matter if νe is more mixed with the
smaller mass state (in vacuum). Since the mixing angles between flavour and mass states in vacuum
are known, the oscillation measurements of neutrino propagating through matter should lead to a
possible determination of the mass hierarchy between the ν1, ν2 and ν3. We will see in Section 1.4 that
the matter effects are important in the Sun, and have been observed in the solar neutrino experiment.
We will show these experiments are sensitive to the ν1 
 ν2 oscillations due to their very long baseline.
For this reason, the mass hierarchy between the ν1 and ν2 neutrino has been measured through the
solar neutrino experiment, and it was found that m1 < m2. As for the ν3, the determination of its
mass hierarchy with the two other states is still unknown. In fact, we will see that the ν2 
 ν3
oscillation occurs for shorter baselines (for the same energy), which implies that this oscillations
should be observed with higher sensitivity (no averaging) using neutrino sources on Earth. The
atmospheric neutrino are in principle good candidates, but the Earth small density imposes a very
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Figure 1.11: Mass squared variations with the electron potential in matter. Reproduced from the original [22].

sensitive experiment to determine the remaining unknown mass hierarchy. The remaining unknown
hierarchy of m3 compared to m1 < m2 is known as the mass hierachy problem. The normal hierarchy
corresponds to the case where m3 � m2 > m1, and the inverted to m2 > m1 � m3. Unless the opposite
is specified, we will assume the normal hierarchy in most of the figures.

1.3.3 The matter effects in T2K

In the case of T2K, matter effects happen due to neutrino oscillation through the Earth. For T2K
relatively small baseline (295 km), we will assume the neutrino only propagate through the crust,
which has an average density of 2.6g/cm3. Figure 1.12 compares the variation of the νe appearance
due to matter density effects. We observe that the matter effects only barely impact the appearance
probability (≤ 10%) compared to vacuum oscillations. The normal hierarchy enhances the oscillation
νµ → νe through passage through the Earth. In fact, if ν3 has a higher mass, we expect the effective
mass squared difference in matter ∆m2

31 N to be reduced: ν1 has a larger mixing with νe than ν3
(Figure 1.6) and νe acquires a higher equivalent mass in matter than other flavours. Comparing
Figures 1.10 and 1.11, we have seen that this equivalent smaller mass squared difference will imply
mixing angle closer from 45◦ than in vacuum, which will enhance the mixing. On the contrary, if the
neutrino masses are ordered in the inverted hierarchy, the equivalent mass splitting will be higher than
in vacuum and one expects the mixing to be even more reduced due to matter effects, as observed in
Figure 1.12.

Through the neutrino matter effect in Earth, the accelerator based experiments as T2K are able
to determine the mass hierarchy between the ν1,2 and ν3 mass states. The νe being mostly contained
in ν1 and ν2 in vacuum, one expects an MSW resonance only if ν1 corresponds to a lighter mass state
compared to ν3, although very low matter effect prevents T2K from having a high sensitivity in the
next years.

1.4 Determination of the PMNS matrix

We have seen that the PMNS matrix can be factorised in three 2D rotation matrices. Each of these
matrice parameters (mixing angles and CP phase) along with the associated mass squared differences
can be measured observing neutrinos from different sources. This is mostly due to the differences
between the mass square splitting, but also relative amplitude, that allows to be sensitive to dif-
ferent oscillations when observing neutrinos from different sources (i.e baseline and energy). The
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Figure 1.12: Impact of matter effects on the νe appearance at T2K assuming a pure νµ beam production. One
observes the enhanced oscillation in the case of normal hierarchy.

factorisation exhibits the different sector in the PMNS matrix:

U =

Atmospheric (& LBL Accelerator)1 0 0
0 c23 s23
0 −s23 c23

 ×

Reactor (& LBL Accelerator) c13 0 s13e−iδ

0 1 0
−s13eiδ −0 c13

 ×
Solar (& VLB Reactor) c12 s12 0
−s12 c12 0

0 0 1

 . (1.4.1)

We have summarised in the Table 1.5 the baseline and neutrino energies of several experiments, along
with their sensitivities to different mass squared differences. The sensitivity shown here corresponds
to the first oscillation maxima. Observation of these maxima occurs when:

∆m2L
2E

∼ 1. (1.4.2)

The oscillation experiment located at large L/E compared to the oscillation length are only sensitive
to the averaged transition probability. The measurement of the mass splitting can only be given
through a lower limit, and the mixing angle can be measured but with reduced sensitivity compared
to experiment located at the oscillation maximum. On the other hand, the neutrino sources have a
spatial extension as well as the detector. On top of that, the neutrino sources are not generally mono-
energetic and the detector has a finite energy resolution. The oscillation should therefore be averaged
over the uncertainty on the baseline and neutrino energy. Finally, two analysis can be generally
performed: a rate only analysis by counting a given neutrino flavour, and a shape analysis that takes
into account the neutrino energy spectrum. The rate analysis is then averaged over the neutrino
energy spectrum, which reduces the sensitivity to the oscillation maximum and poorly disentangles
the effect of ∆m2 and θ. On the contrary, the shape analysis allows to obtain a L/E coverage. If the
resolution and the neutrino spectrum are large enough, one covers several oscillation maxima, which
allows to clearly distinguish the impact of the mixing angle on the amplitude from the impact of ∆m2

on the oscillation wavelength.

1.4.1 The solar neutrino sector

The stars, and in particular the Sun, are the source of an intense neutrino flux. The neutrino produc-
tion mainly occurs through the thermonuclear fusion of hydrogen atoms in the Sun core. This reaction
is also the original source of the photon production in the Sun, that counterbalances the gravitation
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Experiment type L E
Sensitivity

∆m2 Examples

SBL reactor ∼ 10 m ∼ 1 MeV ∼ 0.1 eV2 Bugey, Rovno
SBL accelerator 0.01-1 km 0.01-102 GeV 1-102 eV2 LSND, MiniBooNE

LBL reactor ∼ 1 km ∼ 1 MeV ∼ 10−3 eV2 CHOOZ, Palo Verde
LBL accelerator ∼ 103 km & 1 GeV & 10−3 eV2 K2K, MINOS

Atmospheric 20-104 km 0.5-102 GeV ∼ 10−4 eV2 Super-Kamiokande
VLB reactor ∼ 102 km ∼ 1 MeV ∼ 10−5 eV2 KamLAND

Solar ∼ 1011 km 0.2-15 MeV ∼ 10−12 eV2 GALLEX/GNO, SNO

Table 1.5: The different types of neutrino oscillation experiments given their distance with the neutrino source (SBL =

Short Baseline, LBL = Long BaseLine et VLB = Very Long Baseline) along with the neutrino energy and the experiment
sensitivity to ∆m2. The list presented here is not exhaustive. We remind that an oscillation experiment is sensitive to ∆m2

higher than the numbers shown in this Table, but the corresponding effects are averaged due to detector finite resolution.
The numbers shown here correspond to the first oscillation maximum. [22]

effects and produces the Sun light that we can see from the Earth. The fusion operates through the
effective conversion of four protons and two electrons into one helium nucleus, two electron neutrinos
and energy production:

4p + 2e− → 4He + 2νe + 26, 73 MeV. (1.4.3)

While the Sun core is opaque to photons, the νe propagation will only be smally affected by the high
density (MSW effect only) because they are only sensitive to weak interactions. For this reason, the
solar neutrino observation provides a barely affected image of the Sun core, which the photons cannot
do. Figure 1.13 shows the neutrino image of the Sun as seen by Super-Kamiokande. The produced

Figure 1.13: The Sun observed through its neutrino flux in Super-Kamiokande. Taken from [34].

neutrino flux has a very high intensity of about 6.5× 1010 cm−2.s−1. Neutrinos are measured on Earth
with an energy spectrum that spreads from 1 to 14 MeV. Figure 1.14 shows the produced neutrino
flux in the Sun. The νe flux has been historically first measured in the Homestake experiment and
disagrees with the predictions prior to oscillation scenario. The later observations in Homestake [9],
gallium experiments SAGE [35] and GALLEX/GNO [36][37] and in the Kamiokande [38], Super-
Kamiokande [39] and SNO [11] experiments are also in disagreement with the expected solar neutrino
flux, based on the Sun Standard Model. Moreover, these disagreements vary with the experiments
as shown in Figure 1.15 between 50% and 70%. The solar neutrino deficit has been first raised in
1968 with the Homestake experiment measurements and solved in 2001 by the SNO experiment. The
observed deficit of νe flavour could not discriminate between possible problem in the Sun Standard
Model, or from νe oscillation into other flavours that have not been measured. The SNO experiment
was conceived to discriminate between these two hypotheses through the measurement of the sum
of the different flavour contributions. In this experiment, the heavy water spheric detector allows
to observe both the νe through CC interactions, but also the whole neutrino content through NC
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interactions (neutron detection capability) or electron scattering. The results for the different channels
are displayed in Figure 1.15 and clearly shows the νe only represents one third of the total neutrino
flux. This total neutrino flux is in agreement with the Sun Standard Model prediction, which validate
the Sun Standard Model and explains the solar neutrino deficit by a νe flavour oscillation into other
flavours between the Sun and the Earth.

Figure 1.14: The solar neutrino energy spectrum coming from the different reaction cycles in the Sun [40]. The
energy threshold of Super-Kamiokande and SNO is typically a few MeVs, while it is 0.233 MeV and 0.814 MeV
respectively for the Gallium and Chlorine experiments. The survival probability Pee = Pνe→νe shows both the
average rate decrease due to θ12 effect (similar to Eq 1.4.4). One observes the larger disappearance with neutrino
energy which is due to the decrease of the interaction length Lint in the Sun with the neutrino energy and so, the
increase of the MSW effect.

The accurate measurement of the associated mixing angle and mass splitting was only possible
using the KamLAND experiment results [41] (A posteriori, since the solar neutrino oscillation are
averaged on Earth). KamLAND is a reactor based experiment that observes electron antineutrinos
produced by surrounding Japan nuclear powerplants. The average distance of KamLAND from the
different reactors weighted by their respective fluxes is L0 = 175 km. At this distance, the oscillation
probability can be written as:

Pνe→νe ' 1 −
1
2

sin2 2θ13 − cos4 θ13 sin2 2θ12 sin2(
∆m2

21L
4E

) (1.4.4)

The averaged term allows to measure the mixing angle θ13. We will come back on this issue in the
dedicated reactor section. The oscillation amplitude depends on the θ13 and θ12 mixing angles. Due to
the uncertainty both on θ13 (not measured) value, the KamLAND experiment is not mainly dedicated
to measure the mixing angle θ12. On the opposite, the main sucess of the KamLAND experiment is its
world leading accurate measurement of the mass splitting since the oscillation frequency in Eq 1.4.4
provides a direct measurement of the mass splitting ∆m2

21 that governs ν1 
 ν2 oscillations. Mainly
using the shape analysis in L/E shown in Figure 1.16, KamLAND measured the squared mass splitting
∆m2

21 = (7.59 ± 0.21) × 10−5 eV2 [41].
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Figure 1.15: Results overview of the measured solar neutrino fluxes compared to predictions of the Sun Stan-
dard Model [[40]].

The hatched region shown in Figure 1.17 corresponds to this “effective” baseline scan using the
antineutrino energy determination (achieved measuring the e+ energy). We assumed here that the re-
actor antineutrinos that may be detected have an energy Eν ∈ [1.8, 8.0] MeV by combining the reactor
production and antineutrino cross section effects (this range was deduced from [42]). We may have
been slightly optimistic, since KamLAND has been only sensitive to one oscillation maximum because
of statistics (Figure 1.16), whereas 4 maxima are indicated in the hatched region of Figure 1.17. We
can observe that the oscillation due to the solar terms is significantly larger and less frequent than for
the reactor terms, which illustrates the parameters different values shown in Table 1.4.

This measurement has been crucial to deduce the associated mixing angle θ12. As we have seen,
the KamLAND experiment amplitude also depends on the other mixing angles, that lead to an im-
portant uncertainty. But the accurate measurement of ∆m2

21 implies that solar neutrino oscillations
are averaged on Earth, due to loss of coherence of the wave packet. The oscillation probability of solar
neutrino can be written in the two-flavour approximation averaged out:〈

Pνe→νe

〉
= 1 −

1
2

sin2 θ =
1
2

(1 + cos2 2θ) (1.4.5)

where the effect is shown in Figure 1.8. The maximal averaged mixing cannot be higher than 1
2 in the

case of maximal mixing angle θ = 45◦. The observation of > 50% νe disappearance in the Chlorine
or SNO experiments (Figure 1.15) is therefore incompatible with a large mixing angle scenario. The
explanation lies in the matter effects that happen during neutrino propagation from the Sun core to
external regions, that change some of the originally produced νe in the core into νµ after leaving the
most central parts of the Sun. We have seen that the neutrino produced in the Sun core will have
mass states proportions ruled by θN . Assuming a very high density in the Sun core, we have seen that
it corresponds to a quasi total flavour conversion θN ' 90◦, which implies |νe〉 ' |ν2〉. Under adiabatic
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hypothesis, the |ν2〉 proportions remain the same until they leave the Sun, but their content changes
from only |νe〉:

|ν2〉 = − sin θN |νe〉 + cos θN |νµ〉 ' − |νe〉 (1.4.6)

|ν1〉 = cos θN |νe〉 + sin θN |νµ〉 ' |νµ〉 (1.4.7)

to a content which is majoritary νµ due to θ12 value:

|ν2〉 = − sin θ |νe〉 + cos θ |νµ〉 (1.4.8)

|ν1〉 = cos θ |νe〉 + sin θ |νµ〉 (1.4.9)

Therefore, the νe are not only affected by the vacuum oscillation, but also by the MSW effects that
change a part of the original νe to νµ in the Sun. The oscillation formula on Earth is changed to:

〈
Pνe→νe

〉
MS W =

1
2

(1 + cos 2θN cos 2θ). (1.4.10)

In the case of resonance, cos 2θN and cos 2θ has an opposite sign that explains that the observed solar
neutrino deficit on Earth may be higher than 50%. On top of this, the interaction length Lint decreases
with the neutrino energy, which implies that the MSW effect consequently increases. It follows we
expect a higher νe disappearance for high energy neutrinos, that has been observed in the different
experiments due to their different threshold (Figure 1.15 and Figure 1.14). The density profile in the
Sun has been predicted [40] which fixed the different θM values in the Sun. Therefore, the mixing
angle θ12 can be immediately measured. We summarise the final result combining KamLAND that
mainly fixes the mass splitting and the solar experiments that mainly measure the mixing angle in
Figure 1.18:

∆m2
21 = 7.65+0.23

−0.20 × 10−5eV2 sin2 θ12 = 0.304+0.022
−0.016. (1.4.11)
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1.4.2 The atmospheric neutrino sector

The cosmic rays are mainly constituted of protons and a small proportion of heavier nuclei produced
in outer space. These particles that reach the upper atmosphere interact with the surrounding matter,
leading mostly to pion and kaon production. The pion decay occurs before reaching the Earth ground,
producing muon neutrinos or antineutrinos:

π+ → µ+ + νµ, π− → µ− + ν̄µ (1.4.12)

In first approximation, we assume that the number of positive and negative produced mesons is
similar. The kaon decays also have a role in the neutrino production, but at higher energy, as will
be explained in Chapter 2 for the T2K neutrino beam production which is similar (with a narrower
energy spectrum) to the meson production in the atmosphere. The produced muons also participate
both to the muon and electron neutrino/antineutrino production, through their decay:

µ+ → e+ + νe + ν̄µ, µ− → e− + ν̄e + νµ (1.4.13)

Since the SK detector is not sensitive to the lepton charge, the oscillations of atmospheric neutrinos
will be studied using the ratio of muon and electron flavour neutrinos detected:

Rµ/e =
φνµ + φν̄µ

φνe + φν̄e

(1.4.14)

The lifetime of a muon is two order of magnitudes longer than for a pion (respectively 2.2 × 10−6 s
and 2.6 × 10−8 s). Therefore, whereas most of the pions decay before reaching the Earth (unless
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Figure 1.18: Combined fit of the solar sector parameters with the solar and KamLAND constraints. Extracted
from [32]. One clearly identifies that the solar neutrino observation provides an accurate measurement on the
θ12 mixing angle while KamLAND constrains mainly the mass squared difference.
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Experiment Kamiokande IMB Soudan2 Super-Kamiokande
Rsous-GeV
µ/e 0.60 ± 0.09 - 0.69 ± 0.12 0.658 ± 0.038

Rmulti-GeV
µ/e 0.57 ± 0.11 0.54 ± 0.12 - 0.702 ± 0.106

Table 1.6: The ratio between the observed flavour ratio Rµ/e and the Monte-Carlo expected one if no flavour oscillation
occurs for the main atmospheric neutrino experiments. The sub-GeV and multi-GeV events have been separated.

Figure 1.19: Schematc view of the atmospheric neutrino detection principle.

E ∼ 100 GeV −1 TeV which is a negligible contribution in the spectrum), the muons having E > 1 GeV
mostly reach the Earth without decaying. This affects the flavour rate differently, and therefore, the
study is divided between sub-GeV and multi-GeV events. For the sub-GeV events, the muon decay
occurs and we therefore expect:

φνµ + φν̄µ

φνe + φν̄e

' 2 (1.4.15)

while we expect an even higher ratio for the multi-GeV events neglecting the kaon contributions.
The observed flavour ratio has been compared to the expected one in Table 1.6 for different neutrino
experiments Kamiokande [38], IMB [43], Soudan2 [44] and Super-Kamiokande [10].

This observed ratio is signficantly lower than expected in the simulation up to more than 8σ for the
most accurate experiment, Super-Kamiokande. One hypothesis to explain this νµ deficit is a flavour
neutrino oscillation, that may whether change νµ 
 νe or νµ 
 ντ. The latter is not observed since
atmospheric neutrino are mainly detected through CC interactions, and the short τ lifetime leads to
its immediate decay into µ in the detector for the typical atmospheric neutrino energies. The typical
distances between atmospheric neutrino production and detection points vary between L ∼ 15 km to
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L ∼ 13000 km, depending if the production occurs in the atmosphere at the detector zenith or nadir,
while their broad energy spectrum is studied from several MeV to several GeV. If an oscillation has
occured, it could not come from the solar like ν1 
 ν2 conversion since at atmospheric energy of 1 GeV:

Losc
12 [km] =

1.27E[GeV]
∆m2

21

& 16000 km (1.4.16)

which means that the oscillation would barely and only occur for the neutrino produced in the antipode
atmosphere. A lower oscillation length is therefore favoured (so a higher mass splitting), which possibly
means an oscillation ν1 
 ν3 or ν2 
 ν3. This hypothesis was tested through a shape analysis by
varying the L/E for the observed neutrino. Depending on the neutrino direction, the zenith angle is
reconstructed and the distance with the detector is therefore extrapolated (Figure 1.19). Assuming
that the atmospheric neutrino production is isotropic, the number of detected electrons or muons
should verify the following symmetry in both sub and multi-GeV samples:

N`(cos θ) = N`(− cos θ) (` = e, µ) (1.4.17)

One observes the importance to detect the neutrino through CC interactions, since the associated
lepton direction is very similar to its parent one. The neutrino energy is reconstructed in the detector.
Figure 1.20 shows the result for the Super-Kamiokande experiment and clearly indicates the νµ dis-
appearance. Though some discrepancies with the expected rate are observed in the electron sub-GeV
sample, no L/E dependency is seen, which rules out the possibility that it is due to νµ 
 νe oscillation
at the same ∆m2. An hypothesis of a different and shorter baseline oscillation νµ 
 νe is ruled out
by the agreement between data and no-oscillation scenario for higher energy samples. One therefore
deduces that the main cause of the νµ disappearance occurs through ντ oscillation:

Pνµ→ντ ' sin2 2θ23 sin2(
∆m2

32L

4E
). (1.4.18)

Historically, the CHOOZ and Palo Verde experiments have not observed any νe → νµ oscillation (CPT
equivalent νµ → νe) for similar L/E which validates the νµ → ντ oscillation scenario. Note that a
posteriori, this null observation was obviously due to the very low θ13 value. The Super-Kamiokande
experiment 90% confidence levels are:

sin2 2θ23 > 0.92 , 1.6 × 10−3 ≤ ∆m2
32 ≤ 3.9 × 10−3 (1.4.19)

The atmospheric sector is also precisely probed through long baseline neutrino experiments also study-
ing νµ disappearance. The MINOS experiment uses the NuMI beamline to produce a 1−10 GeV almost
pure νµ beam (or νµ). The experiment far detector is installed L = 735 km away to be sensitive to
the ν2 
 ν3 oscillation. The latest MINOS shape study allows a thinner mass splitting determination
than in existing atmospheric experiments, the latter mainly constraining the mixing angle value. The
global fit is shown in Figure 1.21 and combines the Super-Kamiokande and MINOS results to give the
parameters constraints (reminding ∆m2

31 = ∆m2
32 + ∆m2

21 thus ∆m2
31 ' ∆m2

32):

|∆m2
31| = 2.40+0,12

−0,11 × 10−3 eV2, sin2 θ23 = 0.50+0,07
−0,06 (1.4.20)

1.4.3 The reactor neutrino sector before T2K starts

Prior to T2K installation, the main remaining unknown parameters in the three-neutrino model were
θ13 and the CP violation phase δCP as summarised in Table 1.4. We have shown the existing constraints
both on ∆m2

31 and θ13 in Figure 1.22. A that time, the main constraint came from the re3actor
CHOOZ experiment associated to the Super-Kamiokande and accelerator experiments that indirectly
constrain θ13 by fixing the ∆m2

31 frequency. The reactor based experiments observe the disappearance of
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electron antineutrinos produced in nuclear power plants. The oscillation formula gives the νe survival
probability:

Pνe→νe ' 1 − sin2 2θ13 sin2(
∆m2

31L

4E
) (1.4.21)

The antineutrinos from reactors have a lower energy (∼ 3 MeV) as compared to accelerator based
experiment (∼ 1 GeV). Since neutrino oscillation occurs for constant L/E, the baseline to observe
similar oscillations is broadly reduced by 3 orders of magnitude. As an example, the CHOOZ ex-
periment was located at L ∼ 1 km from the nuclear power plant. The CHOOZ experiment found no
evidence of νe disappearance at 90% confidence level [46] which set a higher limit on θ13 value. We’d
like to emphasise that the CHOOZ experiment only constrains θ13 for large ∆m2

31 > 1.10−3 eV2 values.
For lower frequencies (i.e. ∆m2

31 � 1.10−3 eV2), it immediately follows that the oscillation occurs for
larger L/E and could not be observed at the CHOOZ detector. Since CHOOZ only observes no νe

disappearance, it cannot conclude if this is due to an inappropriate baseline or to a low θ13. It follows
that the knowledge of θ13 is highly correlated to the existing limits on ∆m2

31 in the CHOOZ experiment
(reactor in general), which experiments combining disappearance and appearance as T2K, OPERA,
MINOS or NOνA can disentangle.
This limit is refined using the combination of KamLAND and solar neutrino results. As KamLAND
is nearly 100 times further away from the reactor cores than the CHOOZ experiment for the same
energy (Figure 1.17), the impact of θ13 on the oscillation is averaged out due to detector resolution.
Unfortunately, the uncertainties on the νe flux prevents from a direct 1

2 sin2 2θ13 measurement through
normalisation. As for the amplitude, the measurement of the amplitude θ12 is unfortunately affected
by the averaged θ13 effect, which explains the cos4 θ13 sin2 2θ12 term in Equation 1.4.4 on top of the
normalisation 1

2 sin2 2θ13 term. The poor knowledge on θ13 prevented KamLAND from competing with
solar experiment for the sin2 2θ12 determination. This measurement is done using both the shape and
rate of the oscillated spectrum. However, the main constraints come rather from the rate than from
the shape [47]. The oscillation probability when averaged over the whole energy range becomes:

Pνe→νe ' 1 −
1
2

sin2 2θ13 −
1
2

cos4 θ13 sin2 2θ12. (1.4.22)

Since θ13 ' 0, the cos4 θ13 is close from a maximum and does not vary much with the θ13 value. The
interplay of θ13 then essentially comes from the 1

2 sin2 2θ13 terms. Therefore, for a given measured rate
in KamLAND: 1 − 1

2 (sin2 2θ13 − cos4 θ13 sin2 2θ12) ' 1 − 1
2 (sin2 2θ13 + sin2 2θ12) = Constant, there is a

natural anti-correlation between θ13 and θ12 which is shown in Figure 1.23. However, the constraint on
the θ12 coming from the solar experiment only slightly depends on θ13. This explains the constraints
KamLAND and solar experiments bring on θ13 value. Firstly, the upper limit is roughly independent
from the ∆m2

31 value (while ∆m2
21 � L/EKamLAND) since the effect will be averaged out anyway for

smaller frequency. Secondly, it brings a non-significant constraint on θ13 , 0 due to solar constraints
on θ12 (Figure 1.23) that impacts the KamLAND measurement. It explains the effects shown in
Figure 1.22.

1.4.4 Current knowledge on θ13 out of T2K

The current generation experiments has been essentially designed to measure the remaining unknown
mixing angle, the θ13 value. They can be divided in two categories:

• The reactor-based experiments Double-CHOOZ, Daya-Bay and RENO that observes νe disap-
pearance and allow a direct measurement of θ13.

• The accelerator based experiments T2K and NOνA that measure the combined effect of θ13 (and
other mixing angles) and δCP through νµ → νe/νµ → νe oscillations. The parameters θ23 and
∆m2

32 can be also constrained mainly through νµ disappearance. Though small, the matter effects
can be also probed and provide constraints on the ∆m2

32 sign.

In July 2001, the T2K collaboration published the first indication of a non-zero θ13 value with a
2.5σ confidence level. This result was confirmed in December when the Double-CHOOZ collaboration

45



CHAPTER 1. NEUTRINOS IN THE STANDARD MODEL AND BEYOND

Figure 1.23: Constraint on the θ13 and θ12 parameters in 2008 [32] coming from the KamLAND and solar
experiment interplay.

published its results that increased to 3σ the confidence in a non-zero θ13 value when combined with
MINOS and T2K. The observation (> 5σ) of a non-zero θ13 value was operated by the Daya-Bay
collaboration in April 2012 [29]. The measured value at that time was: sin2 2θ13 = 0.092± 0.016(stat)±
0.005(syst). Since that time, both RENO [30] and additional constraints from Daya-Bay have confirmed
this result and increased the constraints on θ13 to the present value:

sin2 2θ13 = 0.093 ± 0.008. (1.4.23)

We will see in Chapter 2 that the T2K experiment has also observed a non-zero θ13 value observing
neutrino appearance [31], but these results indicate tensions with the current θ13 reactor value.
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Chapter 2

The Tokai to Kamioka experiment

We are trying to prove ourselves wrong as quickly as possible, because only in that way can we find progress.

Richard P. Feynman

2.1 Physics motivations

T
he T2K experiment has been designed to study neutrino oscillations, particularly in the νµ
to νe appearance and νµ disappearance channels. It is a long baseline experiment with a
high intensity νµ flux produced at J-PARC (Japan Proton Accelerator Research Complex)

and detected 295 km away in the Water Cherenkov detector Super-Kamiokande (SK). A complex of
near detectors is installed at 280 m from the target, in order to monitor the neutrino beam flux. In
this complex, the INGRID detector is located on the neutrino beam axis, while the ND280 detector is
located on the alignement of the target and SK, 2.5◦ away from the neutrino beam axis. A schematic
view is shown in Figure 2.1. The main goals of the T2K experiment are:

1. Observe the first νµ to νe oscillation. This would directly imply the oscillation amplitude term
θ13 , 0.

2. Measure with world leading precision the amplitude and frequency terms θ23 and ∆m2
32. The

most straightfoward channel is the νµ disappearance channel.

3. If θ13 , 0, T2K can probe the CP symmetry violation in the leptonic sector for the first time.
This may be achieved by comparing νµ to νe and νµ to νe appearances.

In this Section, we will describe in details the 3 main T2K goals in the light of the changes
on mixing parameters shown in Table 1.4.

Figure 2.1: The T2K experiment layout.
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Figure 2.2: The T2K experiment data taking history for the data sample used in this thesis. One identifies the
contributions of run one to four data, along with the increasing beam intensity.

2.2 The T2K experiment

2.2.1 The off-axis technique

T2K is the first off-axis neutrino experiment: the neutrino beam is not directly aimed at the SK far
detector but 2.5◦ away. For comparison, though the MINOS and OPERA experiments are on-axis, the
NOνA experiment is also off-axis. Though aiming a neutrino beam off-axis highly reduces its intensity
at the detectors, the current generation of long baseline neutrino experiments uses this technique due
to its very interesting benefits.

Oscillated neutrino maximisation

We introduced that the neutrino oscillation depends on the ratio between the neutrino baseline and
energy. Assuming a fixed baseline for an experiment, only a narrow band in the neutrino spectrum has
a non-negligible probability to oscillate before reaching the far detector. This is shown in Figure 2.3
for the on-axis beam. On top of this, an on-axis experiment induces a large contamination from non-
oscillated neutrinos that may directly impact the measurement if muons are misidentified as electrons.
Finally, it implies an important constraint on the choice of the baseline in relation with the energy of
the accelerator that produces neutrinos. In the case of T2K, important constraints were given on the
baseline since the SK detector was already installed and the geography of Japan implied to install the
accelerator complex near the sea shore. Therefore, the neutrino energy (and so, the proton one) should
have been chosen very carefully according to the T2K experiment needs, and the knowledge on the
∆m32 frequency at that time. First, the J-PARC accelerator complex is not only dedicated to T2K.
Second, an unfortunate baseline and energy choice could have highly impacted the T2K discovery
potential in case of a slight mis-estimation of ∆m32. The off-axis technique solves these issues since it
allows to select the neutrino beam energy by varying its angle with the target-SK direction.
In the case of a neutrino beam (we will see that T2K can also produce antineutrino beam), most of the
νµ production occurs through the pion decay process: π+ → µ+ + νµ. Assuming a massless neutrino,
its energy may be written as a function of its angle θ with the pion direction and the pion momentum
as:

Eν =
m2
π − m2

µ

2(Eπ − pπ cos(θ))
(2.2.1)

For a given Eπ, one observes that Eν is decreasing with θ due to a lower effect of the pion boost. The
behaviour of Eν is less straightfoward and is shown in the right part of Figure 2.3. First, one observes
that the neutrino energy is reduced with the off-axis angle. Second, one sees that the neutrino energy is
relatively independent from the pion momentum value for off-axis angles above 2. Therefore, one can
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(a) T2K neutrino flux with off-axis angle (b) Eν dependency with pπ

Figure 2.3: The neutrino spectrum with the T2K beam off-axis angle (left). On the right is shown the behaviour
of the neutrino energy with their parent pion momentum for different off-axis angles. The neutrino energy is
reduced with the off-axis angle, and so is its dependency on pion momentum. This allows to tune the neutrino
energy while narrowing its energy spectrum. Taken from [48].

align the neutrino flux mean energy around the maximum oscillating region and minimise the number
of non-oscillated neutrinos (background) by reducing the spectral width. This technique is particularly
adapted to neutrino beams since they have a broad energy spectrum due to the impossibility to focus
neutral particles and to the the short average distance crossed by their pion parent that prevents from
accurately focusing them. The counter-part of this technique is a decrease in the total neutrino rate,
despite a gain in the absolute number of oscillated neutrinos (Figure 2.3). In the future, this may be
solved by focusing the muons that have a longer lifetime than pions and using their decay neutrinos.
The T2K 2.5◦ off-axis angle shifts the average energy of the neutrino beam from 2.7 GeV on-axis to
700 MeV at the off-axis detectors. One understands that it is crucial to measure the off-axis angle
with a high accuracy since it highly impacts the neutrino spectrum rate and shape. The INGRID
on-axis detector has been explicitly installed for this purpose.

Reduction of background contamination

The off-axis technique considerably reduces the background due to beam intrinsic νe (non-oscillated at
SK) which is the dominant background at SK in the νe appearance analysis. We have summarised in
Table 2.1 the different meson and muon decay modes contributing to the νµ flux (may be applied to νµ
by using the corresponding antiparticles). One observes that the νµ are mainly produced by π+, and
by charged and neutral K. However, a non-negligible fraction of K also produce νe contamination, and
so do π− which decay in νµ. On top of this, the µ+ decay also increases the νe and νµ production. One
observes that their impact is limited by an appropriated choice of the decay volume (95 m) compared
to the muon average flight distance.
In a nutshell, most of the νµ come from π+, while the main fraction of νe and νµ contamination is due
to µ+ for low energy neutrinos (Eν < 1.5 GeV) and by K decay for higher energy (Eν > 1.5 GeV). This
scheme is summarised in Figure 2.4.

The choice of the off-axis angle reduces Eν and implies that most of the νe contamination is due to
the µ+ decay. One shows [49] that the angular dispersion of νe produced by µ+ decay is smaller than
the one resulting from K decay. This explains why the νe intrinsic contamination decreases with the
off-axis angle. Quantitatively, the νe intrinsic contamination is reduced from 1% to 0.5%.
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(a) νµ (b) ν̄µ

(c) νe (d) ν̄e

Figure 2.4: Neutrino spectra at SK shown according to their parent particle and a 2.5◦ off-axis angle.

Meson Average travel distance Decay mode Branching ratio
π+ 8 m π+ → µ+ + νµ 99.988%

π+ → e+ + νe 0.012%
K+ 4 m K+ → µ+ + νµ 63.55%

K+ → π+ + N · π0 with N=1 or 2 22.42%
K+ → 2π+ + π− 5.59%

K+ → π0 + e+ + νe 5.07%
K+ → π0 + µ+ + νµ 3.35%

K0
L 16 m K0

L → π− + e+ + νe 40.55%
K0

L → π− + µ+ + νµ 27.04%
µ+ 660 m µ+ → e+ + νe + νµ 100%

Table 2.1: Summary of the decay modes of the produced mesons in the T2K experiment that will lead to
neutrino production. We assumed a neutrino mode, though this can also be applied to the anti-neutrino case
by changing the particle signs. Only the decay modes for branching ratios > 0.01% are shown here. The µ+

are produced through meson decays and have been shown here since they interfere in the neutrino production.
Mostly taken from [49].
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Figure 2.5: The J-PARC accelerator complex. The acceleration sequence is shown from the LINAC to the main
ring. Extracted from http://www.teilchen.at/news/334.

2.2.2 The Neutrino Beam

Unlike experiments at the LHC where the largest possible energy is required to favor the discovery
of new particles, neutrino accelerator experiments mainly focus on very high intensity beams to com-
pensate neutrino very small cross sections. As we have seen, the neutrino energy mainly imposes the
baseline of the accelerator experiment to study oscillation. It impacts the neutrino rate due to cross
section variation in the GeV region, as will be seen in Chapter 5. This variation (∝ Eν for Eν > 1 GeV)
is not of first importance relatively to the beam intensity, and is mainly due to the cross section
increase of deep inelastic processes which are poorly known currently (Chapter 5).
The T2K beam is produced at the J-PARC facility, located in Tokai, Japan. The whole accelerator
complex is a collaboration between KEK (The High Energy Accelerator Research Organization) and
the Japan Atomic Energy Agency (JAEA), and its construction started in 2001. The J-PARC complex
is composed of several accelerators to produce an intense proton beam used for various experiments.
Particularly, the intense T2K neutrino beam is generated by the decay of mesons and muons result-
ing from the 30 GeV proton beam hitting a carbon target. The neutrino beam production can be
separated in a primary and secondary beam line that we will describe.

Proton acceleration

The high intensity proton beam is obtained by a serie of 3 accelerators illustrated in Figure 2.5.

The linear accelerator (LINAC) The first acceleration step is performed by a standard 249 m linear
accelerator. H− ions are produced with a 50 keV energy and accelerated up to 181 MeV through
a sequence of radio-frequency quadrupole (up to 3 MeV), drift-tube LINAC (up to 50 MeV) and
two synchrotrons. The maximum beam power is 30 kW. The ion spread in momentum is limited to
∆p/p < 0.1% to be injected in the following RCS.

The Rapid Cycling Synchrotron (RCS) The H− ions are converted to protons by hitting charge-
stripping foils at the RCS injection. The 348 m RCS accelerates the 181 MeV beam up to 3 GeV
using radio-frequency cavities with a 25 Hz cycle. Magnetic alloy core radio-frequency cavities are used
to obtain an important electric field gradient (20 kV/m) which was not possible with classical ones.
The proton beam trajectory is curved using 24 dipole magnets and is focused using 60 quadrupole
magnets. The protons are then injected either in the “Material and Life Science Experimental Facility”
(MLF) or in the final accelerator prior to neutrino production, the main ring.
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Figure 2.6: The T2K neutrino primary beam line. It is divided in three main sections: the preparation (Prep.),
the arc (Arc) and the final focusing (FF) sections prior to hit the target (TS).

The Main Ring (MR) The main ring is a 50 GeV synchrotron. It is composed of three linear sections
of 116.1 m and three circular 406.4 m long sections for a total length of 1567.5 m. The proton
beam trajectory is curved by a 96 dipole magnets and focused by 216 quadrupole and 72 sextupole
non-superconducting magnets. The proton acceleration is performed using the same radio-frequency
cavities as used in the RCS. Though the MR has been designed to accelerate protons up to 50 GeV,
it is now limited to 30 GeV with an average beam power of 150 kW. It will reach the nominal 750 kW
value in the next years. The accelerated proton beam is then extracted in two different ways: a “slow
extraction” to supply the “Hadron Experimental Facility” or a “fast extraction” for the neutrino beam
line.

The neutrino primary beam line: from proton extraction to target

The protons are extracted from the main ring to the neutrino primary beam line within a single turn
(“fast extraction”). This fast extraction is performed by five kicker magnets and a set of eight septum
magnets. The fast extraction is compulsory to keep the proton beam time structure which is the main
discriminator between signal and background in the downstream detectors. The extraction may be
repeated every two seconds. We will detail the beam structure at the end of this section.
The primary beam line main purposes are both to steer the neutrino beam towards the near and far
detector complex and to focus the beam on the carbon target. The first 54 m of the primary beam line
is a linear part that prepares the beam to be accepted by the following arc section (see Figure 2.6).
The latter is a 147 m arc section that curves the beam direction by 80.7◦ to guide it towards the ND280
complex and SK. At this stage, superconducting magnets are used both to focus and guide the proton
beam. Finally, the proton beam enters the last focusing section where ten normal conducting magnets
guide the beam 3.64◦ downward, toward the far SK detector. It takes into account the curvature of
the Earth and the off-axis angle. In addition, this section focuses the proton beam for the last time
before it reaches the target.

In the primary beam line, both beam position and intensity are monitored using four devices
(see [50]):

• The ElectroStatic Monitors (ESM) that monitor the beam position.

• The Secondary Segmented Emission Monitors (SSEM) that monitor the beam profile.

• The Beam Loss Monitors (BLM).

• The current transformers (CT) that measure the proton beam intensity.
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Figure 2.7: A current transformer (CT02) photo. This device is crucial to monitor the number of protons on
target.

Figure 2.8: The T2K neutrino secondary beamline.

We’d like to draw the reader’s attention especially on the five CTs located along the primary beam
line to monitor the proton beam intensity. Their positions are shown in Figure 2.6 and a CT picture
is displayed in Figure 2.7. These devices have a crucial importance in the T2K analysis since they
directly impact the neutrino rate. We will use them in Chapters 5 and 6 to determine the number
of protons on target (POT). We will only use the information of the very last CT on the beamline
(CT05) which measures the most downstream beam condition before protons hit the target.

The neutrino secondary beam line: from target to neutrinos

The secondary beam line allows to obtain a neutrino beam from the incoming protons. It is made of
a carbon target, three high current toroidal field magnets known as “horns”, a decay volume and a
muon monitor detector. The horns are located into a target station filled with helium gas, which is
connected to the downstream decay volume. There is a distance of 115 m separating the target from
the muon monitor (see Figure 2.8). The role of each of these constituents is detailed hereafter.

Meson production in the carbon target The incoming protons hit a graphite target to produce mesons,
which are mainly π+/− and K+/−. More positive mesons (π+ and K+) are produced due to charge
conservation reasons. The target is a cylinder of 26 mm diameter for a 90 cm length shown in Figure 2.9.
The choice of the material and shape of the target is essentially based on two different constraints:

• The target durability. When exposed to the intense proton beam, the target undergoes a high
temperature elevation and damages from radioactivity. The material must have a relatively low
atomic number (temperature rising is approximately linear with the number of nucleons) and
high fusion and sublimation points to prevent from melting. The graphite matches these two
criteria.

• The target volume. The target diameter must be large enough to encompass the entire proton
beam. The target must be long enough to maximise the number of interacting protons but thin
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Figure 2.9: The T2K target inserted in the first horn.

enough to prevent secondary particles from re-interacting in the target.

The target is located inside a cooling helium gas vessel, along with the three horns. As shown in
Figure 2.9, the target is placed inside the first magnetic horn to prevent from an important depletion
of the beam intensity due to the angular dispersion of the parent mesons. This will be described in
the next paragraph.

The meson focusing horns Three magnetic horns are used to select positive or negative charge mesons
and focus the meson beam. The horns produce a toroidal field that allows to select either the π+, K+

to generate a main neutrino beam, the π−,K− to generate a main anti-neutrino beam, and to defocus
the particles with the opposite charge. This operation is only done by reverting the horn current.
The horn current is pulsed with the beam spills, and designed to operate up to 320 kA. As for now,
T2K is operating with a 250 kA current in the horns. The horns are necessary to produce an intense
neutrino beam in the direction of the near and far detectors. Typically, a horn reduces the meson
angular dispersion by a factor of two. In the case of T2K, the first and second horns being relatively
close, the three-horns system is equivalent to a two-horns complex (see Figure 2.10).
The focused mesons with appropriate charge then cross the decay volume.

Neutrino production in the decay vessel The decay vessel is a 96 m long volume which is “almost”
paved-shape and is filled with helium gas (to reduce the pion absorption). Its transverse dimensions are
1.4 m (width) ×1.7 m (height) upstream, and 3.0 m (width) ×5.0 m (height) at the end of the tunnel.
As was discussed in Section 2.2.1, the decay volume is long enough to maximise the amount of decaying
pions (< LDecay >' 8 m) though preventing a large amount of µ+ from decaying ((< LDecay >' 260 m).
The helium gas reduces the possible pion re-absorption that may occur in the air. A picture of the
decay vessel is shown in Figure 2.11.

The decay vessel ends with a large beam dump to stop the remaining hadrons and low energy muons
Eµ < 5 GeV. The beam dump material (graphite, iron and copper) and shape has been designed to
minimise the possibility of melting. The high energy muons are detected in the downstream muon
monitor.

The Muon Monitor (MuMon) The MuMon is located just downstream the beam dump, 118 m away
from the T2K target (Figure 2.8). It has been designed to detect the high energy muons escaping from
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Figure 2.10: Schematic view of the T2K target and 3 horns just upstream the decay volume. The latter can be
partially seen on the right.

Figure 2.11: Transverse picture of the T2K decay vessel.
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Figure 2.12: The muon monitor (MuMon). The ionisation chamber is shown on the left and the PIN
photodiodes-based detector on the right. The muon and neutrino beams go from the left to the right.

the T2K beam dump. It has been installed to monitor both neutrino beam direction and intensity
through the measurement of the muon beam characteristics. The MuMon has a 3% resolution on the
neutrino beam intensity and 0.25 mrad resolution on the beam angle. We will describe in more details
this detector since we have used it in the Lorentz violation search that will be presented in Chapter 6.
In particular, it is important to highlight that the MuMon has intrinsic resolutions of 0.1% and 0.3 cm
respectively on the “muon beam” intensity and center position.
The MuMon is constituted of two independent detectors, shown in Figure 2.12. Both detectors cover a
transverse 1.50×1.50 m2 area. The upstream detector is constituted of seven ionisation chambers, each
containing seven sensors in a 150×50×1956 mm3 aluminium gas tube. The sensors are parallel alumina-
ceramic electrodes between which a 200 V voltage is applied (sensor active volume=75× 75× 3 mm3).
The ionisation chamber gas is either Ar with 2% N2 for low beam intensity or He with 1% N2 for high
intensity. The gas temperature, pressure and oxygen conditions are respectively kept at 34◦C with a
1.5◦C gradient with a ±0.2◦C uncertainty, 130 ± 0.2 kPa and below 2 ppm.
The downstream detector is based on 7 × 7 PIN Hamamatsu photodiodes. Each photodiode has a
10 × 10 mm2 active area with a depletion layer of 300 µm thickness.

The neutrino beam structure We will describe the neutrino beam structure that will reach the near
(ND280 and INGRID) and the far (SK) detectors. We have seen that the beam is composed mainly
of νµ with a 0.5% intrinsic νe contamination in the neutrino mode. The off-axis technique involves a
neutrino energy peaked around 700 MeV for the off-axis detectors.

Interest of a pulsed beam We have seen that the fast extraction technique allows T2K to keep the
MR proton beam structure. The main interest of this structure is to use pulsed current horns which
are necessary given the very high intensity of the current. As we observe, it allows to reduce the
background contamination (cosmic muons, atmospheric neutrinos...) using the time coincidence of
the detected event with the expected beam time arrival.

Beam structure The current T2K beam has a spill structure. One spill occurs every 3.5 s (kicker
magnet extraction) and beam bunches are spread over a 4.2 µs time window. Each spill is made of
eight neutrino bunches of 60 ns that occur every 581 ns in the spill. At the nominal 750 kW MR
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Figure 2.13: The T2K near detector complex. The INGRID vertical and horizontal modules can be seen on the
bottom part. The ND280 off-axis detector is visible on the top part with its magnet open.

intensity, each spill corresponds to 3.3 × 1014 protons. During the T2K Run I (March to June 2010),
only six bunches per spill were delivered.

2.2.3 Near detectors

The near detector complex is located 280 m downstream the T2K target. It is constitued of an on-axis
detector, INGRID, and an off-axis detector complex named ND280. The whole near detector complex
is presented in Figure 2.13. Each detector has a specific use that is detailed in this section. Since
most of the work shown in this thesis has been accomplished using the on-axis detector, we will only
briefly introduce the off-axis detector before giving more details on the on-axis one.

The ND280 detector complex

The important uncertainties (∼ 10%) on the neutrino flux require a near detector to control the
neutrino flux prior to any oscillation. Ideally, this detector would be a replica of the far detector
and should intercept the very same flux in order to cancel the relative systematic error. In practice,
this is obviously complicated with one neutrino beam: the cylindrical 33 m diameter SK located at
295 km would require a water Cherenkov near detector having a 30 cm diameter at 280 m. Without
considering any statistical issue and detector capability of such a small detector, the different size in
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the detector would fatally imply edge effects (the Cherenkov shower length for a given muon energy
is fixed). In addition, the interacting target would be too small to observe the neutrinos, without
considering the impossibility to reconstruct the Cherenkov ring in this case. We have taken this small
example to summarise both the crucial importance of ND280, but also some of its limitations:

• The near detector reduces the > 10% uncertainty on the neutrino fluxes by measuring both
the flavour composition and spectra of the off-axis beam. In fact, the ND280 measurement
is a convolution of both the flux and the interaction neutrino cross sections. The spectra are
measured according to their production mode in ND280 to maximise the constraints on the
extrapolated SK flux. The production modes are classified upon their final states as charged
current interactions CC-0π (νµ + n → µ− + p), CC-1π (νµ + n → µ− + p + π+/−), CC-Others or
neutral current interactions NC. The detailed classification of each interaction will be given
in Chapter 5. We highlight here that neutrinos are mainly detected through CC-0π processes
at T2K neutrino energies (Eν < 1 GeV). Each type of charged current interaction is fitted
independently. The difference between SK and ND280 intercepted flux implies a non trivial
extrapolation of the ND280 measuremeants to the SK detector. The difference between ND280
(mainly downstream-going particles) and SK detector (∼ 4π) acceptance for secondary particles
naturally amplifies this difference. This implies that the extrapolation can only be done using the
T2K simulation, and that the result will be affected by a non-vanishing difference coming from
neutrino flux uncertainties. On top of this, the two detectors have a different target material
(Hydrocarbon in ND280, water in SK) which naturally generates an uncertainty coming from
the neutrino cross section ratio between hydrocarbon and water.

• The main background in the SK observation of oscillated νe (roughly one half of the total
background) is the intrinsic νe beam contamination. ND280 is crucial since it measures this
contamination to reduce the associated systematics in the neutrino oscillation measurements.

• The second main background at SK for the νe appearance search is due to νµ or oscillated
ντ NCπ0 interactions (roughly one third of the total background), where the π0 decays in two
photons which in turn create Cherenkov rings by converting into e+/e−. For this reason, a ring
associated to a photon is 99% similar to a pure electron ring. If one of the two photons is missed
(superimposed rings or faint ring), this event may be mistaken with a one ring electron event
which is the signal of a νe interacting through a CC-0π interaction. The ND280 detector should
measure the NCπ0 cross section with the highest possible accuracy to reduce the uncertainty
associated to this reaction. In the same way, the NC-1π+ and CC-1π+ are important backgrounds
in the νµ disappearance analysis. Their accurate measurement by ND280 is also one important
goal of this detector.

To perform these measurements, the detector is composed of several sub-detectors shown in Fig-
ure 2.14. All the ND280 sub-detectors are installed within the former UA1 and NOMAD experiment
magnet except the side muon range detector. The magnetisation is essential to discriminate the par-
ticle charges. The magnet generates a transverse horizontal magnetic field relatively to the neutrino
beam direction. The magnet inner space is a rectangular parallelepiped of 88 m3 volume. The T2K
experiment operates the magnet with a 3 kA current which corresponds to a 0.2 T magnetic field
inside the magnet.
The T2K neutrino beam will first go through the π0 detector (P0D) before reaching the Tracker com-
posed of three Time Projection Chambers (TPC) and two Fine Grain Detectors (FGD) and going
through the downstream electromagnetic calorimeter (Downstream ECAL) as shown in Figure 2.14.
A typical neutrino event interacting in the upstream FGD is shown in Figure 2.15

The π0 detector (P0D) The P0D has been designed especially to measure the NCπ0 cross section in
water. This detector is composed of three successive modules. The external modules are used as
electromagnetic calorimeters and are made of seven vertical and horizontal scintillator planes inter-
leaved with 4 mm lead planes. The central module contains both the water target and a tracker. In
this central part, twenty-five vertical and horizontal scintillator planes are interleaved with twenty-five
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Figure 2.14: The off-axis ND280 near detector complex. The external former UA1 magnet surrounds the POD
(green), TPCs (orange), FGDs (light green) and calorimeters (black and grey). The external SMRDs are shown
in red.

Figure 2.15: A typical events occuring in the first (upstream) FGD and propagation to the downstream TPCs,
FGD and calorimeters. One observes the shower produced by the passage of the bottom particle in the second
FGD.
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Figure 2.16: Simplified cut-away drawing showing the main aspects of the TPC design.

(3 cm long) water target planes and twenty-fiv (1.6 mm long) brass planes to increase particle energy
loss. The total target mass is 2850 kg. The strategy to determine the NCπ0 cross section only on water
(mainly oxygen) is to remove the contribution of brass and carbon scintillator targets by comparing
the cross sections measured in the P0D water filled and water out.

The Tracker The neutrino spectra, intrinsic νe contamination and various cross sections are mea-
sured in this detector. As such, this detector possesses a powerful particle identification to determine
the secondary particle of the different cross section types. The two FGD constitute the main neu-
trino target of the tracker. The upstream FGD is only made of thirty horizontal and thirty vertical
polystyrene scintillator planes, that constitute both the hydrocarbon target and a fine grain tracker.
Each scintillator has dimensions of 0.96 × 0.96 × 184.3 cm3. The downstream FGD is made of seven
horizontal and seven vertical similar scintillator planes with six (3 cm) long water planes. The water
and hydrocarbon target of this FGD allows to measure their relative cross section in order to reduce
the uncertainty arising from the target difference between ND280 and SK. The mass of each of the
FGD is ∼ 1 ton.
The TPC allows to reconstruct charged particle tracks with a very high resolution. It is mainly neces-
sary to determine the particle track curvature in the magnetic field to measure the particle momentum
and charge. The TPC are 2.5×2.5×0.90 m3 volumes filled with an inner Ar based gas and an outer CO2
insulating gas (see Figure 2.16). A high voltage is applied between the surrounding dynodes to drift
the particles ionised along the track. The particle position transverse to the electric field (longitudinal
and one transverse direction from neutrino beam direction) can be therefore directly measured, while
the longitudinal coordinates along the electric field should be extrapolated from the ion drift time.

The Calorimeter The tracker is surrounded by a barrel and a downstream electromagnetic calorime-
ters that are used to identify and measure the energy of the particles that leave the tracker. For
example, they are used to measure the decay electron energy from the νe interactions or the photon
energy from the π0 decay. Each side and downstream module is made of thirty-two scintillator planes
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separated by thirty-one 1.75 mm lead planes. The downstream module has three more scintillators
and lead planes.

The side muon range detector (SMRD) Finally, side muon range detectors are installed out of the
magnet (red external detectors in Figure 2.14). Their primary goal is both to veto the incoming cos-
mic muons, but also to measure the high angle muons that are difficult to reconstruct with the TPC.
They are made of four to five scintillator planes.

We will give some more details on the use of ND280 in the neutrino oscillation measurements in
Section 2.3.

INGRID

INGRID (Interactive Neutrino GRID) is the on-axis detector of the T2K experiment. It has been
designed for two main purposes:

• Monitor the neutrino flux intensity.

• Monitor the neutrino beam off-axis angle

Ideally, this detector would give real time informations. It is not possible due to the very low neutrino
cross section. Therefore, a day by day information is provided instead. The measurement along the
proton beamline and the muon flux detected in the MuMon are then used on top of INGRID to give
a real time information.
The INGRID detector basically needs a high interaction rate to monitor the beam in a short period,
coupled with a device to detect the decay products of the neutrino interaction. The most straight-
foward way is to detect the associated lepton (µ− in the neutrino beam) produced during neutrino
charged current interaction in the detector (∼ 75%). The neutral current interactions are much more
difficult to reconstruct, and only represent 25% of the total.
Moreover, INGRID should have an important space coverage in order to monitor the beam shape
and center since the beam average width is ∼ 10 m at 280 m from the target. For this purpose,
the INGRID detector is a complex of modules assembled in a cross-shape structure, made of seven
horizontally aligned and seven vertically aligned “standard INGRID” modules. A picture of INGRID
is shown in Figure 2.17. The modules are placed every 1.5 m for a total 10.3 m horizontal and vertical
transverse width. The neutrino beam first reaches the vertical modules and 4 m downstream, the
horizontal ones. In addition, two “shoulder” or “off-cross” standard modules have been installed to
monitor the beam shape asymmetry. Finally, a different module, the “Proton Module” (PM) has been
installed in 2010 in between the central horizontal and vertical INGRID modules to study neutrino
cross sections.

INGRID standard module A standard INGRID module is a longitudinal sandwich of eleven scintilla-
tor tracking planes and nine iron target planes in between (Figure 2.18). A tracking plane is composed
of one vertical plane and one horizontal plane pressed against one another (with isolation in between),
each made of twenty-four scintillator bars. Each tracking plane has therefore fourty-eight channels,
and a proper electronic board. The INGRID scintillator are bars which are 120.3 cm long, 5 cm wide
and 1 cm thick. A scintillator plane has therefore a 120.3 × 120 × 1 cm3 dimension. The INGRID
iron layers have the same transverse dimensions as the tracking planes, but a longitudinal thickness
of 6.5 cm, to increase the interacting rate of incoming neutrinos. Note that the most downstream iron
plane has not been installed as shown on the event display in Figure 2.19. We will see that it has
no incidence on the neutrino rate, since the reconstruction requires several consecutive and “active”
tracking tracking planes to remove the background. Each of the scintillator planes is isolated from the
incoming direct light using black plastic foils. The INGRID tracking and iron layers are supported by
a mechanical structure and are not pressed against one another. The distance between two INGRID
tracking planes is 10.7 cm. The dimension of an INGRID module (without its veto planes) is therefore
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Figure 2.17: The INGRID front (left) and upper (right) view from the on-going neutrino beam.

Figure 2.18: A standard INGRID module. On the left, we have shown the module inner part with the blue iron
layers and the black scintillator planes. We have shown the same module on the right with the bottom, top and
side “veto planes” (black) added.

120.3 × 120 × 109 cm3. The main neutrino target in a module is constituted in average by 785 kg of
iron.
Each INGRID module is embedded in a larger structure composed of four additional scintillator lay-
ers that are used as veto. No additional layer is added on the front since the first tracking plane can
be directly used as a veto. A veto plane is composed of only one layer of twenty-two scintillators.
The scintillator shapes are similar to the INGRID standard tracking plane, at the minor difference of
being slightly longer for the top and side veto planes (129.9 cm) and slightly shorter for the bottom
one (111.9 cm) in order to maximise the active area and take into account the mechanical structure
geometry. The INGRID module with its veto planes has a volume of 124 × 124 × 109 cm3. Note that
the inner horizontal INGRID modules have not any veto on their right but use the left veto planes
of their right neighbour module instead. The same goes for the bottom plane of vertical modules.
Modules in the cross are separated by 26 cm, which justifies this common use of veto planes.

Since the beginning of T2K, more than 6 · 106 νµ have been detected in the INGRID cross modules.

The Proton Module (PM) The PM detector has been installed to study the neutrino cross sections. In
most of the cases, only the charged lepton can be seen when a neutrino interacts in a standard INGRID
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Figure 2.19: Typical event dislay occuring in INGRID modules. On the left, we have shown the separated side
and top 2D views, where the red dots represents the particle energy deposition. The brown and green rectangles
represents respectively the iron and the scintillator layers. One observes the lack of iron layer between the
two last scintillator planes. The same event is shown on the right (in yellow), with the vertical and horizontal
scintillator hit as shown in blue and red respectively.

module. Though it allows to measure the charged current interaction rate on iron (“CC-inclusive”), it
has absolutely no capability to discriminate between the different charged current interaction types,
nor to reconstruct most of the neutral current interactions. For this reason, the PM was installed in
between the INGRID vertical and downstream horizontal modules. Considering its goal, the iron layers
have been removed as compared to an INGRID standard module, in order to possibly reconstruct the
tracks of pions and protons, giving the eponymous name to this module. The counter-part is the
reduction of the neutrino statistics as compared to a standard INGRID module. To maximise the
detector capabilities, the vertical and horizontal scintillator planes in a module are not pressed against
one another anymore, except for the most upstream vertical and horizontal planes. Each scintillator
plane is now longitudinally spaced from its neighbour by 2.3 cm. Moreover, the number of scintillator
planes has been increased from 11×2 to 18×2, mainly to increase detector acceptance, reconstruction
and particle identification since the stopping matter has been clearly reduced from a standard INGRID
module [48]. The PM dimensions (with the veto) are 124 × 124 × 81.8 cm3 from the front of the first
scintillator plane to the end of the last one. The PM has also four veto planes (bottom, top and two
side planes) which are the same as for INGRID standard module. We describe hereafter the structure
of the inner planes.
The two most upstream planes are gathered in a tracking plane as in INGRID, where the vertical and
horizontal planes are each composed of twenty-four scintillators. On the other hand, the thirty-four
other planes are different from in INGRID standard modules (Figure 2.20). For these, each scintillator
plane is composed of thirty-two scintillators:

• eight INGRID type scintillators (dimensions 120.3 cm×5 cm×1 cm) on each external parts of the
plane, so sixteen scintillators in total. This represents a transverse active area of 2×120.3×40 cm2.

• sixteen SciBar type scintillators (dimensions 120.3 cm×2.5 cm×1.3 cm) in the central part of the
plane. This represents a transverse active area of 120.3 × 40 cm2.

The SciBar type scintillators (2.5 cm) are one half narrower than the INGRID type scintillators
(5 cm). They have been installed in order to increase the detector granularity in the central part
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Figure 2.20: On the left, the PM is shown. On the right, a PM side view is shown to illustrate the scintillator
plane positioning.

where most of the reconstructed events have tracks. As an example, the detector angular resolution
for a track produced in the center of the module is 3.5◦ using SciBar type scintillators instead of 6.8◦

for the INGRID type scintillators. This detector resolution is mainly used to discriminate between
the different tracks produced near the neutrino vertex. In most of the case where several tracks are
produced, the tracks being produced in the neutrino beam direction due to momentum conservation.
Therefore, a higher granularity is required especially for the short tracks, to discriminate between the
tracks. As an example, the detector angular resolution for a track crossing 3 × 2 scintillator layers is
30◦ in the case of INGRID type scintillators. This would imply that no short tracks (mainly protons)
could be reconstructed if none of the track angle in the XZ or the YZ plane with the lepton direction
is > 30◦. This would importantly limit the detector acceptance, which justifies the use of narrower
scintillators to reach a 15◦ resolution for these short tracks and identify protons. Note that these
scintillators are slightly thicker, which will positively impact the energy deposition as will be seen in
Chapter 4. This scintillator structure can be seen on the event display of Figure 2.21.
We highlight here that the PM is really close (< 30 cm) from the downstream INGRID horizontal
central module. For this reason, the horizontal module information will be added to the PM for
neutrino events interacting in the latter, as shown in Figure 2.21. This will be the crucial point to
determine the muon momentum in the measurement shown in Chapter 5.

2.2.4 The Super-Kamiokande far detector

The Super-Kamiokande (Super-Kamioka-Nucleon-Decay-Experiment, SK) is the far detector of the
T2K experiment. It is a 22.5 ktons (Fiducial volume) cylindrical water Cherenkov detector. SK
has been operating since 1996, and is currently in its fourth phase. It has been used for solar and
atmospheric neutrino observations, some of which still bringing the best constraints on oscillation
parameters (Chapter 1). The detector is also used to search for the proton decay predicted by unified
theories, or to observe neutrinos emitted by supernovae occuring in the Milky-Way. Its ancestor, the
Kamiokande detector, became famous when observing the 1987A supernova in 1987 [51]. SK has
been installed under the Mount Ikenoyama in a former mine near the Kamioka town, Gifu prefecture,
Japan. It is located 1 km below the peak in order to shield the experiment against most of the incoming
cosmic background. This represents an equivalent 2.7 km water thickness, which stops cosmic muons
having an energy lower than 1.3 TeV.
A schematic view of the whole detector is shown in Figure 2.22. The detector is composed of two
different parts: an outer (OD) and an inner detector (ID), separated by a structure where photo-
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Figure 2.21: An event display of a νµ interacting through a charged current quasi-elastic interaction in the PM.
The produced µ− also crosses the downstream central INGRID horizontal (Module 3).

multipliers tubes (PMT) are mounted. The whole cylinder is filled with ultra-pure water surrounded
by photo-multiplier tubes. It has a 39.3 m diameter and a 41.4 m height. The ID corresponds to the
inner concentric cylinder volume which is 33.8 m in diameter for a 36.2 m height. The part between
the ID and whole cylinder is the OD.

The outer detector (OD) The 1885 8-inches PMTs of the outer detector are facing the pit wall:
they are only mounted on the top, the bottom and the barrel of the common structure with the inner
detector. The walls of the OD are covered with “Tyvek”, a highly reflective material that compensates
the poor PMT coverage in the OD. In fact, this coverage only slightly affects SK analysis since the OD
is mainly used as a veto. It then accomodates with a poor vertex resolution but should mandatorily
collect as much light as possible. The distance from the pit wall to the OD PMT is ∼ 2.6 m.

The inner detector (ID) On the other hand, the ID is composed of 11129 twenty-inch PMTS facing
towards the interior of the detector. They are mounted on the top, bottom and barrel of the inner
detector wall. The PMTs are mounted at a ∼ 70 cm distance from their neighbours. Unlike the OD,
the vertex resolution is essential in the ID and is decreased by the reflected light. Therefore, the PMT
uncovered areas on the wall are covered by acrylic “black-sheet” to reduce the reflection on the wall
as much as possible. The total PMT coverage is about 40% of the total inner detector wall surface.
The inner detector pure water represents a 32.5 kton target area. For the physics analysis, a smaller
fiducial volume is used to remove edge effects (near the walls) where the detector performances are
really low. The fiducial volume is composed of the water volume contained in an inner equivalent
cylinder located 2 m away from the ID walls. The fiducial volume of the SK detector is therefore
reduced to 22.5 kton of water.

The Cherenkov effect

The detection in SK is based on the Cherenkov effect. The charged particle moving faster than light in
water produces an intense light emission, called the Cherenkov light, which is observed in the PMTs.
In the case of neutrino interactions, the decay charged particles as charged leptons, pions or protons
produce Cherenkov light while their speed is higher than the speed of light in the medium. Indeed,
any charged particle interacts with the water medium henceforth producing light. However, for a
particle speed v < cmedium, this light is not emitted coherently and is too faint to significantly activate
the SK PMTs. For particles which have a speed v ≥ cmedium, this light is emitted coherently, and may
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Figure 2.22: The SK tank schematic view. The structure separating the inner and outer detector parts is shown,
along with the reflective Tyvek surface in the latter.

therefore be detected. In this case, the spherical phase front combines coherently in a conic shape
coherent phase front (see Figure 2.23). The cone angle with the particle direction can be estimated
from simple geometrical considerations as:

cos θ =
cmedium

v
=

1
βn

(2.2.2)

where β = v
c and n is the refractive index of the medium. An ultra-relativistic particle in the detector

mainly has a speed close to the speed of light in vacuum when produced. It loses energy (and so, slows
down) interacting with water during its propagation. Particles with relatively low velocities or crossing
an important fraction of the detector will stop their Cherenkov emission when reaching v < cmedium.
The lower the particle velocity is at a given position on its trajectory, the more it interacts with water
and so loses energy. For this reason, we will consider here that the particle travels at the speed of light
in vacuum and suddenly loses all its energy, slowing down under cmedium. Assuming this hypothesis,
the light cone should have a constant angle along the track of the particle in water (n = 1.34) θ ∼ 42.
The slower the particle is, the smaller this angle will be.
When projected on SK wall, the light cone forms an annular light shape that is used for particle
identification.

The muons and electrons interact with the same intensity with the surrounding medium. However,
due to their smaller mass, this similar interaction affects more the electron trajectory than the muon
one. For this reason, the electrons produce a superposition of slightly different light cones, while
muons produce a cleaner light cone. The projected ring on the SK wall is then fuzzier for an electron
and sharper for a muon. This difference is used for the particle identification at SK to discriminate
between their respective parent neutrino νe and νµ. We have illustrated this difference in Figure 2.24.
This separation is a key point to discriminate between the neutrino flavour to study their oscillations.

SK detector use in T2K

The SK detector discriminates the T2K events from the other neutrinos using the spill structure of
the neutrino beam. A specific trigger at SK is based on a signal sent from J-PARC containing the
GPS time of the spill. The GPS time is then corrected by the neutrino time of flight from J-PARC
to SK assuming they travel at the speed of light, which represents a ∼ 984 µs correction. The data
recorded in a ±500µs time window around the expected neutrino arrival time are then saved. Finally,
the timing of the SK PMT hits is checked with a different clock system using a rubidium atomic clock
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Figure 2.23: The Cherenkov effect for a ultra-relativistic particle in the medium. In red is shown the coherent
phase front that will be detected by SK PMTs. Taken from http://skullsinthestars.com/2009/11/20/reversing-
optical-shockwaves-using-metamaterials/

and two independent GPS modules. Only the events that occur in a [−2 µs, 10 µs] time window
around the expected neutrino beam time will be kept for the T2K analysis. Further details will be
given in Section 2.3.

2.3 Neutrino appearance search at T2K

The T2K experiment oscillation analyses are based either on νµ disappearance or νe appearance. The
neutrino flux expected at SK is estimated both using neutrino flux simulation and the constraints
provided by near detector measurements. In this section, we will detail the different steps that lead to
the current T2K oscillation result. We will finally briefly mention the T2K discovery and measurement
potential for the next years.

2.3.1 The neutrino flux prediction

The neutrino flux predictions are estimated for each detector using a Monte-Carlo simulation driven
by the data. The neutrino secondary beamline simulation is produced. The proton interactions in the
graphite target are simulated using the FLUKA software. The meson propagation until the neutrino
beam production is simulated using JNUBEAM, a GEANT3-based Monte-Carlo. This simulation
parameters are tuned according to the primary or secondary beam line measurements (intensity, horn
current...).
The original uncertainties on the neutrino flux prediction are high, due to the poor knowledge on
the hadron production. In order to reduce these uncertainties, the FLUKA simulation is tuned using
external data from the NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) [52][53] collaboration.
This experiment is based at CERN using the SPS to produce a proton beam with the same energy as
in T2K. Two different targets are used: a T2K replica target and a thin target, with a downstream
detector in order to accurately measure and constrain the hadron production in similar conditions as
in T2K. This allows to reduce the T2K simulated beam uncertainty to 10 − 15%. We have shown the
fractional error for the neutrino flux predictions at SK in Figure 2.25. In the phase space region (in
hadron momentum and angle) uncovered by NA61/SHINE, other external data sets [54], [55], [56] are
used to constraint the FLUKA flux prediction.
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(a) µ− ring from a parent νµ

(b) e− ring from a parent νe

Figure 2.24: Event displays of a candidate muon (top) and electron (bottom) events in SK. The T2K cylinder is
“un-rolled”. Each PMT is represented by a pixel whose color depends on the charge measured by the PMT. On
the top view, the large and sharp Cherenkov ring is typical of muons, while the fuzzy and thin Cherenkov ring
in the bottom is an “electron-like” signature. The event timing is also shown.
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Figure 2.25: The T2K flux errors at SK after NA61/SHINE experiment constraints shown for νµ (left) and
νe (right) for a neutrino mode beam. This error only shows contributions from the hadron production errors.
Additional errors as horn current or off-axis angle for example, are finally required. They are significantly
smaller than the hadron production errors.

Figure 2.26: Neutrino beam intensity and direction measured with the INGRID detector for Run I to IV.

2.3.2 The near detector constraints

The beam off-axis angle

The off-axis measurement is crucial to determine the neutrino spectrum in T2K. The INGRID detector
has been especially designed to perform this measurement. Figure 2.26 shows both the neutrino beam
intensity and direction for the T2K run I to IV data. One remarks that the horn current decrease
(from 250 to 205 kA) during the T2K run III-a produces a visible depletion of the neutrino beam
intensity. The beam direction is kept within 1 mrad which corresponds to a 2% systematic effect in
the neutrino flux prediction at SK.

The ND280 constraints

The ND280 detector measures the CC-0π, CC-1π and CC-Others rates and allows to compare them to
the expected number of events. These data constraints are added to the simulation in order to refine
the flux extrapolation at the far detector and decrease the associated systematic error. For comparison
purpose, we have shown in Figure 2.27 the difference between the number of expected and measured
events for these samples, and the impact of ND280 to better constrain them. The constraints are given
according to the lepton (muon most of the time) angle and momentum instead of the neutrino energy
in order to reduce the cross section model dependency (we will detail this for INGRID in Chapter 5).

The systematic error reductions of the νµ and νe extrapolated fluxes at SK are shown in Figure 2.28.

69



CHAPTER 2. THE TOKAI TO KAMIOKA EXPERIMENT

Selection Data MC (before MC (after
ND280 constraints) ND280 constraints)

CC0π 17369 19980 17352
CC1π 4047 4953 4110

CCOther 4173 4545 4119
CC inclusive 25589 29477 25581

Figure 2.27: Impact of ND280 data constraints on MC prediction at ND280. On the left is shown the impact
of ND280 data on the MC prediction for each charged current interactions. On the right is shown the impact of
ND280 on the muon momentum distribution predictions.
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Figure 2.28: Impact of the ND280 constraints on the flux prediction and the associated systematics at SK for
the νµ (left) and νe (center) fluxes. The reduction of the cross section parameters brought by ND280 fit is shown
on the right part. These parameters will be studied in Chapter 5.

The most striking effect is the decrease of the neutrino flux and cross sections uncertainties from > 20%
to ∼ 3% in both the νµ and νe sample. We have also shown the impact of the ND280 constraints on
the cross section errors only, in Figure 2.28.

2.3.3 Oscillations at far detector

The ND280 constrained flux simulation is extrapolated at the SK far detector in order to accurately
predict the neutrino spectra for each flavour. Two different selections are applied on this MC and data
for the νe appearance and νµ disappearance measurements. We will describe here the νe appearance
measurement, but details on the disappearance study can be found in [57].

The νe appearance

The νe event selection is mainly based on the rejection of νµ events, and the reduction of the two main
backgrounds: the intrinsic νe contamination and the NCπ0 interactions. The selection that is applied
is (shown in Figure 2.29):

1. Event fully contained in the fiducial volume (distance to the inner detector wall > 2 m).

2. Only one reconstructed Cherenkov ring to select only the CC0π events (the proton has rarely
enough transferred momentum to produce a detected Cherenkov radiation).

3. The reconstructed ring is “e-like” to remove most of the νµ contamination (rejection efficiency
is ∼ 96% for sin2 θ13 = 0.1). The ring charge profile sharpness is used as the main criterion.
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Figure 2.29: On the left: the event breakdown of the νe event selection. The MC predictions assumes sin2 2θ13 =

0.1. On the right: The logarithm value of the ratio of the π0 likelihood by the e− likelihood in comparison with
the reconstructed π0 mass. One observes the MC predicted π0 background (in blue).

4. The reconstructed electron momentum pe is required to be above 100 MeV/c2 to remove the
low energy background as decay electrons produced by muons (from CC νµ) or pions (from NC)
below the Cherenkov threshold or from surrounding radioactive decays.

5. No decay electron found, to further decrease the rate of misidentified νµ.

6. The reconstructed neutrino energy is positive and smaller than 1250 MeV. As observed in Fig-
ure 2.29, this selection is applied mainly to reduce the beam intrinsic νe contamination. The
beam intrinsic νe have relatively larger energies (broader spectrum) due to their kaon parent at
high energy than the νµ as shown in Figure 2.4. Assuming the νµ spectrum is almost a Dirac
distribution, the oscillated νe has the very same energy than the νµ which is smaller than the
intrinsic νe.

7. The fitQun algorithm π0 rejection criterion is applied. We have shown this criterion on the
left of Figure 2.29. The reconstructed π0 mass criteria is improved (as compared to former
studies) comparing the likelihood of the reconstructed ring to come from a one ring π0 or from
an electron event. Events that satisfy ln(Lπ0/Le) < 175 − 0.875mπ0 (MeV/c2) only are selected.
The NC rejection efficiency of this cut is ∼ 90%.

We have summarised the selection both on data and MC sample in Figure 2.30 assuming sin2 2θ13 =

0.1.

The θ13 , 0 observation In 2013, T2K anounced the first discovery of νe appearance in a νµ beam
with a 7.3σ significance. The non-zero value of θ13 is obtained by estimating the background assuming
sin2 2θ13 = 0 instead of sin2 2θ13 = 0.1 and is presented in Figure 2.29. This result is therefore totally
independent from any assumption on the δCP value since this term only comes if θ13 , 0. The T2K
experiment has observed 28 νe events, for an expected background of 4.92 ± 0.55 in the case of a
no-oscillation scenario. Two shape studies have been performed, with lepton kinematic variables
(momentum/angle) or with neutrino energy that gave similar confirmation of the reactor result. We
have shown the first one in Figure 2.31.

The θ13 and δCP best fit values On top of providing the discrepancy with a non-oscillated background,
the T2K experiment has extracted the constraints on the sin2 2θ13 value assuming δCP = 0. The
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Figure 2.30: Data and the expected signal and background events assuming sin22θ13 = 0.1, sin2θ23 = 0.5,
∆m2

32 = 2.4 × 10−3 eV2 and δCP = 0. From [31].

Figure 2.31: The (pe, θe) distribution for νe candidate events with the MC prediction (magenta) for the best fit
value sin2 2θ13 = 0.140 (normal hierarchy). The background is shown in blue. [31]
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Figure 2.32: The 68% and 90% confidence levels allowed region in the sin2 2θ13-δCP phase space, assuming a
normal (top) and inverted (bottom) hierarchies, taken from [31]. The yellow shaded region shows the average
θ13 values in [13]. The atmospheric parameters sin2 2θ23 and ∆m2

32 are varied in the fit with the disappearance
constraints [57].

associated best fit values and their 1σ errors in the two mass hierarchies was found as:

sin2 2θ13 = 0.136+0.044
−0.033 (NH), sin2 2θ13 = 0.166+0.051

−0.042 (IH) (2.3.1)

One observes the tension between these values and the reactor best fit that we have shown in Chapter 1.
This tension is especially true in the inverted hierarchy since we have seen (Chapter 1) that the
oscillations effect are decreased in this case. A very large θ13 should be therefore introduced to explain
the higher neutrino rate than predicted with the reactor neutrino constraint.
Assuming the large neutrino rate observed at T2K is not only due to statistical fluctuations, this
discrepancy with the reactor measurement can be interpreted as a CP violation effect. The reactors
are not sensitive to any CP violation effect since their observation is based on neutrino disappearance
(the fact that it is antineutrino therefore plays no role). On the opposite, T2K is sensitive to the impact
of δCP in the appearance study as shown in Chapter 1. The difference between the two measurements
can therefore be interpreted as a large effect of CP violation. The θ13 and δCP are therefore fitted
together with T2K data and the result is shown in Figure 2.32 along with the reactor constraint
shaded region. As shown in Chapter 1, the largest CP violation enhancement in T2K appearance
(in neutrino mode) occurs for δCP = −π2 . One observes that the T2K data favour such a large and
negative CP violation parameters to retrieve a mixing angle close to the reactor constraints, given the
unexpected larger appearance effect that was observed. Assuming the reactor constraints for θ13, the
δCP is fitted with the T2K data and the sole δCP parameter constraints are shown in Figure 2.33. The
fit results exclude regions where δCP ∈ [0.19π, 0.80π] and δCP ∈ [−π,−0.97π] ∩ [−0.04π, π] respectively
for the normal and inverted hierarchies.
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Figure 2.33: The log likelihood value as a function of δCP for normal (black solid) and inverted (red dotted),
inserting the reactor constraint on sin2 2θ13 [13]. The likelihood is marginalised over sin2 2θ13, sin2 2θ13 and
∆m2

32. Taken from [31]

Figure 2.34: The uncertainty on the predicted number of signal νe for each systematic uncertainties for two
different assumptions of sin2 2θ13. The uncorrelated interactions come from the part of the neutrino cross
section model uncertainties that cannot be constrained by ND280. Taken from [31].

Cross section model uncertainties Figure 2.34 shows the systematic error on the neutrino appear-
ance result. The largest systematic error on neutrino flux is sub-dominant using the near detector
constraints. As for now, the higher systematic on the T2K appearance results comes from the uncer-
tainties on cross section models. Since the CP violation search is provided through the appearance
channel, the cross section uncertainty is the dominant error that reduces the T2K sensitivity to CP
violation. Moreover, this systematic error will not be reduced by comparing neutrino and antineu-
trino, given the difference between the cross sections in these two modes. This conclusion motivates
the measurement of the neutrino charged current quasi-elastic interaction that we will present in
Chapter 5.
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Chapter 3

Experimental study of light scattering in
Super Kamiokande using single cone
generator data

La pensée n’est qu’un éclair au milieu d’une longue nuit, mais c’est cet éclair qui est tout.

Henri Poincaré

3.1 Introduction

I
n the search of the νe appearance in the T2K experiment, the particle identification in SK
plays a major role in the νµ and νe separation. This particle identification is based on
the shape of the Cherenkov ring produced by ultra-relativistic particles in the SK water.

More precisely, the identification is done using a likelihood of the “charge profile” created by particle
Cherenkov light in the detector. The “charge profile” represents the charge deposition in the SK PMTs
with the angle to the particle direction. The ring charge is therefore integrated through rotation over
the particle direction. It has been observed in various samples, a charge deficit in the backward region
of the detector for a simulated particle producing a Cherenkov radiation as compared to data. It
corresponds to a region of the detector where most of the light is composed of reflected and scattered
light. In this region, a 10% to 20% discrepancy can be observed in various samples, as the muons
going through the detector (multi-GeV events), the muons stopped inside the tank (Sub-GeV events)
and the decay electrons from µ or charged π [58]. This charge deficit in the MC simulation can occur
not only for very large angles with the particle direction, but also in angular regions close to the
expected Cherenkov peak (∼ 42◦). This difference will be taken into account in the T2K systematic
error evaluation using different samples to evaluate the different background sources and comparing
data and MC. For example, in the case of νe intrinsic contamination, this difference between data and
MC charges will be taken into account since atmospheric νe data and MC will be compared to evaluate
the systematic error. The same goes for the hybrid-π0 sample, a data and MC based sample, that will
be compared to an MC-MC based one to estimate the systematic errors related to the π0 background.
In the present work, we will investigate the source of this discrepancy between MC and data in order
to reduce the T2K systematic errors coming from this part of the SK simulation.

The SK detector is calibrated using a vast amount of calibration sources, which can be either light
sources (e.g. Xe lamp, Autolaser and so on.) or physical events (e.g. through going µ...). Among
them, the light sources have a photon flux extremely different from the physical events. In order to
address the issues previously mentioned, we have developed and used a new multi-ring calibration
source, the Cone Generator (CG). Compared to other calibration sources, the CG has the advantage
to generate a ring shaped event anywhere and in any direction in the tank, as the Cherenkov light
emitting particles do. We have to say here that this is not the original goal of this device, to help the
reader to understand its shape. The CG has been originally designed to evaluate the π0 background
systematic error. Since no pure π0 data sample exists, the CG was conceived to generate a π0-like
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event superimposing two light ring emitters that mimic the two photons from a π0 decay. However, the
complicated simulation of this device and its imperfect reproduction of the time and charge deposition
of a Cherenkov ring has prevented the CG from being used this way, much earlier than the beginning
of this thesis work. We will show in this Chapter that this device can be used for another calibration
goal: the study of the backward charge deficit in SK simulation.

In this Chapter, we will first describe the CG itself, and how the MC simulation for photons flux
has been developed. We will then present a detailed data analysis based on single cone data taken
in SK tank in September 2011. We will investigate the source of the charge discrepancy in the CG
device and show it comes from combined improper simulation of the dark noise and light reflection on
the tank walls in the SK simulation. We will finally study the CG ring charge characteristics in order
to allow possible future improvements and applications.
As we have described the study presented here in a Super-Kamiokande internal note that is not
available outside the collaboration, we have summarized the essential of this note in this chapter.
In particular, this note contains a part of the work of Joao Pedro Athayde Marcondes de Andre. In
particular, Joao Pedro Athayde Marcondes De Andre and Mine Shunichi have taken the data analyzed
here both for the photon flux and in Super-Kamiokande. We would like to emphasize that the data
taking procedures and MC development have been already detailed in [49] and are described here so
the reader can understand the motivations of this work. The whole MC refinement and data analysis
performed in Sections 3.3, 3.4, 3.5 and 3.6 are exclusive to this thesis work.

3.2 The CG vessel

The CG vessel is composed by a “delrin vessel”, which is built using delrin plastic, inside of which is
placed a 5 cm diameter “diffuser ball” connected to an optical fiber. At the edge of the optical fiber
inside the “diffuser ball” is placed a 10000 ppm MgO tip to increase light diffusion in the ball. The
diffuser ball itself is doped with 1500 ppm of MgO. The other end of the optical fiber is connected
to a laser diode. The data set we used in this thesis has been taken with a laser diode source with a
wavelength of 405 nm (Scientex Co.)1. The schematic view of CG vessel is shown in Figure 3.1. A
picture of the CG vessel is also shown in Figure 3.2.
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5 cm diameter acrylic ball with MgO

Delrin vessel

optical fiber

Glued Rich MgO Tip

Figure 3.1: Schematic view of the CG vessel (sliced along the optical fiber direction).

Due to propagation in the optical fiber, and diffusion/reflection in the diffuser ball or cone shaped
channel, the light loses the polarization it could have after leaving the laser diode. Thus, in our
studies the light emitted by the CG is considered unpolarized, on the contrary to light composing true
Cherenkov rings.

In an independent pre-measurement, the diffuser ball light intensity was verified to be symmetric
by rotation around the fiber axis to a precision of the percent level.

1same as used for auto-laser data taking to monitor water quality in SK-IV.
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Figure 3.2: Front view of the CG vessel. The delrin vessel, the diffuser ball and the forward cone fixed to the
delrin vessel with the metallic pins that are shown.

The delrin vessel is shaped to allow a cone of light to be emitted from the diffuser ball. By adding
another part to the delrin vessel, called “forward cone”, the light from the CG vessel produces a ring
on the surface to which it is projected, as can be seen in Figure 3.3.

Super-Kamiokande IV
Run 68704 Sub 1 Event 47


11-09-10:12:36:38

Inner: 1849 hits, 4646 pe

Outer: 0 hits, 0 pe

Trigger: 0x8000
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    >26.7

23.3-26.7
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Figure 3.3: Event Display of the run 68704 (0m, -Y) in SK detector. Further details and descriptions of this
event are given in section 3.4 .

The opening angle of the cone and width of the cone shaped channel, which are shown in red in
Figure 3.1, are both determined by the dimensions of the delrin vessel and the forward cone. Even
though several delrin vessels and forward cones with different dimensions were made, we chose to
study one combination of delrin vessel and forward cone in more detail. The combination used has an
opening angle of 33◦ and a width of the cone shaped channel of 0.75 cm as shown in Figure 3.1. This
combination was imposed in this thesis to compare with the previous single cone data taken in July
2010. This leads to have a different opening angle than the e-like events, which produce a Cherenkov
ring of about 42◦.
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3.3 The CG MC

3.3.1 Principle

The CG is a rather complicated device. The photon flux highly depends on the characteristics of each
of its components: laser light emission, propagation through optical fiber, scattering and reflection in
the diffuser ball and so on. For this reason, we have constructed and developed an experimental setup
to measure this photon flux. The CG MC was developed on the following basis:

• CG is treated as a spherical light source.

• We have measured the 3D photon flux on a sphere around the CG. This sphere is called virtual
sphere and appears in Figure 3.4 as a (R) = 13 cm radius sphere. This measurement has been
performed using an independent experimental setup, called the “Photon flux measurement”
setup that will be described in subsection 3.3.2.

• The measured photon flux is then inserted in the SK detector simulator (skdetsim tuned with
water parameters from 2009/04) to propagate photons in the SK detector.

Given these principles and the “photon flux measurement” setup design, it means:

• No backward charge input to skdetsim.

• Un-polarized photon flux is assumed as input to skdetsim.

• Measurement error of photon flux is taken into account as shape error of charge profile of single
cone MC events as described in Appendix A.

3.3.2 Photon flux measurement

Setup description

The goal of this setup is to measure the photon flux emitted by the CG, that is, to measure the distri-
bution of direction and position of the photons emitted by the CG vessel on the virtual sphere defined
in Figure 3.4. We will first describe the overall setup before going into details on the mechanical
part of the setup shown in Figure 3.5 and in Figure 3.6. From upstream to downstream, the setup is
constituted of a 20 Hz NIM clock module connected to a 405 nm laser diode (Scientex Co.). For this
study, we chose a 5 ns time width for laser signal, with an intensity of 100 mA. This time window
was chosen maximal to increase the statistics during the photon flux measurement. In this study, we
assumed the width of the time window does not impact anything but the intensity of the ring light
pattern. This laser diode is connected with an optical fiber to the CG immersed in water as shown
in Figure 3.5. Finally, a 1 inch PMT (Hamamatsu Co.) detects light emitted from the CG in a given
angular configuration controlled by 3 motors linked to a CAMAC ADC module (Lecroy Co.) and
controlled by a computer.

The photon flux measurement setup was designed to measure the intensity of the photon flux on a
13 cm virtual sphere surrounding the CG. Therefore, for this technical part, the PMT is mounted on
a moving structure on top of the CG vessel inserted in a water tank filled with SK water. On the top
of the water tank, we have mounted a 0.5 mm thick acrylic plate, the “collimator plate”, as shown in
Figure 3.5. In the middle of this collimator plate, a 3 mm diameter hole, the collimator hole, is located
at 13 cm of the CG vessel and used to define at which point of the virtual sphere we measure the
distribution of the photon direction. The collimator hole was designed so that light from CG vessel
escapes without reflection on its contour. Finally, on top of the acrylic plate, the PMT is mounted on
a half arc structure located at 30 cm from the collimator hole to detect light emitted from CG vessel.
For the measurement purpose, while the position of the photon flux on the virtual sphere is changed
by rotating the CG vessel, the direction in which the photon flux is measured is changed by rotating
the PMT. The position on the virtual sphere for which data is taken is given by the angle “CGV”
(controlled by motor 2 in Figure 3.5), which corresponds to the θ angle in Figure 3.4. In this study,
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CG vessel

X

Z

virtual sphere

$\theta$
R

$\phi$
photon

Figure 3.4: Scheme of the virtual sphere of radius R defined around the CG vessel (red). At each point of
the virtual sphere (with position vector in blue) described by the angle θ we measure the photon flux intensity
at each photon direction (green) described by the angle φ. In the current “photon flux measurement setup”
R = 13 cm, θ corresponds to the CGV angle (defined in Figure 3.5) and we assume the virtual sphere is
symmetric by rotation around the Z axis, and φ corresponds to the (PMTV, PMTH) angles defined in the text.
We also define the CGH angle, which defines the angle of the rotation around the Z axis for a point on the
virtual sphere.

we assumed that the CG vessel and diffuser ball are symmetric by rotation around the Z axis and
therefore, only one “CGV” angle is required to define a position on the virtual sphere. An additional
study has been performed to check this symmetry and is presented in Section 3.6. The direction at
which data is taken is given by the angles “PMTV” and “PMTH” (controlled respectively by motor
1 and 3 in Figure 3.5), which correspond to the decomposition of the φ angle shown in Figure 3.4 as
the projection of the direction on the R vector (“PMTV”) and the angle with respect to the plane
perpendicular to the R vector direction (“PMTH”).

Data taking

Each photon flux data taking consists of 2 different data sets that are measured at the same time. The
so called “sequential data” is taken automatically by the DAQ for each PMTV and PMTH changing
the CGV angle within the given range using a fixed step size, and then by changing automatically
the PMTV angle within the given range and fixed step size. Each “sequential data” is taken at a
fixed PMTH angle. Before and after each “sequential data” we measured the photon intensity at a
given angle (CGV, PMTV, PMTH)=(34◦, 0◦, 0◦) to control the time variation of the measured laser
intensity. This data set is called “stability data”. The data set directly used to simulate the photon
flux of the CG is the collection of the “sequential data” for all PMTH in the given range and step.

The photon flux intensity is measured for each given angle (CGV, PMTV, PMTH) during “sequen-
tial data” integrating over 100 laser flashes. The ADC distribution obtained is used to estimate the
mean ADC value at the given angle which is proportional to the light intensity at the given angle once
the ADC pedestal is subtracted. For example, the ADC distribution for (CGV, PMTV, PMTH)=(34◦, 0◦, 0◦)
taken during “sequential data” taking is shown in Figure 3.7. The ADC value is then converted to
photo-electrons (p.e) using the difference between pedestal and first photo-electron peak values as
shown in Figure 3.8. The same procedure is applied to measure the photon intensity of “stability
data” however the ADC distribution is measured using 1000 pulses from the laser instead of 100
pulses as is the case for “sequential data”.
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($\diameter$=3 mm)

(thickness=0.5 mm)
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Figure 3.5: Side view of the “photon flux measurement setup”. The CG vessel is inserted in a water tank, here
shown filled with water. The CG vessel is connected to the stepping motor #2. The rotation of the CG vessel
using this motor defines the “CGV” angle as shown. Above the CG vessel is a collimator plate with a collimator
hole aligned between the CG vessel and the PMT at the top of the half arc, as shown. Via the rotation of the
stepping motor #1, the PMT is moved along the half arc as shown by the “PMTV” angle. Finally, the half arc
itself is rotated using the stepping motor #3 around the vertical axis passing through the collimator hole in the
collimator plane, as defined by the “PMTH” angle, here shown at the stepping motor axis.
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Figure 3.6: Picture of the Photon Flux setup measurement from under the acrylic plate. Therefore, the CG
motor and the CGV vessel are clearly visible, as well as the connection to the optical fiber.

In this thesis, we have only used the data set taken in May 2011, and summarized in Table 3.1
with the corresponding configuration used for the “sequential data” taking. The difference of the
photon flux data taken in May 2011 with respect to previous data is the addition of the water tank,
to measure the photon flux of the CG under water (as it is the case when we insert the CG vessel in
the SK tank). The water used to fill the water tank is the same as the water used to fill the SK tank.

For the May 2011 photon flux data taking, in addition to the usual “stability data” taken before
and after each “sequential data” we also measured “stability data” in the day preceding our photon
flux measurement and during the third day after we had finished taking “sequential data”. These
measurements were performed to evaluate the stability of the observed intensity of the laser in a
longer period of time in order to be more sensitive to the degradation of the quality of the water
stored in the “water tank” of the setup. Finally, we highlight that we measured only CGV > 0◦ in the
data sets already mentioned, and will assume symmetries that will be described in subsection 3.3.3.

Results

The charge distributions measured from data taken at different PMTH are shown in Figure 3.9. These
charge pattern trends can be explained by geometrical considerations. As an example, we will focus
on PMTH= 90◦ and PMTH= 0◦ profiles:

• For PMTH=90◦, the CG and PMT move in the same plane, therefore a change in the PMT
position is compensated by a change in the CG direction for the PMT to continue observing
the same cone shaped channel from a different angle. It is expected a rather linear correlation
between CGV and PMTV angles due to the difference in reflected and direct light flux intensities.

Table 3.1: Summary of date and configuration at which we have taken “photon flux data” in May 2011. In the
table are shown the ranges and steps of the “CGV”, “PMTV” and “PMTH” angles at which the data were taken
following the format : minimum value→ maximum value (step).

date
“sequential data” range (step) of

CG vessel in
CGV PMTV PMTH

05/2011 0◦ → 66◦ (2◦) -24.3◦ → 24.3◦ (1.35◦) 0◦ → 90◦ (10◦) water

∗ For these data sets, stability data was taken at CGV=30◦ and not CGV=34◦.
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Figure 3.7: ADC distribution for angles (CGV, PMTV, PMTH)=(34◦, 0◦, 0◦) taken during “sequential data”
taking. This configuration measures the light in the peak region of the CG ring. For several laser pulses, a
Gaussian shape is expected.

• Since the PMT rotates in the plane perpendicular to the CG movement when PMTH=0◦ and the
CG vessel is symmetric with respect to CG direction, we expect a PMTV symmetry in relation
to PMTV=0◦.

• Successive measurements of PMTV slices for PMTH=0◦ and increasing CGV are expected to
measure different cuts of the charge distribution relative to the CG direction, with the maximum
light flux intensity for direct light from the CG arriving at the PMT, creating a single spot
centered around PMTV=0◦. Above this region we do not expect any light to be observed given
that the PMT would never be pointed towards the cone shaped channel of the CG vessel.

Pedestal measurement In addition to sequential and stability data, we have also taken pedestal
data before the start of the data taking. The PMT is set at its initial position (CGV, PMTV,
PMTH)=(0◦, 0◦, 0◦) and data are taken without any light emission from the laser diode, providing an
independent sample to estimate the pedestal value. The results shown in Figure 3.10 gives a pedestal
value about 45.0 ADC counts.

However, sequential data can also be used to perform such an estimate. In fact, from geometrical
considerations we do not expect to have any direct light from the cone generator vessel arriving at
several (CGV, PMTV, PMTH) measured with the “sequential data”. This is the case for example
for CGV=66◦ and PMTV< 0◦ for any PMTH, or for CGV=66◦ and PMTH≤60◦ for any PMTV. We
have decided to use measurements at these angles to evaluate the time fluctuation of the pedestal
measurement during sequential data taking. The result from this measurement shown in Figure 3.11
is that the pedestal value was constant during data taking with mean value of about 45.0 ADC counts.
These data are within 1σ agreement with data from the pedestal run, which confirms their reliability.
We have also shown the time variation for different periods fitted by an order one polynomial on
the left plot of Figure 3.12. We observe that the reduced χ2 are nearly the same as for the constant
fitting, and moreover, that the time variation is in 1.25σ agreement with no time variation. Since this
fitting is highly dependent on the the fitting start and end, we showed another period fitted by an
order one polynomial on the right plot. We observed that the gradient of the curve is opposite, and
in 1σ agreement with the time independent pedestal assumption. Henceforth, we concluded that the
previous 1.25σ was only due to statistical fluctuations and the PMT pedestal has no significant time
variations.
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Figure 3.8: ADC distribution for a given angle (CGV, PMTV, PMTH)= (32◦, 10.8◦, 0◦). We can clearly dis-
tinguish the pedestal value around 45 ADC counts, and the positions of the first and second photo-electron
peaks.

Laser intensity stability Using the “stability data” the time dependence of the light intensity measured
by the PMT is evaluated. In this measurement both the time variation of the intensity emitted by
the laser diode and the time variation of the water quality in the water tank are taken into account.
The result (in Figure 3.13) shows that the laser intensity was stable during all data taking and thus
no time dependent laser intensity correction is needed.

PMTV motor offset Though the photon flux shape shown in Figure 3.9 correspond to our expecta-
tions, we observed no symmetry around PMTV=0◦. This problem is due to a constant offset in the
placement of the photomultiplier on the half-arc given by the position sensor. It is thus necessary to
correct the value of the PMTV angle by a constant offset by assuming that the charge distribution
at PMTH=0◦ is symmetric and measuring its offset from data taken by changing PMTV while CGV
and PMTH are constant. For this measurement we have used data where we expect the 2 reflection
peaks to be symmetric. Namely, we used the data taken with CGV=22◦ and PMTH=0◦ shown in
Figure 3.14 where the measured PMTV offset is given by −0.9◦±0.1◦(syst) that is calculated by fitting
a two Gaussian function given by (3.3.1) that is also shown in Figure 3.14. The fitted parameters in
eq. (3.3.1) are a scaling constant (K), the width of the peaks (σpeak) that is considered to be the same
in both peaks, the position of the peak if they were symmetrical with respect to PMTV=0◦ (µpeak)
and the offset of this mean position with respect to the PMTV=0◦ position (λoffset).exp

−1
2

(
PMTV − µpeak − λoffset

σpeak

)2 + exp

−1
2

(
PMTV + µpeak − λoffset

σpeak

)2
 (3.3.1)

CG vessel shift During a last data taking, we fixed (PMTV, PMTH)=(0◦, 0◦) and changed CGV from
−45◦ to +45◦. On the contrary to all other samples, this “CGV offset sample” allows to measure the 2
light peaks, and therefore, a possible “CGV offset” if the profile is not symmetric around CGV = 0◦.
To measure this, we use the same procedure as for the PMTV offset, and fit the distribution by a two
Gaussian functions.

The results of this data taking which are presented in Figure 3.15 show that there is clearly an
offset in the CGV angle measurement, of about −1.35◦. Moreover, the 2 peaks are not symmetric in
shape. We will consider 2 possible origins of this offset:

1. A pure CGV motor offset (motor 2), as in the case of the PMTV motor (motor 1). In this case,
the effect would lead to a constant shift in photon positions. This would lead to an increase of

83



CHAPTER 3. EXPERIMENTAL STUDY OF LIGHT SCATTERING IN SUPER KAMIOKANDE USING
SINGLE CONE GENERATOR DATA

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_90

Entries  2518
Mean x  1.261
Mean y   29.95
RMS x   5.435
RMS y   3.719

1

10

210

°2DProfile_90

Entries  2518
Mean x  1.261
Mean y   29.95
RMS x   5.435
RMS y   3.719

)°2D profile slice (PMTH= 0

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_100

Entries  2518
Mean x  0.4443
Mean y   29.92
RMS x   5.436
RMS y   3.839

1

10

210

°2DProfile_100

Entries  2518
Mean x  0.4443
Mean y   29.92
RMS x   5.436
RMS y   3.839

)°2D profile slice (PMTH= 10

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_110

Entries  2518
Mean x  0.4006
Mean y   30.32
RMS x   5.516
RMS y   4.369

1

10

210

°2DProfile_110

Entries  2518
Mean x  0.4006
Mean y   30.32
RMS x   5.516
RMS y   4.369

)°2D profile slice (PMTH= 20

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_120

Entries  2518
Mean x   1.127
Mean y   31.08
RMS x   5.668
RMS y   5.102

1

10

210

°2DProfile_120

Entries  2518
Mean x   1.127
Mean y   31.08
RMS x   5.668
RMS y   5.102

)°2D profile slice (PMTH= 30

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_130

Entries  2518
Mean x   1.682
Mean y   32.01
RMS x   5.835
RMS y   6.091

1

10

210

°2DProfile_130

Entries  2518
Mean x   1.682
Mean y   32.01
RMS x   5.835
RMS y   6.091

)°2D profile slice (PMTH= 40

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_140

Entries  2518
Mean x   1.968
Mean y   32.74
RMS x   5.814
RMS y   7.129

1

10

210

°2DProfile_140

Entries  2518
Mean x   1.968
Mean y   32.74
RMS x   5.814
RMS y   7.129

)°2D profile slice (PMTH= 50

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_150

Entries  2518
Mean x   1.044
Mean y   32.26
RMS x   5.189
RMS y   7.512

1

10

210

°2DProfile_150

Entries  2518
Mean x   1.044
Mean y   32.26
RMS x   5.189
RMS y   7.512

)°2D profile slice (PMTH= 60

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_160

Entries  2518
Mean x  0.1411
Mean y   31.18
RMS x   4.259
RMS y   6.907

1

10

210

°2DProfile_160

Entries  2518
Mean x  0.1411
Mean y   31.18
RMS x   4.259
RMS y   6.907

)°2D profile slice (PMTH= 70

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_170

Entries  2518
Mean x  0.05689
Mean y   30.96
RMS x   3.994
RMS y   6.822

1

10

210

°2DProfile_170

Entries  2518
Mean x  0.05689
Mean y   30.96
RMS x   3.994
RMS y   6.822

)°2D profile slice (PMTH= 80

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_180

Entries  3777
Mean x  0.06666
Mean y   31.01
RMS x   3.909
RMS y   6.868

1

10

210

°2DProfile_180

Entries  3777
Mean x  0.06666
Mean y   31.01
RMS x   3.909
RMS y   6.868

)°2D profile slice (PMTH= 90

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_190

Entries  1259
Mean x  0.05689
Mean y   30.96
RMS x   3.994
RMS y   6.822

1

10

210

°2DProfile_190

Entries  1259
Mean x  0.05689
Mean y   30.96
RMS x   3.994
RMS y   6.822

)°2D profile slice (PMTH= 100

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_200

Entries  1259
Mean x  0.1411
Mean y   31.18
RMS x   4.259
RMS y   6.907

1

10

210

°2DProfile_200

Entries  1259
Mean x  0.1411
Mean y   31.18
RMS x   4.259
RMS y   6.907

)°2D profile slice (PMTH= 110

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_210

Entries  1259
Mean x   1.044
Mean y   32.26
RMS x   5.189
RMS y   7.512

1

10

210

°2DProfile_210

Entries  1259
Mean x   1.044
Mean y   32.26
RMS x   5.189
RMS y   7.512

)°2D profile slice (PMTH= 120

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_220

Entries  1259
Mean x   1.968
Mean y   32.74
RMS x   5.814
RMS y   7.129

1

10

210

°2DProfile_220

Entries  1259
Mean x   1.968
Mean y   32.74
RMS x   5.814
RMS y   7.129

)°2D profile slice (PMTH= 130

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_230

Entries  1259
Mean x   1.682
Mean y   32.01
RMS x   5.835
RMS y   6.091

1

10

210

°2DProfile_230

Entries  1259
Mean x   1.682
Mean y   32.01
RMS x   5.835
RMS y   6.091

)°2D profile slice (PMTH= 140

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_240

Entries  1259
Mean x   1.127
Mean y   31.08
RMS x   5.668
RMS y   5.102

1

10

210

°2DProfile_240

Entries  1259
Mean x   1.127
Mean y   31.08
RMS x   5.668
RMS y   5.102

)°2D profile slice (PMTH= 150

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_250

Entries  1259
Mean x  0.4006
Mean y   30.32
RMS x   5.516
RMS y   4.369

1

10

210

°2DProfile_250

Entries  1259
Mean x  0.4006
Mean y   30.32
RMS x   5.516
RMS y   4.369

)°2D profile slice (PMTH= 160

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_260

Entries  1259
Mean x  0.4443
Mean y   29.92
RMS x   5.436
RMS y   3.839

1

10

210

°2DProfile_260

Entries  1259
Mean x  0.4443
Mean y   29.92
RMS x   5.436
RMS y   3.839

)°2D profile slice (PMTH= 170

)°PMV (
20 15 10 5 0 5 10 15 20

)
°

C
G

V
 (

0

10

20

30

40

50

60

°2DProfile_270

Entries  1259
Mean x  1.261
Mean y   29.95
RMS x   5.435
RMS y   3.719

1

10

210

°2DProfile_270

Entries  1259
Mean x  1.261
Mean y   29.95
RMS x   5.435
RMS y   3.719

)°2D profile slice (PMTH= 180

Figure 3.9: ADC measurements (pedestal subtracted) as function of CGV and PMTV for different
PMTH.

the MC opening angle.
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Figure 3.11: Time stability of the measurement of the PMT pedestal using “sequential data” for a
(CGV, PMTV, PMTH) region where no direct light from the CG vessel is expected.

2. The CG is misaligned with the collimator hole/PMT setup (see Figure 3.5). In fact, the CG
has been removed and replaced before the different data taking, which increases the probability
of a misalignment. The offset measured would correspond to a 3.1 mm shift of the CG with
the collimator hole/PMT. Though it also creates a constant shift in the photon position, it also
impacts directly on direction. In fact, such a shift would favor the higher angle and in that
sense, would contribute to artificially widen the photon distribution.

On the contrary to the PMTV motor offset, no CGV motor offset was observed during the data
taking. From this , we conclude that the most likely source for this CGV offset was a shift of the CG
parallel to the CGV moving plane.

Corrections The photon flux data is taken with water filled up to the collimator hole, where a thin
acrylic layer is put to ensure the water surface is flat. It is therefore necessary to correct the measured
photon intensity for each angle set to take into account the refraction of light between the water-acrylic
and the acrylic-air surfaces.

The first effect to be corrected is the difference between the angle at which the photon was emitted
and measured, which changes due to the refraction in the interface between the air, the acrylic and
the water, and which is described by the Snell-Descartes law. This law links the incident angle of
the photon (PMTVinc) to the refraction index of the mediums and to the refracted angle (PMTVref)
measured by the setup. The Snell-Descartes law used for this correction is given by the equation (3.3.2),
where we note that the passage of the photons through the acrylic layer does not affect the relation
between the angle of the photon in water in relation to the angle of the photon in the air.
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Figure 3.12: Linear fit of the PMT pedestal variation in time using “sequential data” for a (CGV, PMTV, PMTH)
region where no direct light from the CG vessel is expected.

PMTVinc = arcsin
(
nwater

nair
sin PMTVref

)
(3.3.2)

The second effect to be corrected is the difference in the refraction probability as a function of the
angle at each surface. The refraction probability is described by the Fresnel equations, where the prob-
ability is described as a function of the photon polarization, incident angle and refraction coefficient of
the mediums. For each angle we need to correct the observed photon flux intensity by how much light
passed through the water-acrylic and acrylic-air interfaces. At each interface, for unpolarized light,
the correction of the light intensity given by Fresnel equation is shown in equation (3.3.3), where Ib is
the light intensity before the light reaches the surface, Ia is the light intensity after light goes through
the surface, θi is the incident angle at the interface and θr is the refracted angle.

Ib = Ia

1 − 1
2

(sin(θr − θi)
sin(θr + θi)

)2

+

(
tan(θr − θi)
tan(θr + θi)

)2−1

(3.3.3)

At the acrylic-air interface, Ia is the light intensity measured by the PMT2 and the θr angle is
given by the measured PMTV (after PMTV offset correction). The θi is calculated from the θr and
the refraction index of air and the acrylic via Snell-Descartes law. The intensity of light inside the
acrylic, given by Ib, will be called Iacr and the incident angle θi will be called θacr for the next step of
the corrections.

At the acrylic-water interface, Ia is the light intensity inside the acrylic layer given by Iacr previously
calculated and the refracted angle θr is given by θacr. The incident angle θi is again calculated by the
Snell-Descartes law. The light intensity inside the water Ib is what is considered to be the light
intensity measured by the photon flux at a given angle after the all corrections.

Finally, we added a correction due to the collimator hole apparent surface, which depends on the
PMTV incident angle. Assuming Ic and Ii are respectively the corrected and PMT collected intensities,
this correction is purely geometric and calculated as:

Ic =
Ii

| cos(PMTV)|
(3.3.4)

After all the corrections described in this subsection are applied, the photon flux data is used to
generate a photon distribution used as input for the skdetsim simulation that is described in the next
subsection.

2The light intensity is given by the (ADC - pedestal) mean value.
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Figure 3.13: ADC counts value with constant pedestal subtracted for “stability data” as a function of time. We
only consider “sequential data” on the 10th, 11th and 12th of May 2011, however we have left the laser diode
turned on with water in the water tank for a longer time (one day before and three days after the “sequential
measurements” were completed) in order to better estimate the time stability of the system. The average laser
intensity for stability data is about 124.6 ADC counts.

3.3.3 Using photon flux data to generate the photon distribution input for skdetsim

As explained previously, the photon flux data consists of the measurement of light intensity from the
CG vessel at several different positions and directions given by (CGV, PMTV, PMTH). We should
note that the photon flux data provides a relative measurement of the light intensity from the CG
vessel. Therefore the normalization of the number of photons emitted by the CG per event needs to
be done by tuning the total charge observed in the simulation with respect to to the mean total charge
of data taken at SK. This adjustment is performed to have better than 1% agreement between data
and MC.

The light intensity distribution as a function of the position and direction of the photon from the
CG vessel is obtained by interpolating the photon flux data measured at several different positions and
directions. The interpolated function is then normalized and transformed into a probability density
function used as input for skdetsim. This is done assuming different symmetries: the photon position
has been measured only for one region of the CG ring, i.e, only one CGH (see legend of Figure 3.4).
We assume the ring to be symmetric under CGH variations. Moreover, we only took the photons
direction for PMTH∈ [0◦, 90◦], and so, we assume a symmetry to deduce the photons direction in the
remaining region PMTH∈ [90◦, 180◦].

We could not directly perform an interpolation in all photon flux data since three-dimensional
interpolations are not available in C++ libraries. We have therefore decided to separately obtain a
distribution of position of the photons and the distribution of the direction of the photons for each
position. The distribution of the position of the photons was obtained by interpolating the photon
flux data taken for different CGV, integrated for all PMTV and PMTH taking into account the solid
angle each (PMTV, PMTH) set represents. The distribution of the direction of the photons for each
position was obtained by interpolating the two-dimensional (PMTV, PMTH) distribution for the
given position. We have also taken into account the difference in the solid angle represented by each
(CGV, PMTV, PMTH) bin to correctly estimate the photon flux distribution.
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Figure 3.14: Number of ADC counts with pedestal subtracted, measured as a function of PMTV for PMTH=0◦

and CGV=22◦ (red and blue points). In red are shown the PMTV values for which we expect to measure mainly
direct light from the CG vessel, while in blue are shown the remaining measured points. This distribution is
used to calculate the PMTV offset by fitting equation (3.3.1) (red curve) using the points shown in red. The
fitted parameters are shown on the top right of the Figure with fit errors.

3.4 Data Taking in SK

3.4.1 Description of the setup inserted in SK and the data taking

In order to take data in SK using the single CG vessel, a pole system is used to place the vessel at the
desired position and direction inside the SK detector. The pole system is composed by 10 separate
poles of 2 meters each which allow the placement of the CG vessel at 10 different Z positions along
the vertical axis inside the detector, separated by 2 meters from one another. The lowest position
we can place the CG vessel is near the center of the detector in the vertical direction (Z=0 m in SK
coordinates). At the end of the pole system, the CG vessel is screwed to a horizontal plate. It is
also possible to attach a second CG vessel at the back of this horizontal plate even though no data
was taken using this configuration. Below this plate, a “Locator vessel” is placed under a U-shaped
structure. Figure 3.16 shows the end of the pole system with the CG vessel and the “Locator vessel”
installed.

In table 3.3 is shown a summary of the single cone data taking from June 2011, and used here.
The data presented here consists of a set of 4 different directions (+y, +x, -y, -x) at 3 different heights
in the SK tank: +8m, 0m, +16m. For a given height, we rotate the CG around the pole system center
anti-clockwise in the successive 4 different directions, and then rotate it clockwise back to its initial
position to avoid twisting the optical fiber. This last position is used to check data reproducibility
after having rotated the pole system. Then, the laser is shut down, and the CG altitude si changed.
After having checked direction alignment, the same procedure is applied at +8m, +0m and +16m in
the tank. Finally, a last data set was taken at +8m in the +y direction, to check data reproducibility
after the change in heights and the shutdown of the laser diode. For each run, we choose the laser
power supply intensity to be 100 mA and the signal time window as 5 ns to be closer to the time
width of an electron electromagnetic shower.
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Figure 3.15: Charge distribution for “CGV Offset Data” taken with PMTV=0◦

3.4.2 Measurement of the CG vessel position and direction in SK

The pole system was designed to place precisely the vessel inside the SK detector. However, it is
necessary to measure the position and direction of the CG in the SK tank. In fact, due to mechanical
design, the position and direction evaluated only with the pole system would lead to bias and errors
too large to use the cone generator as it was originally thought (π0 systematic error evaluation).
Therefore, we have performed position and direction measurements using the “Locator vessel”.

The “Locator vessel” used for the “Locator data taking” is a delrin vessel similar to the CG vessel.
However, instead of having a cone shaped opening for the light, it has five cylindrical holes at the four
vertical surfaces and at the bottom of the vessel. Data taken using this vessel is used to measure the
position and direction of the CG vessel inside the SK detector. The optical fiber is inserted on the top
of the “Locator vessel” by the hole situated in the top face of the cube. The Locator generates 4 laser
spots in the barrel and one spot at the bottom of the tank shown in Figure 3.17. By measuring the
center of each spot in the barrel and assuming that the two lines drawn from the center of opposite
spots cross at the position of the “Locator vessel” (as shown on Figure 3.18), we can determine the
position of the Locator and then of the CG given that the relative position between the CG vessel
and the Locator vessel is known.

Up to now, we did not have to use the information of the timing distribution to measure the
position and direction of the “Locator vessel” because we consider the current method gives a sufficient
precision.

Furthermore the Z coordinate of the “Locator vessel” position is determined by the pole system
itself as even a large shift (∼ 1 m) of the “Locator vessel” in the XY plane would correspond to a
∼ 3 cm shift in the Z position3, whereas the maximum XY shift measured amounts to only 15 cm.

We have calculated the center of each spot for the “Locator data” taken in run 68676. The
distribution of each Locator spot is shown in Figure 3.19 where we have fitted a Gaussian function to
the peak of each distribution to obtain the parameters shown in table 3.2.

Using the measured mean position for each spot we have calculated the position of the Locator as
the crossing point of the lines L+xL−x, L+yL−y and L+zL−z. Note that the L+z point is the “calibration
hole” that corresponds to the upper end of the pole system. Therefore, we have used 3 combinations of
2 spot lines. For each combination, a vertex is reconstructed, which leads to 3 different vertices. In this
way, this setup is used to give an estimation of the systematic error on the Locator position. Indeed,

3This shift was calculated assuming the connection between poles of the pole system is rigid: the pole system is equivalent to a
single pole which is not deformable. Even though this is not exactly true, it is a reasonable approximation of the pole system used.
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Figure 3.16: Picture of the equipment used to lower the CG vessel and Locator vessel into SK. The poles from
the pole system are connected to the disk plate supporting the CG vessel. A “U” shaped metal plate to which
the locator is scrwed is attached below the disk. This picture was taken before inserting the CG for the 2011
data taking at SK.

Table 3.2: Fit results used to obtain the center of each Locator spot (see Figure 3.19). The uncertainties quoted
here are given by the fitting procedure and therefore could be underestimated given the quality of the fits shown
in Figure 3.19.

Name Constant (pe) Mean (◦) Sigma (◦)
L+x 38.052±0.031 -1.865±0.009 8.638±0.015
L+y 30.838±0.028 89.667±0.010 9.023±0.018
L−x 35.729±0.029 183.247±0.008 8.933±0.013
L−y 35.849±0.031 -88.305±0.008 8.011±0.013

it contains an estimation of the error due to a twist or a non vertical pole system, or non-centered
holes in the locator setup, or asymmetric light directions. In fact, we’ll keep the mean position of
these 3 vertices as the position, and the difference between the vertex and this position is taken as the
systematic error.

In table 3.4, we can verify if there is any particular shift in the pole system direction, due to the
pole bars floatability or natural bending. Therefore, we compared the calibration hole position with
the A5 spot position and finally, with the reconstructed vertex estimated by Locator. It reveals a shift
of the A5 spot towards +90◦ from the CG direction, particularly at +8 m and +0 m. Given the shift
appears suddenly at +8 m, we can deduce that it is likely to be a bent pole bar that creates such an
effect rather than floatability, because of the constant direction shift and very good reproducibility.
A misalignment of locator holes is unlikely, because it would imply the +16 m data to be the most
shifted. In this way, the only remaining hypothesis is a bending of some pole bars between +16 m
and +8 m. However, this bending effect on the reconstructed vertex is taken into account in our
systematic error estimation.

As for the CG direction estimation, we decided to use the direction between the reconstucted
vertex and the Locator spot emitted in the direction of CG ring. We used the uncertainty on the
vertex position to estimate the uncertainty on the reconstructed direction. By construction, there is
a full correlation of these two errors. Finally, we deduce the CG vertex by measuring explicitly its
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Figure 3.17: Event display of a locator event in SK.
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Figure 3.18: Schema of the Locator vessel data taking with the four spots produced on the wall of the SK tank.
Note that this schema is not to scale.

91



CHAPTER 3. EXPERIMENTAL STUDY OF LIGHT SCATTERING IN SUPER KAMIOKANDE USING
SINGLE CONE GENERATOR DATA

)°Angle from x direction (
100 50 0 50 100 150 200

S
u

m
 o

f 
c
h

a
rg

e
 c

o
lle

c
te

d
 b

y
 P

M
T
s
 i
n

 b
a

rr
e

l 
p

e
r 

e
v
e

n
t 

(p
e

)

0

5

10

15

20

25

30

35

40

45

50

Run 068676

+xL +yL xLyL

Run 068676

Figure 3.19: Distribution of the integrated charge on a column of PMTs on the SK barrel as a function of the
angle of the PMTs from the x direction measured from the center of the SK tank for run 68676. Each spot
shown in the Figure 3.18 is identified here. In red are shown the fits performed to the peak of each spot to
measure its center. We fitted a Gaussian function to each spot peak to avoid having to take into account the
effects of scattering in the water of the SK tank, reflection at the SK tank wall and dark noise of SK PMTs.
This Locator run corresponds to a CG run towards +y direction. Because setup position in the tank is shifted
toward -y value, and because of absorption, we expect the +y spot to have the minimum and the -y to have the
maximum intensities.
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Table 3.3: Measured position and direction of the Locator vessel using the Locator data for the studied single
cone data runs. The position and direction of the CG are obtained from the position and direction of the Locator
through measurements of the experimental apparatus geometry made before inserting it inside the SK tank.

Single
cone data
Run

Nominal Alti-
tude and Di-
rection

Run of
Locator
data

(X,Y) vertex measured with Lo-
cator data (cm)

Angle between the Locator
spots expected and measured
position (◦)

68674 (8 m, +Y) 68676 (25.6±5.1, -68.8±1.1) 0.51±0.17
68678 (8 m, +X) 68680 (38.5±2.6, -70.4±7.1) 0.88±0.25
68684 (8 m, -Y) 68684 (36.9±4.7, -84.6±5.0) 1.17±0.17
68686 (8 m, -X) 68688 (24.6±5.1, -82.9±0.2) 1.29±0.12
68690 (8 m, +Y) 68692 (24.3±4.0, -69.7±1.8) 1.27±0.13
68696 (0 m, +Y) 68698 (22.9±2.3, -66.7±1.8) 10.65±0.08
68700 (0 m, +X) 68702 (36.5±1.2, -66.7±4.3) 10.65±0.14
68704 (0 m, -Y) 68706 (36.7±6.7, -80.9±2.3) 10.60±0.25
68708 (0 m, -X) 68710 (22.3±5.2, -79.1±5.3) 11.62±0.21
68712 (0 m, +Y) 68714 (22.0±0.8, -65.4±3.1) 11.71±0.16
68718 (16 m, +Y) 68720 (29.5±3.3, -64.9±2.3) -3.95±0.11
68722 (16 m, +X) 68724 (37.9±4.2, -68.8±2.9) -3.23±0.11
68726 (16 m, -Y) 68728 (34.9±1.6, -78.4±3.3) -3.42±0.06
68730 (16 m, -X) 68732 (24.7±1.5, -74.4±1.8) -3.11±0.06
68734 (16 m, +Y) 68736 (28.3±3.3, -64.7±2.3) -3.30±0.11
68739 (8 m, +Y) 68741 (25.6±5.3, -69.0±0.8) 0.60±0.17

distance between locator and CG diffuser ball. Given the accuracy of such a measurement (1 mm),
we decided not to add any systematic error and to use the locator vertex error as the only error on
the CG vertex. For the CG direction, we simply keep the locator one and use its systematic error as
the CG direction systematic error. The result from the measurement of the position and direction of
the Locator taking into account the estimated systematic errors due to vertex position and direction
reconstructions are presented in table 3.3.

From “Locator data” analysis, we can conclude that positions measured are consistent for different
data sets that are taken with the same conditions. Besides, for runs that have been taken at the same
nominal direction and altitudes, the angle from the nominal direction is within 1◦ from each other,
which corresponds to the precision of the tool used to set the direction of the pole system.

3.5 Single cone data analysis

In this Section, we first present the analysis method we apply to investigate some of the Super-
Kamiokande detector properties. In particular, we test the Super-Kamiokande detector circular and
height uniformity. We finally investigate the backward charge anomaly.

3.5.1 Basic analysis method

In previous sections, we presented CG MC and data samples. In this section, we used the charge
profile comparison between CG data and CG MC to understand the SK detector. Charge profile
represents the charge of events, that is proportional to the amount of light detected by the PMTs, as
a function of the angle from the CG direction. Therefore, for a given angle around the CG direction,
all light emitted at this angle is integrated around the CG direction and represents only one bin value
in the charge profile. For this study, the value shown is not the light measured event by event, but
the averaged light measurements over all events taken in data samples or generated in the MC.
For this comparison, charge profile systematic errors from data and MC are evaluated in Appendix A.
Significant differences between data and MC beyond shape errors are used to study SK detector.
In Section 3.5.2, we will first first present a comparison between MC and a typical CG data run to
estimate MC

Data differences. This result has been used to study SK detector dependence on vertical
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Table 3.4: Position of the Bottom Locator Spot (A5). To check alignment, it has to be compared with the
calibration hole (35.3 cm, -70.7 cm)

Run Number Altitude Nominal Direction A5 spot (X, Y) in cm
68696 0 m +Y (11.0, -75.9)
68700 0 m +X (30.1, -57.0)
68704 0 m -Y (47.8, -74.7)
68708 0 m -X (31.1, -92.7)
68712 0 m +Y (12.3, -75.8)
68674 8 m +Y (-6.6, -76.2)
68678 8 m +X (22.6, -50.3)
68682 8 m -Y (52.3, -81.5)
68686 8 m -X (25.6, -104.4)
68690 8 m +Y (-6.8, -77)
68718 16 m +Y (-27.2, -80.2)
68739 8 m +Y (-6.8, -77.8)

vertex or horizontal directions of the CG. Finally, the differences between CG data and MC observed
in Section 3.5.2 have been studied in Section 3.5.3.

In all this section, CG MC events are generated using vertex and directions measured by the
locator setup described in Section 3.4. As explained in section 3.3.3, normalization of MC is adjusted
on data by changing the number of photons in MC so that the charge profile integral agrees with data
better than 1%.

3.5.2 Vertical vertex and horizontal directional dependence of charge profile comparison be-
tween data and MC

Typical Charge Profile Comparison

The results for a typical run are shown in Figure 3.20. In the main peak region (from 15◦ to 55◦),
the agreement between data and MC is within the 4% shape error in most of the bins. However, the
data peak shape tends to be larger than the MC one, but within the systematic error. The most
propable source is a mechanical shift between the CG and the locator directions which is described
in Section 3.6 and associated systematic error is evaluated in Appendix A. In fact, integrating light
of the charge profile around a direction which is not the center tends naturally to increase the charge
profile width.

Moreover, out of the peak region, and mainly in the backward region (i.e from 100◦ to 180◦), our
MC reflection tuning is affected by the modification of Rayleigh scattering. In one word, the Rayleigh
scattering represents the scattering of light on punctual and dipolar molecules. This happens mainly
on the water molecules. The scattered light is emitted in similar proportions forward and back of the
incident photon direction. This can be seen since the electric field of the incident photon is exactly
the same whether it is “observed” from the front or the back. One understands that it is not the
case in the transverse plane due to polarization. On the contrary, the Mie scattering occurs on larger
molecules compared to the wavelength, and produces an asymmetric scattering which is mainly in the
incident light direction. It mainly occurs on the large molecules of impurities in the Super-Kamiokande
tank. The two different types of scattering are summarized in Figure 3.21. One understands that the
Rayleigh scattering will mostly affect the backward region, while the Mie scattering will mainly affect
this region for reflected light on the black-sheet.

Consequently, we expected MC to be lower than data in the backward and front regions, which
contain relatively more reflected light. In fact, we defined the backward region as angles > 90.3◦,
based on the study from the photon flux measurement, where we observed no light at maximal angles
(CGV = 66◦ and PMTV = 24.3◦). Note that, considering the distance from CG to SK wall (∼ 15 m)
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Figure 3.20: Comparison of the data and MC for a typical run at z = 0 m

Figure 3.21: The Rayleigh and Mie scattering of light in a material depending on the incident light direction.
Taken from http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html
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Table 3.5: Summary of MC deficit compared to Data in backward region (100◦ − 180◦). This correspond to
1 − MC

Data for different runs.
68674 68696 686700 68704 68708 68718

MC deficit in backward region 11.0% 11.5% 9.6% 8.8% 10.7% 10.7%

relatively to the virtual sphere radius (R = 13 cm), we can consider the virtual sphere as pointlike.
In this backward region, using all bins, we measure a difference between Data and MC equal 11.5%
for this run. Results for other runs are summarized in Table 3.5. These results are compatible with
observations that have been made in other data samples, such as stopping or through going muons.
Though differences with CG are expected, these samples show a deficit between 20% and 10 % in the
backward region, confirming results obtained with the CG in Figure 3.20. This indicates a common
source of discrepancy between the different channels. We used the CG for a dedicated study on this
issue, as presented in section 3.5.3.

Vertical vertex dependence

The September 2011 CG data sample contains different Z vertex positions, as described in Table 3.3.
Therefore, we used these relative differences between data samples to study the SK detector vertical
vertex dependence. Because the SK detector is not invariant with Z translations, we used the MC

Data
ratio for this study, rather than a pure data to data comparison. The data and MC ratio for different
Z vertex is shown in Figure 3.22. We observe that the peak shape for a vertex at 16 m is different
from the two other Z vertices, which should be caused mainly by the high impact of position and
direction uncertainty due to the closeness of the cylinder top. Moreover, the MC peak position seems
to be shifted to the right of the data. This is a hint that the error on the mechanical shift is not
perfectly estimated (or may not be constant between runs) and that a data sample to evaluate this
effect should be taken separately in the future (we developed this point in Section 3.7). The front
region does not present such a discrepancy, as the different runs are in agreement within the error
bars. In the out-of-peak region, the difference between 16 m and other heights it is not statistically
significant (< 2σ but very localized), and probably due to geometrical causes (closeness of the top of
the tank) since it seems that there is no particular pattern emerging gradually from +8 m to +16 m.
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Figure 3.22: Charge Profile ratios MC
Data for Data sets at different z vertex positions

To quantitatively evaluate the detector uniformity, we focus on the backward region. In fact, this
region is most sensitive to detector aspects (light absorption in water, scattering, reflection on the
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black sheet or PMTs, etc.) since light in this region is scattered or/and reflected on SK walls. To set a
coherent estimator, we consider all bins in the backward region and use their correlation to determine
the detector uniformity. To have a safe estimation, we use run 68696 (0 m) as a default run and
compare it with runs 68674 (8 m) and 68718 (16 m) which cover all studied altitudes. Applying this
criterion, we estimate the p-value and found an agreement between these runs in the backward region
to be 42% and 83% p-values, which clearly confirms the qualitative results.

Horizontal direction dependence

As shown in Table 3.3, September 2011 data samples also contain runs for several horizontal directions.
We used these samples to check the SK detector uniformity with direction, with an identical approach
as explained in Section 3.5.2. On Figure 3.23, we show the direct MC

Data ratio. The charge profile
agreement between MC and data seems to be uniform between the 4 directions at 0 m within the
systematic errors which confirms the SK detector uniformity with direction.
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Figure 3.23: Charge Profile ratios MC
Data for Data sets in different horizontal directions

3.5.3 Study of the disagreement between data and MC in the charge profile comparison

In Section 3.5.1, we observed a nearly constant disagreement of 10% between data and MC in the
backward regions for different heights and different directions. In this section, we try to study possible
sources such as dark noise tuning or reflection on SK PMTs and black sheet. At first, default MC
skdetsim is known to have a bias because of some errors in the simulation of Rayleigh scattering.
These errors affect the tuning of various parameters, including PMT and black sheet reflection param-
eters, which have precisely been tuned in a new MC production. Therefore, as a first step, we proposed
to study the impact of this new MC production on charge profiles differences between Data and MC.
In a second step, we used timing distribution of charge in the SK detector to separate effects from re-
flection, scattering or dark noise. An example of such a timing distribution is displayed in Figure 3.24
for run 68696 (0m, +y direction). It shows that, though MC and data charges are in agreement dur-
ing CG light detection (1000-1300 ns time window), a charge discrepancy tends to appear in the time
region where no CG light is emitted. More explicitly, before and after CG light emission, MC seems
constantly lower than data. Since the charge profiles are drawn by integrating light on the whole time
period, such a difference between data and MC may lead to important discrepancies in these profiles.

New version of skdetsim implementation

As compared to default MC, only PMT and black sheet reflection coefficients have been tuned in this
version after Rayleigh scattering correction. A comparison between data and this new MC version

97



CHAPTER 3. EXPERIMENTAL STUDY OF LIGHT SCATTERING IN SUPER KAMIOKANDE USING
SINGLE CONE GENERATOR DATA

tisk (ns)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Q
is

k
 /
 E

v
e
n

t 
(p

.e
)

110

1

10

210

 (0m, +y)

Run 68696 (Data)

.
Run 68696 (Default MC

tisk (ns)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

D
a
ta

M
C

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Figure 3.24: Data and MC charge Distributions with time for run 68696. The time “Tisk” represented on the
horizontal axis is set as a 1300 ns time window around the event trigger

is displayed in Figure 3.25. Though small changes appear out of the peak region, particularly from
70◦ to 180◦ from CG direction, they never exceed 2 % in each bin (removing first and last bins which
are widely affects by detector geometry and statistics). More precisely, in the backward region of run
68696 (0m, +y direction), the MC

Data disagreement is reduced from 11.5% to 11.1%. Therefore, PMT and
black sheet reflection tuning of the new version of skdetsim cannot explain the observed MC/Data
discrepancy.

Dark noise study

Dark noise rate and charge distribution Considering Figure 3.24, MC seems constantly lower than
data when no CG light is emitted. If this discrepancy is due to dark noise tuning, we expect to have
less light in this region for the MC simulation than for data. However, since the overall CG MC
charge is tuned on data (see Section 3.3.3), this absolute effect is removed and only relative effects
remain. Therefore, isotropic charge from dark noise has more impact on backward region than peak
region, because of the small amount of CG light in the first compared to the last one. This effect
can be observed in Figure 3.20. In this way, dark noise charge distribution seems a likely hypothesis
to explain such a disagreement. However, such a difference could be either due to dark noise rate,
or to the dark noise charge distribution itself. To study this in more details, we zoomed in time
window from 500ns to 800ns in Figure 3.24. The result is visible in Figure 3.26 and clearly confirms a
relative disagreement of 31.1% between Data and MC. For obvious reasons, this region will be called
“off-time” region, while the time region where the CG event occurs (here 1000-1300 ns time window)
will be named “on-time” region from now on.

Dark noise rate To decorrelate the two contributions from dark noise rate and charge, we use as a
variable the number of PMTs hit. In fact, the total number of hits during the PMT charge integration
time (300 ns) is negligible as compared to the total number of PMTs. Hence, we can assume that the
situation where several dark noise hits occur in the same PMT during charge accumulation is highly
unlikely. Therefore, the dark noise rate can be considered as directly proportional to the number of
PMTs hit in the “off-time” region. We can observe in Figure 3.27 that the timing distribution of the
number of PMTs hit seems in better agreement between data and MC than the charge distribution
with time. A zoom in on the “off-time” region (see Figure 3.28) clearly shows that the disagreement
between MC and Data only amounts to 5.4%. Therefore, we can conclude that the dark noise rate
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Figure 3.25: Charge Profile comparison between data, default MC and new MC version where PMT and black
sheet reflection coefficients has been tuned after Rayleigh scattering correction.

is reasonably well tuned and cannot explain the 31.1% magnitude of the charge discrepancy between
CG data and MC.

Dark noise charge distribution The second possible source of discrepancy comes from the charge
distribution of dark noise in SK. In skdetsim, the 1 photo-electron distribution has been tuned
using “Nickel” data. The Nickel source consists of a Californium source (252Cf) surrounded by Nickel
58Ni powder mixed into plastic. Spontaneous fission of 252Cf emits neutrons from 2-14.2 MeV which
thermalize before being absorbed by 58Ni and forming an excited state of 59Ni. Gammas emitted by
deexcitation of this nucleus have a 9.0 MeV energy and are used to calibrate the 1 p.e peak because
of their very low energy. More details on this setup are given in [59]. In this section, we use the CG
to study whether using its “on-time” data set to generate the photo-electron peak distribution still
holds for the dark noise.
Because of different time and charge distribution, “on-time” distribution of Nickel data is different
from the one for CG. We will use the CG for a similar study to evaluate quantitatively the charge
distribution in “on-time” and “off-time” regions. However, CG direct light certainly does not follow a
1 p.e distribution because of its high intensity. Nevertheless, most of the PMTs out of the cone region
only receive scattered and reflected light, which should present a rough 1 p.e profile. In addition, we
will study the “off-time” regions which should not be affected by differences between Nickel and CG
data.

Considering definition of “off/on-time” regions for CG we introduced before, we have generated
charge distribution corresponding to these two regions. On the left part of Figure 3.29, we can observe
a shift of the 1 p.e value for data compared to MC in “on-time” region. This effect is expected because
an increase of the SK PMT gain has been measured on a large time period in [59], with an average
increasing of 1% per year. This affects the MC tuning which has not been done simultaneously with
data taking, but with April 2009 data). Considering the gain increase between April 2009 (data used
in MC tuning) and September 2011 (CG data taking), we expect roughly a 2.5% increase in data for
the 1 p.e position as compared to MC.

As a very raw check of consistency, we can measure the 1 p.e position for this sample of CG data.
As displayed in Figure 3.30, we have fitted the distribution by a Gaussian function around the peak
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Figure 3.26: Data and MC charge Distributions with time for run 68696 in the 500-800 ns region. The ratio
MC
Data is fitted with a constant to estimate the differences in charge between MC and Data.

Table 3.6: Results of expected discrepancy between data and MC dark noise rate and charge.
Number of Hits Charge Distribution Mean Total Charge TotalChargeData−TotalChargeMC

TotalChargeData
Data 45841 ± 214 Hits 1.79 ± 0.01 p.e 82055 ± 384 p.e

27.0 ± 0.7%
MC 44363 ± 211 Hits 1.35 ± 0.01 p.e 59890 ± 527 p.e

and measured the difference between MC and Data as = 3.1 ± 0.4(stat.)%. We have not considered
here systematic errors arising from the choice of time window or other systematic error as scattering,
reflection on PMT or black sheet. Moreover, the 2.5% variation in gain we expect arises from a rough
analysis of the average PMT gain increase per year. However, the 1 p.e higher peak value for data than
MC measured by this fit is compatible with the rough 2.5% expectations, confirming CG sensitivity
to the PMT gain increasing and consistency of the CG sample with other data sets.

As for the “off-time” region, MC and data charge distribution shapes are clearly different. It
confirms that “on-time” Nickel data distribution upon which CG MC dark noise is tuned does not
represent exact dark noise charge distribution. Let us remark that a global scaling of the charge by
31% does not reproduce the data at all. Moreover in Figure 3.29-right, the mean value of data “off-
time” distribution seems considerably higher than MC, because of numerous hits with a high charge.
We checked that these hits could not be direct light hits arising at such a time because of charge
accumulation during 300 ns. In fact, we can use the 1500-1700 ns region to get rid of any possible
direct light component, and observe in Figure 3.31 a similar discrepancy.

In order to compare quantitatively this difference between MC and data, we calculate the expected
total charge difference in the detector. While the number of entries of each of these distributions shows
the number of hits in SK, the mean value of these distributions corresponds to the mean charge of a
data and MC dark noise hit. To take into account all the charge differences, we multiply the charge
of a dark noise hit by the number of hits. Having already observed that the rate is well tuned enough,
we expect most of the discrepancies coming from the mean charge of a hit (i.e distribution mean).

Considering Table 3.6 results, we conclude that the MC
Data difference due to total dark noise charge

is 27.0%. Considering that the number of dark noise hits is underestimated by 5.4%, and assuming a
4 − 4.5% change in PMT gain over time, we see that the dark noise charge distribution explains quite
well the 31.1% differences between MC and Data charge in the “off-time” region.
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Figure 3.27: Number of PMTs hit with time in Data and MC for run 68696

Impact on MC In order to check this result, and to measure impacts on the charge profile study, we
have generated a MC changing only dark noise charge by 31.1%. At first, we have checked the timing
distribution (Figure 3.32), which is now in a better agreement in the overall region than before this
tuning (Figure 3.24). On the bottom plot of Figure 3.32, the MC

Data ratio in the “off-time region” is
shown, and has changed from 68.9% in Figure 3.24 to 98.8%.

We have also checked impacts of such a discrepancy on the charge profile comparison. Figure 3.33
clearly shows an improvement in the agreement between MC and Data in most of the individual
bins backward region of 3 − 6%. We have also estimated the impact on the overall backward region,
taking into account the correlations between bins. In this region, MC

Data ratio disagreement for run
68696 is reduced from 11% to 6% with the new MC production. Therefore, the main origin in CG
MC and data discrepancy in the backward region turns out to be the dark noise charge tuning in
the MC simulation. Moreover, we can clearly see that it only affects direct light region in very small
proportion, which was expected given the small relative amount of hits coming from dark noise hits
in this region. Finally, it is important to specify that the impact on CG backward region is important
(around 5%) because charge is integrated on the full time window (1300 ns width) to generate charge
profiles for CG. Therefore, for other samples which use a shorter time window, the relative effect of
dark noise would be lower than for CG.

Timing distributions

For timing distributions, we show a difference between the time at which the light reaches the PMT and
the time of flight of the corresponding photon from CG. This time of flight was estimated taking only
into account the distance from CG to PMT ( (DistanceCG−PMT ).nwater

c ), and therefore, is really consistent
only for direct light. However, this time of flight correction erases most of geometrical discrepancies in
the detector, and shows only differences arising from CG light or detector water/reflection parameters.
As before, we have used run 68696 as our test run and displayed associated timing distribution in
Figure 3.34. We can clearly identify 3 regions:

• The main peak region ( 910-940 ns) that coincides with direct light reaching PMTs

• A region where charge is slowly decreasing with time (950-1050 ns): constituted of scattered
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Figure 3.28: Number of PMTs hit with time in Data and MC for run 68696.The ratio MC
Data is fitted with a

constant and shows a 94.6% agreement between Data and MC (average MC
Data ratio).

light with small amount of reflected light. Therefore, although the amount of scattered light is
decreasing with time, it is almost compensated by increasing reflection light.

• Another peak region (1040 ns/1080 ns) with quick charge decrease corresponding to reflected
light peak in the backward region, which then decreases with time.

We will respectively name these 3 regions “direct”, “scattered” and “reflected” light regions. On
Figure 3.34, differences are observed in direct light timing. However, they can be due to MC trigger
time tuning and laser intensity shape, which negligibly affects the charge profile. In this section, we
will focus on discrepancies observed in the reflected light region, where MC seems lower than data.
To study this effect in more details, we have selected light in the backward region and plotted the
corresponding timing distributions.

On Figure 3.35, a comparison between data and MC is drawn for different angles from CG main
direction. We have chosen 3 angular regions out of the main peak region to isolate scattered and
reflected light: 60◦ − 90◦, 90◦ − 120◦ and 120◦ − 180◦ from CG direction. We expect reflection light
proportion compared to scattered light to increase with angle, and scattered light proportion to be
important close to the peak region. Comparing the 3 regions in Figure 3.35 confirms this trend, with a
reflection peak that tends to become higher and to be shifted towards later times at higher angle. We
observe that the main source of discrepancy is located in the reflection peak at backward angles, where
MC has a strong deficit of light. Thus; it seems that MC/data differences are due to the reflection of
light on PMTs and black sheet, even when using the reflection tuning of the new MC production.

The CG setup is not adapted to measure independently the several parameters required for re-
flection tuning. Hence, we cannot proceed to a re-tuning of the MC reflection parameters to check
whether the MC/Data disagreement is due or not to the way reflected light is taken into account in the
MC. Instead, we have removed the reflection peak in the backward region in both data and MC charge
profiles. Though there is still a component of reflection in the other regions, most of reflected light is
gathered in this peak. This method gives some estimation of the effect of data and MC reflection dis-
agreement. To remove the “reflected light region”, a timing cut has been performed on different time
windows for the different angles to take into account differences in timing distribution. Time windows
used for different angular regions are described in Table 3.7. Finally, we have displayed charge profile
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(a) on-time charge distribution (b) off-time charge distribution

(c) on-time Logarithmic Scale (d) off-time Logarithmic Scale

Figure 3.29: Charge distribution for on-time and off-time data and MC

Table 3.7: Timing Cut Summary
60◦ − 90◦ 90◦ − 120◦ 120◦ − 180◦

Timing Cut (Removed Region) 950-1050 ns 1000-1100 ns 1050-1100 ns

comparison with and without timing cut of reflection peak in Figure 3.36. Qualitatively, we observe
that the agreement between MC and Data has significantly improved. Quantitatively, in the backward
region, the overall disagreement decreased from 6.3% (with skdetsim, and dark noise charge tuning)
to 2.5% for typical run 68696 (0 m, +y dir.). This is the second source of errors between data and
MC (3.8%) after dark noise charge tuning.

However, MC and Data are still in a 2.5% disagreement in the backward region. So, we explored
another possible source: light scattering in water. In fact, as PMT and black sheet reflection, the
tuning of scattering of light in water is affected by Rayleigh scattering correction.

Tuning of light scattering in water

A new MC production where scattering in water has been tuned after Rayleigh new corrections, has
been developed by the SK calibration group. We have implemented these new scattering functions
in CG MC to check possible contribution of this source to MC/Data discrepancy. We have displayed
the results in Figure 3.37. As can be seen from this figure, for new PMT and black sheet reflection
coefficient tuning, changes are too small to explain our MC/Data discrepancy in the backward region.
Nevertheless, the agreement between data and MC increases by 1 − 3% in most of the bins of the
backward region. In all the backward region, the MC

Data disagreement decreased from 2.5% after having
tuned the dark noise charge and removed reflection peak, to 1.4%. Henceforth, though this effect is
not negligible, there remain some sources that constantly shift light in the MC backward region to
lower values. To finally discriminate between possible remaining sources, we will use timing charge
distributions.

It still remains a discrepancy around the peak region (0 − 20◦ and 60 − 90◦) with two identified
possible sources (Figures 3.37 and 3.36):
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relatively high χ2 value for data, Data error will be re-weighted by
√

(χ2/NDF) i.e δ(DataMean) = 0.004 p.e.
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Figure 3.31: Charge Distribution for data and MC in the 1500-1700 ns region (off-time)

• The reflection peak tends not to be separated from other light sources (as it is at higher angles)
around the peak region, and so, our cut is not as efficient as in the far backward region

• As described previously, we observed a shift between the CG direction and the locator direction.
Integrating around the CG direction makes the data charge profile peak to be wider than the
MC one, since the integration point is no longer the ring center. Such an effect could be easily
estimated since our systematic error evaluation takes this effect into account.

3.5.4 Summary of the single cone analysis

The single cone analysis is based on a simulation using the photon flux data taking, which is compared
to data taken in SK. We have first evaluated the MC and data systematic errors, which are summarised
in Table 3.8. It shows an average ≤ 5% error in the cone foward region, and a slightly higher error in
the backward region. We used this estimation to investigate two effects:

• The detector vertical uniformity and rotational isotropy. We observed the detector is isotropic
within the systematic errors, which is summarised in Figures 3.22 and 3.23.
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Figure 3.32: Timing charge distribution comparison between MC and Data. On the bottom plot, a zoom in is
done in the “off-time” region.

• The 10% discrepancy between data and MC in the cone backward region. We ivestigated several
aspects of the simulation. We concluded the MC lack of light was due to the unperfect simulation
of the dark noise, the light reflection on the SK wall and PMTs, and in minority, the scattering
of light in water. The quantitative impact of these different sources is summarised in Table 3.9.
One observes the data and MC comparison before and after correcting these effects and removing
most of the reflected light respectively in Figures 3.20 and 3.36.

3.6 Charge asymmetry of the CG setup

3.6.1 Charge asymmetry of CG in the SK detector

So far, we only studied charge profiles in one dimension (angle from CG direction). In addition,
we decided to perform some studies using the 2D charge distribution in the SK detector. Such 2D
distributions can be seen in Figure 3.38 at z vertex = 0 m, which presents different patterns of light for
data and MC. This leads us to study the ring charge asymmetry from the photon flux setup. However,
given uncertainties on reconstructed position and direction, we decided not to study asymmetry as a
function of angle in the ring shape, but to perform a “coarse-grain analysis” dividing the ring into 2
regions Left and Right, and then 2 others, Top and Bottom.

Our MC will be our comparison reference, since it was generated symmetrically. Indeed, the MC
contains the local geometrical effects (discrete PMT distributions, efficiency of each PMTs and so on)
of SK detector, erasing differences due to vertex position or CG direction.

We studied several hypotheses to explain this charge asymmetry observed in Figure 3.38. The
most upstream one is the tilt of the optical fiber in the diffuser ball. The second one is a global
asymmetry of the diffuser ball itself, due to inhomogeneity in the MgO distribution. The third one
is a shift of the forward cone with respect to the CG vessel. Finally, an inhomogeneity of the CG
channel (forward cone or delrin vessel) could lead to such diffusion inhomogeneity. Before going into
details, we decided to subtract the charge from MC to Data, to suppress geometrical effects. Runs in
different directions can be visualized in Figure 3.39, which clearly indicates a top-right asymmetry in
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Figure 3.33: Charge Profile comparison between new MC production and data with and without dark noise
charge modification.

comparison with the left-bottom region. Moreover, the data ring seems to be shifted on the left of the
MC ring. Note that the dead PMTs are not taken into account in our MC, though the efficiency of
each PMT is corrected.

To distinguish between these different asymmetry sources, and consequently change our default
MC or correctly evaluate systematic errors, we need a quantitative study of the effects mentioned
previously. For this purpose, we slice the 2D charge profiles to study a 1D distribution containing 2
peaks (Ex: Left and Right Peaks).

The top-bottom asymmetry

We need to define a region with a high charge in order not to be affected by dead PMTs, and error
on the CG vertex position and direction. Therefore, we integrate the charge in the horizontal plane
between the “horizontal angles (see Figure 3.40) φ ∈ [−10◦, 10◦]. Note that a larger integration
range would have smeared out the 2 peaks in the 1D charge distribution shown in Figure 3.41. The
comparison between MC and Data shown on this figure clearly shows:

• in the data, there is more charge in the bottom region than in top one.

• in the inner top peak region, there is a large disagreement between data and MC (z ∈ [600 cm, 1100 cm]),
which illustrates what has been seen in Figures 3.39.

In order to determine the source of this charge asymmetry, we have to quantify more carefully the
observations. In this way, we fit the two peak regions with a Gaussian function. Though this method
gives a first estimation, we expect that a Gaussian fit will overestimate the position of the top peak,
because of its shape.
The light asymmetry should be quantified and not depend on detector parameters (water absorption,
scattering, reflection on walls and so on) if the MC is correctly tuned. The light emitted by the
CG that fills the bottom region of the charge profile (Figure 3.41) is noted EDataB (“E” stands for
expectation) and ODataB is the corresponding light that SK PMTs receive in the same bottom region
(“O” stands for observation). Our goal is to compare the light emitted by the CG in the bottom and
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Figure 3.34: Timing charge distribution between Data and MC with dark noise charge and scattering coefficient
modifications.

top regions, i.e
EDataB
EDataT

. Having the information only on the observed light, we use the MC to obtain

the emitted light:

• We assume that the PMT coverage is correctly simulated in the MC

• If ADataB is the light absorption coefficient in the data bottom region, and is correctly tuned in
the MC (i.e ADataB = AMCB = AB), we have the relations: ODataB = EDataB ∗ AB (we remove the
PMT coverage, similar in MC and data)

Given these two assumptions, we observe:

QasymBT =
EDataB
EMCB

/
EDataT
EMCT

=
ODataB
OMCB

/
ODataT
OMCT

(3.6.1)

Our expectations are quite simple to discriminate between our different hypothesis:

1. Assuming some bending of the optical fiber, the light should have a particular direction in the
diffuser ball, different from the ring center. The region where the light is directed should receive
more photons, and should have a peak shifted towards large Z values, because of the shift of
the light average direction. In the region with less light, the peak should be shifted towards
Z=0 m (inner part of the cone). Moreover, we do not expect any particular differences in the
peak widths at first order, though the peaks could be widened by reflections in the cone channel.

2. Assuming some diffuser ball asymmetry, we would expect only differences in absolute charge of
the two peaks. The data and MC should have the same global shape. Moreover, in this case, we
do not expect any shift of the two Gaussian peak positions, nor a modification of their width.

3. In case of a vertical shift of the forward cone, we expect to observe a low intensity peak shifted
towards the high Z values (outer part of the cone), and an intense peak shifted towards Z=0 m.
A schematic view to explain this is presented in Figure 3.43. Moreover, we expect the most
intense peak to be larger than the other one, because of a larger cone channel. Finally, we
expect the low intensity peak to be asymmetric because of reflections inside the CG channel (see
Figure 3.43).
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(a) 60◦ − 90◦ (b) 90◦ − 120◦

(c) 120◦ − 180◦

Figure 3.35: Timing charge distributions in different angular regions from CG main direction.
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Figure 3.36: Charge profile distribution ratio with and without reflection peak cut in Data and MC.

4. A global asymmetry in reflections or shape of the forward cone or the delrin vessel should have
only local effects. This could not generate a charge asymmetry, but it can shift peaks and change
their widths.

Considering the table 3.10, the errors on the width are too high to be discriminant. However, the
peak positions clearly indicate a constant shift of the top peak towards higher z values. This peak is
the one that has the less charge. Referring to our expectations, this indicates that the source of this
light asymmetry is a shift of the forward cone. Particularly, due to this peak position shift, the second
and forth hypothesis are refuted. Since the peak with the lower charge is shifted towards higher z
values, the first hypothesis is also refuted. Moreover, in Figure 3.39, the missing charge in the top left
region (positive high z, negative θ) seems to appear in the bottom left region. This shows a correlation
between the charge of these 2 peaks, which is well explained by a shift of the forward cone.

The Left-Right asymmetry

Here, we integrate the charge between 2 different “vertical” angles, namely for θ ∈ [−10◦, 10◦] (see
Figure 3.40), in order not to be affected by dead PMTs or errors on the CG vertex position and CG
direction. This range has been chosen also to keep the 2 peaks visible in the 1D distribution. The
height of this integration region corresponds to z =∼ ± 3 m.

The comparison between data and MC can be seen in Figure 3.42. Concerning the shape, the left
peak seems more or less gaussian and similar in shape in MC and Data. The reason is this peak is
the one measured in the photon flux data taking used to generate the MC.

Similarly to the top-bottom asymmetry, there is a large disagreement in shape between the MC and
data for the right peaks, namely in the region corresponding to the inner of the cone (φ ∈ [20◦, 40◦]).
In fact, the photon flux is considerably lower for data than for MC in this region, though it agrees
very well in the peak region corresponding to the outer part of the ring. This first observation is a
hint that the diffuser ball asymmetry hypothesis (hypothesis 2) cannot explain the charge pattern. To
quantify this assumption and discriminate between other hypotheses, we compare the left and right
peaks fitting them with a Gaussian function, keeping in mind the right peak position is over-estimated
(due to its shape).
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Figure 3.37: Charge Profile comparison between new MC production with dark noise charge modification with
and without scattering coefficients modifications.

Results of this procedure are shown in Table 3.11. We can notice that the charge asymmetry is
more dependent on the run than the top-bottom one. Nevertheless, the results constantly indicate that
the left region contains more charge than the right one. Moreover, the right peak seems constantly
shifted the most toward high angle regions, which confirms the forward cone shift hypothesis. The
uncertainty on width is still too high to be conclusive. However, the right peak seems considerably
shifted and the left peak seems also shifted in the data. The left peak should not be shifted, as it
corresponds to the part of the cone which was measured in the Photon Flux data taking, and used
to generate the MC. In this way, we conclude that there is a constant shift of about 0.7◦ between
the reconstructed direction and the ring center given by the mean positions of the two peaks. This
shift was not observed in the top-bottom plot, and therefore, it probably comes from a misalignment
between the CG and the locator directions due to the mounting plate device that is too imprecise.

3.6.2 Charge asymmetry hypothesis test in photon flux data

To further confirm the forward cone shift hypothesis, we check data involving less dependence on other
physics phenomena: the photon flux data. This data set depends mainly on CG only, given scattering
and reflection in the small water tank are small. For this study, we use the only data set where the
two peaks (left and right) have been taken, keeping in mind that only photons with a PMTV direction
of 0◦ are measured. First, we have to find out which peak of photon flux data corresponds to which
peak in the data taken at SK, since this detail of the configuration had not been recorded at the time
of the data taking. In Figure 3.42, the left peak of the data is the one which agrees most with the MC.
As it is the right peak in Figure 3.15 that has been taken to generate the MC, we deduce that the
right peak in the Photon Flux data taking corresponds to the left peak in the SK data. Therefore, we
deduce some constraints on these two peaks: The left peak should be larger and closer to the center,
while having more charge. Moreover, the peak shift, the width and the charge asymmetry should vary
altogether. To quantify such a change, we will suppose a forward cone shift around the diffuser ball,
as described in Figure 3.43.

To evaluate the change in each quantities, we need to characterize the light emitted by the diffuser
ball. Our first assumption is that it emits a uniform photon distributions in both position and
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Figure 3.38: 2D Charge Profiles as a function of the azimuthal angle with a position corresponding to the SK
center, and the +Y direction
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Figure 3.39: Data-MC 2D Charge Profiles as a function of azimutal angle. It shows the discrepancy of charge
distributions in the data
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Figure 3.40: Coordinates used to determine slices of 2D charge Profiles

direction. We assume that the photons emitted by a radial point on the sphere is λα,p with α the
emission direction with respect to the channel direction, and p the position on the sphere. Considering
Figure 3.44, we can deduce the distribution of direct light as shown in Figure 3.45.

This width (∼ 40◦) at the peak basis is much wider than what we observed in Figure 3.15 (peak
basis width ∼ 15◦). Thus, instead of considering a uniform photon distribution, we will suppose that
the light source is more or less localized at the diffuser ball center, which seems reasonable given the
optical fiber position. Such an assumption leads to a peak width of direct light which is limited by the
edge of the CG channels, around 9.7◦, which is compatible with the 15◦ observed (where reflections on
the channels increase the width). For this reason, we approximate the direct light to have a trapezoid
shape, as shown in the right plot of Figure 3.45. Moreover, to take into account the PMT spatial
extension, a convolution is done using the same Gaussian function for the left and right peaks. In
this way, we consider the photons to be emitted from the ball center. Given this hypothesis, we
consider the change in peak directions, width and charge with a forward cone shift of 0.7◦ around
the diffuser ball, which corresponds to a 8% light asymmetry. Let us remark that it corresponds only
to a 350 micrometers mechanical shift in the metallic pins. We consider that changes in width are
determined by dWL and dWR in Figure 3.43, because the higher edges of the channel determine the
width of the direct light beam. Concerning the asymmetry observed in SK, we consider the shift dL
since the total amount of light emitted is directly proportional to this quantity (assuming absorption
in the channel walls are similar). Moreover, for SK data, we integrated in a given region small enough
to consider the light emitted in a peak as a rectangle, which width is proportional to dL and height H
is equal to the region we chose to integrate (H = θ±10 ◦ i.e around H = ±3 m). Since H is independent
from the forward cone shift, the effect on light asymmetry of such a shift would be directly proportional
to dL.

The results are summarized in table 3.13. If the hypothesis that there exists a shift of the forward
cone is correct, we are supposed to find relative left/right peak positions, widths and light asymmetry
in agreement with the estimates obtained in the previous paragraph. We cannot check this quantities
in Super-Kamiokande, because the peak position and width highly depend on absorption, scattering,
and discrete PMT distribution of SK. Moreover, fitting also the reflected light, we expect to find the
outer reflection peak to be far from the direct light peak compared to inner peak, in the left region,
while they are supposed to be more or less at same distance from the direct light peak in the right
region. To quantify this, we consider for each peak the difference between inner an outer peak with
the direct light center. Namely, we consider RLe f t/Right =

2(Dout−Din)
(Dout+Din) with Din/out= Meanin/out- Direct

Light Mean.
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Figure 3.41: Charge distributions with z position in SK detector for data and MC. We show results for the
typical run 68696 (z=0m, +y di.).

Considering the χ2 value in Figure 3.46, the fit seems reasonable, mostly for the right peak, which
validates our model. Moreover, the width difference between the left and right peaks is coherent
with our expectation estimated in Table 3.13, though slightly smaller. Concerning the peak shift,
the comparison between the fit and our expectations confirms that a shift of the forward cone only
cannot explain such a huge peak shift, that a shift of the CG vessel is necessary to account for the
data. However, assuming that all the peak shift is due to the shift of the CG vessel is surely abusive,
given the fact that according to our model, about 0.3◦ of the shift correspond to a possible shift of
the forward cone. Finally, the charge asymmetry is opposite to our expectations. This quantity is
difficult to use here, since we only take into account a very small part of the total light (the only
available data set is for PMTV = 0◦). In this way, we can imagine one peak to have more photons
in a particular direction different from this one, which can obviously introduce a bias. Quantities as
peak position and width are less subject to this bias. On the other hand, the shift of the reflected
light peak is exactly as expected: the reflected peaks are less symmetric around the right peak, and
its outer reflection peak is shifted towards higher CGV.

In a nutshell, we first concluded that there exists a mechanical shift of the CG with respect to the
locator. In the future, this alignment should be checked before any data taking.
In addition, there are strong hints for a forward cone shift in different data sets: the correlation be-
tween top-right and bottom-left charge, the direction in the peak shifts and the peak shape in SK data.
To test this hypothesis, we proposed a model in the photon flux data, which brings some evidence
of this forward cone shift. Finally, such a shift could also explain the differences between left peak
positions in table 3.11. They are due to a relatively bad tuning of the MC since we replaced the CGV
shift by a total CG vessel shift, and did not take into account the forward cone shift contribution.
These differences should not impact much on the study presented in Section 3.5 , because we analyzed
the charge profile (integration of total charge around the ring center). Due to this integration, a
difference in ring width between data and MC is observed constantly in Section 3.5. As for the future,
this forward cone shift should be tested with a particular photon flux data set, and reduced for further
studies using the CG, such as π0 background or ring counting algorithm studies.
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Figure 3.42: Charge Distribution for the horizontal slice of the 2D charge profile with CG in the configuration
(0m, +Y direction)
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Figure 3.43: Schematic View of a shifted forward Cone
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Figure 3.45: Direct light intensity distribution I (see Figure 3.44 and Figure 3.43 for variable definitions)
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Figure 3.46: Fitting of our model on “CGV offset data”
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Table 3.8: Systematic Error estimated for each bin for the Run 68696 (0 m, +Y direction). We represented the
lower and upper values of 1σ error (lower error bound, upper error bound) in percent. See Appendix A for
more details.

Angle
(◦)

Pedestal Laser
Inten-
sity

CG
Vessel
shift

PMTV
offset

PMT
light
col.

Total
MC

2.5 (0, 8) (0, 8) (0, 8) (0, 3) (13, 52) (13, 54)
7.5 (2, 0) (2, 0) (3, 0) (4, 0) (7, 1) (9, 1)
12.5 (0, 0) (2, 0) (1, 0) (4, 1) (9, 5) (10, 5)
17.5 (0, 1) (1, 0) (1, 0) (2, 2) (3, 4) (4, 5)
22.5 (0, 0) (0, 0) (0, 1) (2, 3) (1, 1) (2, 3)
27.5 (0, 0) (0, 0) (1, 0) (2, 2) (2, 1) (3, 3)
32.5 (0, 0) (0, 1) (0, 0) (0, 0) (0, 1) (0, 2)
37.5 (1, 0) (0, 0) (0, 0) (2, 1) (1, 1) (2, 2)
42.5 (1, 0) (0, 0) (2, 0) (2, 1) (1, 0) (3, 1)
47.5 (1, 0) (0, 0) (2, 0) (2, 2) (3, 1) (4, 2)
52.5 (0, 0) (0, 0) (0, 4) (3, 2) (3, 4) (4, 6)
57.5 (0, 1) (0, 1) (5, 7) (1, 2) (4, 4) (6, 8)
62.5 (0, 2) (0, 1) (3, 2) (1, 2) (4, 7) (5, 8)
67.5 (1, 1) (0, 0) (0, 1) (1, 1) (1, 3) (2, 4)
72.5 (1, 1) (1, 0) (0, 0) (0, 1) (0, 2) (1, 3)
77.5 (0, 0) (0, 0) (0, 1) (0, 1) (1, 1) (1, 2)
82.5 (0, 0) (0, 1) (0, 1) (1, 1) (1, 1) (2, 2)
87.5 (0, 2) (0, 1) (0, 2) (0, 2) (0, 2) (0, 4)
92.5 (0, 1) (0, 0) (1, 0) (0, 0) (1, 1) (1, 1)
97.5 (0, 1) (0, 0) (0, 2) (0, 1) (0, 2) (0, 3)
102.5 (0, 2) (0, 1) (0, 2) (0, 1) (0, 3) (0, 4)
107.5 (0, 0) (0, 0) (1, 0) (0, 0) (2, 1) (2, 1)
112.5 (1, 1) (0, 0) (0, 0) (0, 1) (2, 2) (2, 2)
117.5 (0, 1) (0, 0) (0, 2) (0, 1) (0, 2) (0, 3)
122.5 (1, 0) (1, 0) (1, 0) (1, 0) (3, 1) (4, 1)
127.5 (0, 0) (0, 1) (1, 0) (1, 0) (2, 1) (2, 1)
132.5 (0, 0) (0, 1) (0, 0) (1, 1) (1, 2) (2, 2)
137.5 (0, 1) (0, 0) (0, 2) (1, 1) (0, 1) (1, 2)
142.5 (0, 1) (0, 0) (0, 1) (0, 2) (2, 2) (2, 4)
147.5 (0, 2) (0, 1) (0, 1) (0, 2) (0, 3) (0, 4)
152.5 (0, 0) (1, 0) (1, 0) (0, 1) (2, 1) (3, 2)
157.5 (0, 1) (0, 0) (1, 1) (0, 2) (2, 3) (2, 3)
162.5 (0, 3) (0, 1) (0, 3) (0, 2) (0, 4) (0, 6)
167.5 (0, 0) (3, 0) (0, 1) (0, 0) (6, 2) (7, 2)
172.5 (0, 4) (0, 0) (2, 1) (1, 0) (6, 4) (6, 5)
177.5 (10, 0) (10, 0) (5, 0) (8, 0) (25, 0) (30, 0)

Shift of di-
rection

Rec.
CG ver-
tex/direction

Total
Data
Error

(0, 81) (0, 0) (0, 81)
(0, 1) (0, 2) (0, 2)
(0, 1) (2, 0) (2, 1)
(0, 2) (1, 1) (1, 2)
(1, 0) (1, 1) (1, 1)
(3, 0) (0, 1) (3, 1)
(0, 1) (0, 1) (0, 1)
(2, 0) (1, 0) (2, 0)
(1, 0) (0, 1) (1, 1)
(3, 0) (1, 0) (3, 0)
(1, 0) (0, 2) (1, 2)
(2, 0) (1, 0) (3, 0)
(0, 2) (0, 2) (0, 3)
(2, 0) (1, 0) (2, 0)
(0, 0) (0, 1) (0, 1)
(1, 0) (0, 1) (1, 1)
(2, 0) (1, 1) (2, 1)
(0, 0) (1, 1) (1, 1)
(0, 0) (0, 1) (0, 1)
(2, 0) (1, 0) (2, 0)
(0, 0) (0, 1) (0, 1)
(1, 0) (1, 0) (1, 0)
(3, 0) (1, 1) (3, 1)
(0, 0) (1, 1) (1, 1)
(3, 0) (1, 1) (3, 1)
(1, 0) (1, 1) (1, 1)
(2, 0) (2, 0) (3, 0)
(1, 0) (0, 3) (1, 3)
(2, 0) (3, 1) (3, 1)
(0, 0) (1, 2) (1, 2)
(0, 0) (2, 3) (2, 3)
(0, 0) (1, 1) (1, 1)
(0, 0) (3, 1) (3, 1)
(5, 0) (1, 2) (6, 2)
(6, 0) (2, 6) (6, 6)
(15, 0) (15, 40) (21, 40)

Table 3.9: List of error sources impact on MC
Data agreement in the backward region for a typical run (run 68696)

Dark noise Reflection peak Scat. coefficients Others
charge tuning removal new tuning

Change in MC
Data agreement 4.2% 3.8% 1.1% 2.2%
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Table 3.10: Fitting Results of slices in different directions for Top-Bottom asymmetry
Run number Data-MC Left Peak (in cm) Data-MC Right Peak (in cm) 1 − QasymBT (%)

68696 (0m, +y)
Position: 2 ± 11 Position: 8 ± 11

7.6
Width: 1 ± 20 Width: −1 ± 21

68700 (0m, +x)
Position: −10 ± 7 Position: 21 ± 10

5.5
Width: −15 ± 11 Width: −3 ± 17

68704 (0m, -y)
Position: −27 ± 12 Position: 12 ± 19

7.0
Width: 8 ± 19 Width: 6 ± 34

68708 (0m, -x)
Position: −6 ± 12 Position: 48 ± 13

9.3
Width: 2 ± 22 Width: 0 ± 22

68712 (0m, +y)
Position: −4 ± 11 Position: 9 ± 11

7.0
Width: 0 ± 20 Width: −4 ± 21

Table 3.11: Fitting Results for Left-Right asymmetry (for different slices).
Run number Data-MC Left Peak (in ◦) Data-MC Right Peak (in ◦) 1 − QasymLR(%)

68696 (0m, +y)
Position: 0.4 ± 0.2 Position: 0.4 ± 0.2

5.7Width: −0.1 ± 0.3 Width: 0.1 ± 0.3
RMS: -0.1 RMS: 0.2

68700 (0m, +x)
Position: 0.7 ± 0.2 Position: 0.7 ± 0.2

6.8Width: 0.0 ± 0.3 Width: 0.0 ± 0.3
RMS: -0.1 RMS: 0.1

68704 (0m, -y)
Position: 0.9 ± 0.3 Position: 1.0 ± 0.3

3.4Width: 0.0 ± 0.4 Width: 0.8 ± 0.5
RMS: 0.0 RMS: 0.1

68708 (0m, -x)
Position: 0.4 ± 0.3 Position: 0.8 ± 0.2

0.6Width: −0.2 ± 0.5 Width: 0.0 ± 0.3
RMS: 0 RMS: 0.2

68712 (0m, +y)
Position: 0.3 ± 0.2 Position: 0.5 ± 0.2

6.0Width: −0.3 ± 0.3 Width: −0.2 ± 0.3
RMS: 0 RMS: 0.2

68674 (0m, +y)
Position: 0.9 ± 0.3 Position: 1.2 ± 0.2

4.7Width: 0.1 ± 0.4 Width: −0.2 ± 0.2
RMS: -0.2 RMS: 0.1

68678 (0m, +x)
Position: 1.1 ± 0.3 Position: 1.7 ± 0.2

5.7Width: 0.1 ± 0.5 Width: −0.1 ± 0.3
RMS: 0.2 RMS: 0.1

68682 (0m, -y)
Position: 0.2 ± 0.3 Position: 1.7 ± 0.2

0.6Width: −0.7 ± 0.4 Width: −0.2 ± 0.4
RMS: 0.2 RMS: 0.2

68686 (0m, -x)
Position: 0.3 ± 0.2 Position: 0.3 ± 0.3

1.5Width: 0.0 ± 0.3 Width: −0.2 ± 0.5
RMS : 0.0 RMS: 0.1

Table 3.12: Expected impact on our “CGV offset data” and SK data of a 0.7◦ forward cone shift
Left peak Right peak position Asymmetry

Peak Position 0.3◦ 0.3◦
8%

Peak Width 6.2% 6.1%

Table 3.13: Fitting results of our model on “CGV offset data”
Peak shift Peak Width Difference Charge Asymmetry RL RR

Direct Light 1.39±0.05◦ 8.5±% -5.6% Reflected Light 51% 32%
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3.7 Conclusion of the single cone analysis in SK

We have presented here the complete single cone analysis using 2011/09 data and summarized the
obtained results.

For a typical run with vertex at (0 m, +y direction), the charge profile from MC is in agreement
with data in the 4% shape error in the main ring region. In the backward region, MC is constantly
lower than Data by 11% which is beyond the 5% shape error. As for different z positions, and for
different directions, the disagreements between MC and data are also similar to this. This result
confirms trends observed in other control samples as stopping muons, through going muons and decay
electrons. Finally, we have not observed any vertex and direction dependence with a probability of
42% and 12% respectively. This CG study indicates no inhomogeneity in the SK detector, except for
the absorption, to which the current CG setup is not sensitive.

Moreover, we have studied possible sources of this disagreement between MC and Data. In fact, we
observed that the dark noise charge tuning was the main source, and the tuning proposed decreased the
disagreement by 5% in the run 68696 (vertex at z=0 m, +y direction) we studied. As secondary sources,
implementation of new MC production and of new scattering functions introduced in Section 3.5.3
also reduced this disagreement in the backward region. However, we measured that the MC

Data ratios
still have a 5% discrepancy in this region. Finally, time distribution comparisons indicated that the
main source of the remaining disagreement may come from the reflection tuning in skdetsim.

In Appendix A.1, we have listed systematic errors that affects CG profile in Table A.1 and A.2,
and we emphasize that dominant systematic errors come from statistical fluctuation due to PMT light
collection, CG vessel shift, reconstructed vertex position and direction shift depending on altitute of
the vertex. On one hand, the error due to PMT light collection in some bins would be reduced taking
more data at these angle during the photon flux measurement process. Another possibility would
be to change laser diode to increase intensity during the photon flux measurement. Concerning CG
vessel shift, main source of error comes from the high χ2 value of the fitting function. One way to
improve fit quality is to understand expected light pattern, using for example results developed in

Section 3.6. Using basically such a fitting function decreases χ2

NDF value roughtly from 44 to 3, and
therefore, decreases the error on CG vessel shift by a factor 4. Finally, the error on reconstructed
vertex position and shift direction are dominant in some regions. Concerning the mechanical shift,
alignement can be checked with an optical table on which the CG center is aligned. Then using the
locator laser spot, alignement with the CG center may be estimated.

Though this study indicated the source of discrepancy, the CG has not been designed to properly
measure the black-sheet and PMT reflection. This study can be cross checked and improved in the
future using laser data taken in the Super-Kamiokande tank. The second calibration that can be
performed would be the use of the off-time dark noise data to tune the dark noise charge distribution.
The various checks and simulation tuning we have performed in this analysis will be used in the
future for all physics analyses, but also for the two CG setup to estimate π0 background and evaluate
reconstruction algorithm performances.

However, as we observed, this CG setup is quite a complicated device and its imperfections, such
as the mobile forward cone, can make precise measurements difficult. Due to these limitations, this
setup developed in 2009, could not be used as previously planned. To improve the reproducibility
of this device (in context of two CG analysis), a completely new design could be easily studied to
further investigate the important SK characteristics, using for example simple and cheap 3D printed
cone channels, the geometry of which would be under much better control than the one of the CG we
have studied here.
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Chapter 4

Charge calibrations of the INGRID and PM
detectors

A theory is something nobody believes, except the person who made it.
An experiment is something everybody believes, except the person who made it.

Albert Einstein

T
he INGRID detector has been used mainly to monitor the beam intensity and shape through
the detection of νµ. The event selection is based on the muon detection with the INGRID
tracker, which doesn’t require an accurate calorimetry. Only a 2.5 photo-electron cut for

each hit is applied to remove most of the electronic dark noise hits.
In this thesis, we will use the PM and INGRID repectively for cross section measurements (Chapter 5)
and Lorentz invariance violation study (Chapter 6). Both require a better calibration of the charge
response of the detectors. This will be also true for future uses of these detectors, and we have listed
several examples below:

1. For νµ cross section measurements in iron (INGRID) or carbon (PM): we have shown that νµ
cross section measurements should be based on particle identification which relies on dE

dx (see
Chapter 5). In this particular example, one needs an accurate charge response calibration to
clearly distinguish muons from protons.

2. For Lorentz invariance violation study: we need a νµ/νe separation to be able to see a potential
νµ disappearance in νe (see Chapter 6). We have shown that charge response calibration helps
to improve electrons and muons track separation. Note that this study could be used also for a
possible νe cross section measurement.

3. For future identification of ν/ν in the anti-neutrino run: we can imagine using vertex energy
to distinguish a ν charged current interactions producing a proton from an ν that produces a
neutron in the final state.

We will perform the charge calibration in the INGRID and PM detectors to carry out these
different measurements. The main issue we tackled was the correction of the INGRID analog-to-
digital converter (ADC) non linearities which has been extensively studied in this chapter.
We will first measure and correct the ADC non linear response to a given charge. We will show the
improvement in the charge deposition agreement between MC and data in Section 4.2. Thanks to this
calibration, we discovered an anomaly in charge deposition in the PM. The study of this anomaly will
be presented in Section 4.3, and clearly indicates a possible optical cross-talk between the scintillators.
This cross-talk is not taken into account in the simulation. We will confirm this hypothesis by a set
of measurement (Section 4.4), and will correct it.
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Figure 4.1: Schematic view of the processes from the passage of particle in a scintillator to the emission of a
light signal that can be measured by the MPPC.

4.1 Introduction to INGRID and PM detectors detection process

The basic features of the INGRID and PM detectors have already been introduced in Chapter 2. We
now describe these detection processes in details: from the particle propagation to the read-out. The
detection principle of a charged particle by the INGRID and PM is based on:

1. An active polystyrene scintillator slab producing photons after excitation due to the passage of
a charged particle, described in Section 4.1.1.

2. A wavelength shifting fiber to collect the photons, described in Section 4.1.2.

3. A multi-pixel photon counter (MPPC) to convert the photons in a measurable current, described
in Section 4.1.3.

4. An analog-to-digital converter to digitise the analog current, described in Section 4.1.4.

These various steps of the detection are illustrated in Figure 4.1.

4.1.1 Scintillator

When a charged particle penetrates a scintillator slab, it excites the scintillator molecules. The
scintillator is constituted of polystyrene doped with 1% PPO (2,5-Diphenyloxazole) and 0.03% POPOP
by weight. Most of the excited molecules are polystyrene. It is interesting to note that most of the
scintillating light that reaches the optical fiber does not come directly from these excited molecules.
In fact, the deexcitation light emitted would be soon re-absorbed by the polystyrene, which would
highly limits its propagation to the fiber. Moreover, the pure polystyrene molecules have a relatively
long decay time (∼ 16 ns [13]) which could highly limit the detector time resolution. For these
two reasons, a primary wavelength shifter (the PPO) is used. The polystyrene molecules transfer a
part of their energy through “Forster energy transfer” [13] [60] to the PPO molecules. This transfer
corresponds to a dipole-dipole interaction which implies a 1/(r/R0)6 efficiency variation with r the
distance between the acceptor and donor and R0 the Forster distance of this pair. This constant for
our scintillator type allows energy transfers from 10 Å to 100 Å, which corresponds to the average
distance 〈D〉 between a given polystyrene molecule and its closest PPO molecule. Assuming a mean
separation of ∼ 30 Å between two polystyrene molecules, the 1% PPO concentration is needed to keep
a 〈D〉 ∼ 30 ×

√
3100 Å = 140 Å and therefore allows a sufficient amount of Forster energy transfer to

the PPO molecules.
The PPO molecules are consequently in an excited state. They deexcite through light emission at
a wavelength peaked at λ ∼ 350 nm as shown in the right part of Figure 4.2. Comparing the two
Figures 4.2, one remarks the absorption and emission spectrum overlap is small, though not negligible
around 300 − 340 nm. This naturally limits the mean free path of the emitted photons because of
re-absorption. A second wavelength shifter, the POPOP, is then used to increase the mean free path
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of the photons and shift the light wavelength to convenient optical wavelength (370 − 450 ns) to be
propagated after shifting through the fiber. The absorption and emission spectra of the POPOP shown
in Figure 4.3 clearly demonstrates ability of the 0.03% POPOP to shift the 〈350 nm〉 emitted light
from the PPO. The negligible overlap between POPOP emission and PPO absorption spectra and the
small POPOP concentration allows a relatively large attenuation length in INGRID scintillators, which
has been measured using 3 GeV test electron beam as 10.5 cm. This attenuation length also takes
into account the light reflected on the scintillator coating (TiO2) and the scintillator geometry (light
collection by the fiber) and is naturally higher than in case of no-boundary (no coating) scintillators.

Figure 4.2: Absorption (left) and emission (right) spectra of the PPO molecule.

Figure 4.3: Absorption (left) and emission (right) spectra of the POPOP molecule.

After being shifted by the POPOP, the light emission peak is 420 nm.

4.1.2 Wavelength shifting fiber (WLS)

The emitted photons may hit and propagate through the 120 cm WLS. These fibers are 1 mm diameter
Kuraray double-clad Y-11, and are inserted in a 3 mm hole in the center of the scintillator bars. The
maximum of their absorption spectrum is located around 430 nm (blue) while they deexcite emitting
a photon spectrum centered around 476 nm (green) to minimize the self-absorption [50]. One edge of
the fiber is connected to a multi-pixel photon counter (MPPC), while the other one is polished and
painted using TiO2 reflective painting. The attenuation length in the WLS has been measured using
the 3 GeV electron beam as L = 241.7 cm.

4.1.3 Multi-pixel photon counter (MPPC)

The photons then hit the MPPC. The T2K Hamamatsu MPPC are 1.3 × 1.3 mm2 arrays of 667 inde-
pendent light-sensitive pixels (photodiodes) operating in Geiger (avalanche) mode shown in Figure 4.4.
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The overvoltage of ∆V = V − Vb is the difference between the voltage applied to each photodiode and
their breakdown voltage. The operational voltage of the photodiode is about 70 V which corresponds
to ∆V ∼ 1 V. The Geiger mode implies that each photodiode operates in binary mode and the response
of each photodiode is non linear with the amount of hitting photons. Since several photons may hit
the same photodiode for high charge deposition, possible MPPC non linearities should be corrected.
The T2K MPPC produces electrons (“photo-electrons”, “p.e”) with a ∼ 106 gain. It is important
to notice that the MPPC gain is highly sensitive to external conditions as temperature or humidity
(changing the MPPC dielectric properties).

Figure 4.4: The T2K multi-pixel photon counter (MPPC), an array of 667 independent photodiodes.

4.1.4 Electronics and analog-to-digital converters (ADC)

The MPPC readout is operated by Trip-T front end boards (TFBs) shown in Figure 4.5. In partic-
ular, the Trip-T are constituted of one low gain and one high gain channels, which are constructed
respectively using a CHi = 100 pF and a CLo = 10 pF capacitance. Each capacitance is charged
(QHi/Lo = CHi/Lo×U) during the 480 ns INGRID integration cycle and then discharged. This naturally
generates a gain difference of a factor of ten between the two channels in order to operate accurately
on a broader dynamical range. Each channel is connected to a 10 bits ADC, which naturally allows
210 = 1024 values to dicretize the analog charge that can then be sent to computers.

Figure 4.5: The electronic architecture from the MPPC output to the low and high gain channel separation.

The input voltage (i.e charge) has to fall within the range where the ADC operates. This range
is selected by the choice of a reference voltage Vre f . The range from 0 to Vref is discretized within
the 1024 values, using series of resistances in the case of flash ADCs (Figure 4.6). A comparator is
used between the input charge and various discrete charges to find the input charge corresponding
digitised value as illustrated in Figure 4.6. The high gain channel allows to digitise accurately low
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Figure 4.6: The example of a 2 bit flash ADC. Extracted from [61].

input charges. The other side of the coin is that the ADC saturates for relatively low input charges
(∼ 40 p.e (see Section 4.2) which correspond to the input voltage V reaching the reference voltage
Vre f . On the contrary, the low gain channel has a smaller accuracy for low charge measurements, but a
broader range that allows to even measure the high energy deposition in the scintillator. However, the
ADC performances are not uniform over the dynamical range. In particular, ADC are known to have
a non linear response with the input voltage over the possible digital range. These non linearities may
highly impact the digitised charge value and should be corrected before using the charge as a variable
in the analyses. In this thesis, we have performed this non linearity calibration which is presented in
Section 4.2.

4.2 Charge response calibration

Gain monitoring

In Section 4.1, , we noticed that the MPPC gain may vary during data taking due to changing external
conditions. For this reason, it is crucial to monitor the gain for all MPPC channels in order to correct
these variations. For each MPPC and each low/high gain channels, the noise spectra are registered
to measure the pedestal and the gain. Figure 4.7 shows both the low and high gain distributions for
one of the MPPC channels. The pedestal and one photo-electron peak positions are estimated using
a gaussian fit. For each input charge Q, the pedestal P is first subtracted which gives the number of
ADC counts separately for the low and high gain channels. Second, the remaining charge is divided by
the gain G to deduce the number of photo-electrons: Charge in p.e =

Q−P
G . For the high gain channel,

the gain is measured as the difference between the one photo-electron peak and the pedestal value and
is generally G ∼ 10. For the low gain channel, one remarks in Figure 4.7 that the gain is too small
to discriminate between these two peaks. The low gain value is therefore deduced from the high gain
value divided by a factor of ten. It assumes no gain variations downstream the low and high gain
separation in Figure 4.5. This assumption seems reasonable at the first order since the MPPC is the
main cause gain variation, but neglects any possible differences in the separate electronics of these two
channels. For each data set, we apply corrections using such distributions to remove possible variations
coming from the MPPCs. One remarks that electronics variations are also taken into account in this
measurement.
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Figure 4.7: Gain and Pedestal measurement. How these curves are generated. In this case, gaussian fit gives
pedestal = 156.31 ± 0.02, and 1 p.e = 166.37 ± 0.07 for HG distribution, which implies a gain = 10.06 ± 0.07.
For LG, pedestal value = 156.66 ± 0.02.
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Figure 4.8: Data showing number of ADC counts for a given input charge in the high gain channel (left) and low
gain channel (right). The pedestal values has already been subtracted. Data are fitted by a degree 9 polynomial
(dashed) to remove possible discontinuous variations between data points.

ADC non-linearity measurements

We introduced in Section 4.1.4 the ADC non linearities over their whole operating range. To evaluate
and correct these effects, each Trip-T has a charge injection circuit. It generates a chosen charge in
the circuit. This allows to inject an increasing charge to measure the ADC response for a large set of
input charges. The charge injection runs we are using in this thesis have been taken in January 2011
together with Thomas Dealtry. Figure 4.8 shows an example of the outputs of these charge injection
runs for chosen high and low gain channels. One remarks the saturation of the ADC response in the
high gain channel for an input charge around 500 a.u. Figure 4.9 clearly shows the non linearities over
the range for different channels.

For each channel, the ADC distribution is fitted by a degree nine polynomial to remove possible
discontinuities between data points. These fitting functions will be used to correct ADC non linearities.
Figure 4.8 shows some examples of these fits. Finally, Figure 4.9 shows the different behaviour of
various Trip-T channels. This clearly indicates that a different non linearity correction should be used
for different Trip-T to minimise the difference between channels.

ADC non-linearity corrections

We explained in Section 4.2 that the channel gain was measured from time to time to correct potential
variations coming from the MPPC or electronics. It is independent from the charge deposition in the
scintillator. We will now modulate these corrections with the input charge in order to correct for the
ADC non linearities.
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Figure 4.9: Data showing number of ADC counts for a given input charge in the high gain channel (left) and
low gain channel (right) for different channels (Trip-T). The pedestal values has already been subtracted. One
notices the ADC non linear response which is illustrated more clearly for charges around 100 a.u for high gain
channels or charges around 800 a.u for low gain channels.

This procedure is described in the following steps, and replaces the former gain correction described
in Section 4.2. For a given charge deposition in the scintillator:

1. The high and low gain ADC counts are subtracted by their respective pedestals measured as in
Section 4.2 to deduce the number of relative ADC counts, that we will note “# ADC counts”.

2. The number of relative ADC counts is corrected by a gain Gcorr = G ·CADC counts which is ob-
tained after correction of the gain measured in the channel G. The correction factor C# ADC counts

depends on the charge (in ADC counts) and is described below.

The latest point we raised provides the real charge input in a channel:

Qsignal =
#ADC counts

G ·CADC
(4.2.1)

and we would like naturally to extract the correction from the known gain measurement point in the
high gain channel (used as a pivot):

Q#ADCG =
#ADCG

G
(4.2.2)

with #ADCG the relative ADC counts separating 1 photo-electron from pedestal. It provides the
correction factor:

CADC =
Q#ADCG · #ADC counts

Qsignal · #ADCG
. (4.2.3)

The ratio
Q#ADCG
Qsignal

is estimated using the charge injection runs. For the given signal Qsignal in photo-

electrons (hit in data), the number of ADC count is measured and the associated charge in arbitrary
units can be retrieved using polynomial fit of distributions shown in Figure 4.9. Let’s note Q′

signal
=

# ADC counts
Gradient(#ADC counts) this associated charge (in arbitrary units) to distinguish it from Qsignal in photo-
electrons. The gradient(#ADC counts) is simply the conversion factor evaluated using polynomial fits
and depends on the number of ADC counts because of the non linearities. Since Q and Q’ are simply
expressed in different units (so differ by a constant factor), we obtain:

Q#ADCG

Qsignal
=

Q′#ADCG

Q′
signal

=
Gradient(#ADC counts) · #ADCG

Gradient(#ADCG) · # ADC counts
(4.2.4)

which finally gives the correction factor:

CADC =
Gradient(#ADC counts)

Gradient(#ADCG)
(4.2.5)
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and thus we obtain the input charge corrected by ADC non linearities from Eq 4.2.1:

Qsignal =
# ADC counts

G Gradient(#ADC counts)
Gradient(#ADCG)

(4.2.6)

This correction is only possible for the high gain channel since the gain measurement is not directly
possible for the low gain channel. But the charge injection runs provides a pivot that allows to deduce
the low gain value from the high gain. Using the polyomial fits, we can estimate the input charge
Q′#ADCG

(in arbitrary units) associated to the 1 p.e peak in high gain channel. Using the polyomial
fit for the low gain channel, one retrieves the corresponding number of ADC in low gain channel

#ADCLow
G . We deduce directly the gain in the later channel: GLow =

ADCLow
G

1p.e . This procedure allows to
check the low gain values instead of relying on the capacitance theoretical values. Moreover, it allows
to apply now the same procedure as described above (for high gain channels) to correct the ADC
non linearities in the low gain channel. We applied this procedure for all the channels in the sixteen
INGRID modules and in the PM.

4.3 Calibration results using INGRID data

In this section, we apply the calibration of Section 4.2 to the INGRID and PM data. We use the
INGRID data that were taken shortly after the charge injection runs we are using, namely T2K run 3c
data (April-May 2012). We use the “sand muon” data sample in order to allow accurate comparison
with the MC. The so called “sand muons” are muons produced by the T2K beam neutrinos interacting
in the rock surrounding the detector. These sand muons represent a very pure sample of muons that
are reaching the INGRID detector and are used for various purposes in this thesis.

4.3.1 Neutrino event and sand muon selections

We present here the two data samples that will be used in this analysis: the neutrino event and the
sand muon samples.

Neutrino event sample

The neutrino event sample is based on the original identification of a the decay muon emitted through
charged current interaction of a neutrino in the detector. In both INGRID and the PM, this selection
is based on the same nine cuts:

1. Timing clustering: the reconstruction is started if there are more than 6 hits (charge deposition
> 2.5 p.e) in a 100 ns window in an INGRID or PM module. All the hits within a ±50 ns
of the average time of the cluster are considered to be a part of it. This allows to reduce the
random MPPC noise hits contamination. For SciBar type scintillators in the PM, a hit is not
defined by a charge deposition higher than 2.5 p.e but higher than 10 p.e. We added this cut
to the original reconstruction to remove the optical cross-talk effect that has been observed
in Section 4.3.5 and measured in Section 4.4. The motivations to choose the 10 p.e value are
explained in Section 4.3.5. Therefore, prior to Section 4.5, the 10 p.e cut will not be applied
unless the opposite is specified.

2. Number of active planes selection: one active plane is defined as a coincidence of a hit of more
than 6.5 p.e both on the x and y view of a same tracking plane. 2 active planes at least are
required in this selection to further reduce the MPPC noise contamination.

3. Two-dimensional track reconstruction: the algorithm is based on the cellular automaton method
used in the K2K SciBar detector. This consists in an iterative procedure that gathers hits of
the same plane in “clusters” and matches them with different plane clusters in “cells”. This
algorithm starts from the downstream planes to the upstream ones and adds different clusters
in a “neighbour” by performing a linear fit for 2 cells and checking that the reduced χ2 < 1.5.
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Each time a cell has an upstream neighbour, the cell state value is increased by one. This allows
to identify the end points of a candidate track as the higher cell values which does not have any
neighbour with higher state value. This procedure has a tolerance of one non-hit plane in order
to deal with possible hit inefficiency. When this procedure is finished, a final iterative procedure
is used to check if the whole track is linear and not only constituted of neighbours which are
aligned two by two. Starting from the most downstream points of each possible candidate tracks,
each cell is added layer by layer and a linear fit is done for each new layer added. The tracking
is stopped during this iterative process if the most upstream cell is reached or if the χ2 > 2 after
having added a cell. This algorithm is summarised in [62].

4. Three-dimensional track reconstruction: the 2-dimensional tracks are matched between the XZ
and YZ views. The matching requires that the distance between the most upstream points of
each track is ≤ 3 planes. If several tracks of YZ view can be matched with one of the XZ view,
the track with the closest upstream plane from the one in the XZ view is matched. If several
tracks match this criterion, the tracks with the closest downstream points are matched. Note
that in the case of the PM, the two latter criteria are not used. It allows several tracks of one
2-dimensional view to be matched with the same 2-dimensional track in the other view. In
the case the proton and the muon are superimposed in one of the two view, this condition is
necessary to reconstruct the proton (which has a lower penetration depth in most of the cases).

5. Vertexing: several three-dimensional tracks are searched and gathered in a vertex. A pair of
three-dimensional tracks are gathered in the same vertex if they satisfy the following condition
on their most upstream points:

|∆ZX | + |∆ZY | ≤ 1plane (4.3.1)

where ∆ZX(/Y) are the plane difference between the most upstream point in the XZ (respectively
YZ) planes. On top of this “longitudinal condition”, a “transverse condition” is also used:√

|∆X| + |∆Y | < 15.0 cm (4.3.2)

where ∆X (∆Y) is the distance between the X (respectively Y) position of the 2 track vertices.
When two tracks are identified to belong to the same vertex, the most upstream point of the
longest track is defined as the vertex. If the two tracks have the same length, the upstream point
of the track with larger charge per unit length is used as the vertex. More than 2 tracks can
belong to the same vertex, and in this case, the same vertex definition is used as in the case of
2 tracks.

6. Beam timing cut: requires that the event timing is within ±100 ns around the expected neutrino
bunch timing. The event timing is defined as the time of the channel with the largest number of
photo-electrons in the cluster. This cut mainly removes contamination from external background
as cosmic ray muons.

7. Upstream VETO cut: the event is rejected if it has a hit in the first tracking plane (in the first
two planes for PM). Moreover, the event is also rejected if it has a hit in the side veto planes
that is closer than 8.0 cm from the extrapolation of the track. These two cuts allow to remove
mostly the high contamination from the sand muons coming from the wall.

8. Fiducial volume cut: the event is rejected if its vertex is located out of the fiducial volume
(FV). The INGRID fiducial volume is defined as a square transverse area of ±50×±50 cm2 that
spreads from the first iron layer to the ninth tracking plane. The last iron plane and 2 last
tracking planes are removed since the tracking requires at least 2 neighbours which means 3
tracking planes. The PM fiducial volume has the same transverse area that spreads from the
second to the sixteenth tracking plane. This cut allows to remove the sand muons that may pass
the veto cut.
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Figure 4.10: Charge distribution of the sand muons data for the low and high gain channels.

Sand muon sample

As described earlier, the sand muon sample is used for various calibrations and studies. The selection
is exactly similar to the event neutrino selection, removing the upstream veto and the fiducial volume
cuts.

4.3.2 Low and high gain channel charge ranges

The low and high gain channels have been installed to allow an accurate charge measurement in
different charge ranges. In this section, we determine the interplay between these 2 channels in order
to reach the best performances in charge measurements. Figure 4.10 shows the charge distribution
of the sand muon sample data for both the low and high gain channels. One observes the ADC
saturation around 50 p.e in the high gain channel which imposes the use of the low gain channel for
such input charges and higher. On the other side, one observes the shift in the peak corresponding
to the minimum ionizing particles between low and high gain channels. On top of this, Figure 4.11
shows a difference in charge distributions for low charges (< 10 p.e) between the two channels. This
indicates the low gain channel should not be used over the whole range and we will prefer to use
high gain channel for low charge values. For symmetry reasons, it seems reasonable to use the mean
charge deposition Charge in low gain channel + Charge in high gain channel

2 to determine the regions where low
or high gain channels should be used. This also prevents from possible fluctuations in one of the 2
channel responses that may happen if we were only using the charge of one of the two channels. In
order to optimize charge calibration, we’d like to separate the charge range in two regions where one
should use either the low gain channel information or the high gain chanel channel one. This limit
must be defined so that the changes between the two regions is done continuously, e.g without sudden
variations in the charge distribution. To match this criterion, we have studied the distribution of the
charge ratio between high and low gain channel for a given hit Charge in high gain channel

Charge in low gain channel . Ideally, the
limit should be set for a ratio distribution which:

1. has a mean value close to 1, which guarantees no shift in the average charge response of the
channels between low and high charge regions.

2. has the lowest root mean square as possible, which guarantees that this limit would give a correct
charge response for each individual channels.
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Charge in low gain channel with the mean charge value Charge in low gain channel + Charge in high gain channel

2 .

Figure 4.11 shows the variation of the charge ratio with the mean charge deposition. One observes
that the ratio value seems centered around one for charges before high gain channels saturation, which
confirms that there is no global shift between low and high gain channels. On top of this, one notices
that the width of the ratio distribution decreases when the mean charge increases until the high gain
saturation is reached. This was expected since one expects the resolution of the low gain channel to
increase gradually with charge and match the high gain channel resolution at some point. This point
should be reached before the high gain channel saturation provided that a correct choice of ADC (10
bits) and gain differences between low and high channel was done.

In order to determine quantitatively the limits between the 2 regions, we projected the ratio values
for different mean charges and fitted the ratio distributions by a gaussian. Figures 4.12 shows the
results for mean charge going from 35 to 44 p.e. Table 4.1 summarises the mean and root mean square
values of the fitting gaussians.
One observes in Figure 4.12 that the high gain channel saturation appears on the distribution at 42
p.e. The distribution is clearly shifted towards lower charge ratio which indicates a smaller charge
in the high than in the low gain channel. This shows that the limit value should be chosen at a
lower value, preferentially at 41 p.e according to results in Table 4.1 and following the arguments we
developed above. However, this table also shows that root mean squared and mean gaussian values
are similar for 39 p.e to 41 p.e. In order to minimise the shift between the low and high gain charge
regions, but also to remain safely far from the saturation region, we decided to set our cut value
at Charge in low gain channel + Charge in high gain channel

2 = 39 p.e. This later criterion minimises the risk of
saturation in the case of gain variations between the T2K data sets. These potential variations will
be studied in Section 4.5.

Both results for the INGRID type scintillators of the INGRID detector are shown. Note that the
same calibration has been applied to the PM because the MPPCs and electronics are the same.
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Figure 4.12: Charge in high gain channel
Charge in low gain channel distributions for mean charges ( Charge in low gain channel + Charge in high gain channel

2 )
varying from 34 to 45 p.e. The distributions are fitted by a gaussian to extract their mean and root mean square.

130



4.3. CALIBRATION RESULTS USING INGRID DATA

34 p.e 35 p.e 36 p.e 37 p.e 38 p.e 39 p.e 40 p.e 41 p.e 42 p.e 43 p.e 44 p.e 45 p.e
Mean µ 1.005 1.005 1.005 1.005 1.005 1.005 1.004 1.002 0.997 0.989 0.973 0.948
RMS σ 0.035 0.034 0.033 0.032 0.032 0.030 0.030 0.029 0.031 0.034 0.040 0.048

Table 4.1: Values of the mean µ and root mean square σ of the gaussian fits for different mean charge values
(34 to 45 p.e).
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(b) Width ADC non linearity corrections

Figure 4.13: Low and high gain channel response comparison for various input signals in the case of correction
(or not) of the ADC non linearity effect.

4.3.3 ADC non linearity calibration validation

Differences with previous data set

Figure 4.8 shows that the low gain ADC channel seems to behave linearly from 0 to nearly 100 ADC
counts. This range corresponds approximatively to 0 to 100 p.e given the gain of the low channel. Since
the gain is deduced from the high channel measurement, one expects that the charge deposition should
be correctly deduced in the low gain channel. On the contrary, the high gain channel should have a
higher resolution in the same range, but with a high probability of non-linearities (Figure 4.8). At first
order, the low gain channel should be used to check if ADC non linearity has been efficiently corrected
in the high gain channel and if it seems reasonable to use the high gain channel high resolution in this
range. Figure 4.13 shows the comparison between high and low gain channel measurements for the
same charge deposition in the case of ADC non linearities corrected (right) or not (left). One observes
the original shift between low and high gain channel responses in the case of lack of correction. For
example, a 40 p.e signal in the low gain channel is measured to be 60 p.e in the high gain channel. As
primarily shown in Figure 4.11, this effect is clearly corrected when the correction method is applied
(right of Figure 4.13). This clearly confirms the validity of the correction, while emphasizing the
difference with the lack of correction in the former calibration.

Comparison with simulation

In this section, we show how the ADC non linearity calibration improves the agreement between data
and simulation. For the INGRID detector only, Figure 4.14 shows the charge deposition distribution
for the sand muon sample in the case of the INGRID scintillators. One observes the improvement
of data and MC agreement obtained by correcting the ADC non linearities. However, we observe a
residual discrepancy between data and MC in the low charge region around 5 p.e. This effect is further
described in Section 4.3.4 and related to the simulation of the low energy hadrons, probably coming
from neutrons slowed down in the INGRID iron. On top of this, the minimum ionization peak (MIP)
is broader in data than in MC. This effect is probably due to the under estimation of the electronic
noise in the simulation. One concludes the agreement between MC and data is better than 10% in
the MIP region and the average agreement between data and MC in the high charge region (> 60 p.e)
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Figure 4.14: Charge distribution of the hits of sand muon sample in INGRID comparing new and former
calibration to the simulation. As for the former calibration, we have applied the same cut to discriminate
between regions to use either low or high channel regions (namely 39 p.e)

is around 3%.

We performed the same comparison for the INGRID and SciBar type scintillators of the PM. We
described in Section 2 that each PM tracking plane posesses 32 scintillators of two different types:
INGRID or SciBar types. These SciBar type scintillators have smaller width and larger thickness
(120 × 2.5 × 1.3 cm3) in order to increase resolution in the detector central part while keeping a high
light collection efficiency. Figure 4.15 shows the charge deposition distributions for INGRID type
scintillators of the PM. It clearly indicates the same trend as INGRID type scintillators of INGRID.
The improvement of the agreement using ADC non-linearity calibration is clearly visible. As for the
SciBar type scintillators located near the detector center, one observes a slightly better agreement
between data and MC than in the INGRID, except at low charge value. This discrepancy is due to
remaining optical cross-talk that is not perfectly removed by the cross-talk cut we introduced. This
effect is presented and measured in Sections 4.3.5-4.4. This comparison validates the use of calibration
study to take into account ADC non linearities, and we will use this new calibration for all the analyses
detailed in this thesis.
One notices the higher value of the MIP (∼ 42 p.e) for SciBar type scintillators than for INGRID type
ones (∼ 17 p.e). This is mainly due to the higher light collection efficiency by the fiber due to the
smaller width of the SciBar scintillators: 2.5 cm instead of 5.0 cm. Such a geometry allows a higher
light collection for the same charge deposition and a lower attenuation in the scintillator. Moreover,
the higher SciBar type scintillator thickness (1.3 cm) as compared to the INGRID ones (1.0 cm) allows
a 30% larger energy deposition in the scintillator.

Chronologically, after the development of this new calibration, its higher resolution on charge re-
vealed some formerly hidden discrepancies between data and MC. We have mainly corrected them in
the simulation and the reconstruction used in this thesis (Figures 4.14 and 4.15). In the following sec-
tions, we will present these discrepancies, and how we determined their physical origins and corrected
them.
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Figure 4.15: Charge distributions of the hits of sand muon sample in PM comparing new and former calibration
to the simulation. The results has been shown both for INGRID type (top) and SciBar type scintillators (bottom)
of the PM.
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Figure 4.16: Charge distribution for neutrino events sample comparing data and mc simulation with (Corrected)
and without (Default) Birks attenuation corrected. The MC simulation used in this thesis has Birks attenuation
saturation corrected.

4.3.4 Birks saturation correction

Using the original INGRID MC, we had compared the data and simulation just after performing the
new calibration. At that time, an important discrepancy between data and MC was still observed in
the charge distribution of the neutrino event sample. Figure 4.16 shows this disagreement between
the data (red) and the original INGRID MC (blue).
This investigation leads us to improve the Birks saturation effect in the simulation, which was not
correctly taken into account before. This effect corresponds to a non linear behaviour of the scintillator
with the photon density produced by the passage of a charged particle. In particular, the higher the
density (the dE

dx of the particle in the material) is, the higher the non linearity. This effect can be
modeled using the Birks attenuation formula [13]:

dL
dx

= L0
dE/dx

1 + cBdE/dx
(4.3.3)

where L is the the luminescence, L0 the luminescence for low photon density and cB the Birks at-
tenuation constant of the material. As for INGRID and PM polystyrene scintillators, this constant
has been determined using measurements in the SciBooNE experiment that uses the same Fermilab
scintillators: cB = 0.0208 MeV/cm. We have investigated this effect and have found it corresponds
to a problem in low energy hadrons simulation, by stopping the hadrons having E < 5 MeV (see
Figure 4.17).

We have then implemented a new function to correct this effect in the MC used in this thesis
and have shown the effect in the transformation on charge distributions in Figure 4.16. Though most
of the difference with data has been washed out, we can still observe a discrepancy for very low
charge (∼ 4 p.e) which remains unexplained in the present work. First, we have decided data and
MC similarity is enough for the analyses we performed in this thesis (Chapter 5 and 6). Second, we
have paved the way for possible future corrections by showing that this residual effect should come
from remaining imperfections in the low energy hadrons simulation (Figure 4.17) or their daughter
particles.

4.3.5 Optical cross-talk between the SciBar type scintillators

In the selection defined in Section 4.3.1, we defined a cut to remove optical cross-talk in the scintillator.
In the original selection (i.e prior to this thesis), this cut did not exist since the cross-talk effect had
not been investigated. In fact, the ADC non linearity calibration we have performed has increased
the resolution on charge distribution. During the validation of the calibration, we have discovered and
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Figure 4.17: Charge distribution for neutrino events sample data and various MC simulation. The original
(Default MC) simulation exhibits a large discrepancy with data. Different hypotheses have been investigated
to understand this effect, some of which are shown on this figure. In particular, we have simulated the plastic
planes that surround INGRID planes to check possible effects on delta electron stopping (Blue). Having found
the effect comes from low energy hadrons, we have changed the simulation GEANT4 physics lists [63], namely
from the default QGSP/BERTINI (black) to NEUTRONHP, that has higher performances in the low energy
neutron simulation (Magenta). Finally, we produced a MC sample for which hadrons are removed when they
slow down to a momentum lower than 5 MeV/c (green). This sample indicates better agreement with data.

measured an anomaly in the low charge region that we investigated. In this section, we show that this
discrepancy comes from an optical cross-talk between the scintillators. We will then present the setup
we built to measure and confirm this effect (Section 4.4).

Discrepancy in low charge region for SciBar type scintillators

Figure 4.18 shows (Figure 4.19) the charge distribution for MC and data for sand muons (respectively
neutrino event) selection without the cross-talk cut applied. These distributions have been normalised
to the number of tracks reconstructed in the PM. For the INGRID type scintillators of the PM we
observe a 2.2% hit excess in data in the low charge region (2.5− 10 p.e) for the neutrino event sample.
We will see later that this disagreement is not clearly understood but is small enough to be taken as
a systematic error.
The main difference between data and MC can be observed in the SciBar type scintillators. We notice
a hit excess in the data in the low charge region (2.5−10 p.e) both in the sand muon and the neutrino
event samples. This excess has been evaluated in Table 4.2 as the difference between data and MC
in this region. A 2.9% excess is observed in the sand muon sample, and a 6.4% excess for the same
charge region is measured in the neutrino event sample. This excess is only measured in the SciBar
type scintillators in these proportions, and seems to represent a higher percentage of the total number
of hits in the case of neutrino event sample than in the case of sand muon one.

MC Data Data-MC
Sand muons 3.0% 5.9% 2.9%

Neutrino events 5.4% 11.8% 6.4%

MC Data Data-MC
Sand muons 8.7% 10.4% 1.8%

Neutrino events 8.4% 10.6% 2.2%

Table 4.2: Proportion of the low charge hits ∈ [2.5, 10] p.e for data and MC is the sand muon and neutrino
event samples.

Possible hypotheses were investigated and we have performed the analyses to discriminate between
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Figure 4.18: Data (red) and MC (blue) charge comparison for the sand muon sample.
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Figure 4.19: Data (red) and MC (blue) charge comparison for the neutrino event sample.
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Figure 4.20: Data-MC subtraction of the relative timing and distance distributions for the low charge hits
(< 8 p.e) registered in the PM. An original discrepancy exists due to thinner MC time distribution. However,
one observes the data excess occurs for hit which are in time and spatially closed to the track.

these possible following sources:

1. Additional damaged channels during the data period used for comparison, that are not taken
into account in the simulation.

2. Estimation of the MPPC dark noise that differently affects the center (where SciBar type scin-
tillators are located) and the edge of the detectors since the reconstruction is not homogeneous
inside the detector.

3. Neutron background that may affect differently the center and the edge for similar reasons of
inhomogeneity in the detector reconstruction.

4. Some particular events/particles which leave a lower charge deposition than neutrino simulated
events. These particles may come from the near INGRID modules, the wall or from interactions
in the PM.

5. An effect which is observed in all neutrino events but not simulated in the MC as various forms
of cross-talk (optical, electronic...) but also decayed particles that may be not simulated (low
energy particles for example).

Characterisation of the anomaly

This anomaly is first investigated by combining the proximity in timing and distance of these low
charge hits with the reconstructed track. The low charge hits are defined here as having a charge
deposition ≤ 8 p.e. Figure 4.20 shows this 2-dimensional distribution. Note that we developed and
applied a timing calibration to increase the accuracy of the timing. This calibration is presented in
Appendix B. The MC distribution has been subtracted from the data one to show the discrepancy
between these two and emphasize the charge excess in data. We observe the low charge excess is in
time with the signal which shows it cannot be due to the dark noise simulation. Furthermore, it is
mainly located closer than 5 cm from the track, which confirms it cannot be due to a possible neutron
or other particle external background. The low charge excess is clearly correlated with the signal.
Second, we will show these “abnormal hits” are not isolated, but occurs in a cluster of hit in the same
tracking plane. To do so, we have shown in Figure 4.21 the charge deposition in SciBar scintillators
only for “single hits” in a 2D PM plane. Here, the term “single” means that we added the charge
information of a hit when this is the only hit of the track occuring in the 2D plane. Figure 4.21 shows
the corresponding charge distribution. We observe that most of the event excess in the low charge
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Figure 4.21: Charge deposition comparison between hits of neutrino events tracks with only hits which are
isolated in a tracking plane.

region disappear when the non-single hits are removed. We conclude that the low charge excess is not
due to specific particles, but is present in most of neutrino and sand muon events due to several hits
in the same plane. It leads us to consider three remaining sources for the low charge excess:

1. An unperfect simulation of the scintillators (dead zone and coating of the scintillator, spacing...
are not well tuned) that will affect the particles that cross several scintillators in the same plane
.

2. Optical cross-talk between the scintillators. The difference between INGRID and SciBar type
scintillators would be due to the smaller thickness of the coating for SciBar type scintillators
that fails to stop a non-negligible amount of photons (see Figure 4.22).

3. Electronic cross-talk between two MPPCs or two wires. This last argument is very unlikely
givent that MPPCs are located in separate black boxes and shielded wires has been used.

4. Signal due to “delta” electrons knocked-out by the particle, that can travel to the neighbour
scintillator. Simulations of these delta electrons can be innacurate in the INGRID MC, since
the scintillator coating is not simulated as an active region. These electrons are often emitted
in the transverse plane and can therefore generate neighbour hits near the main track.

(a) INGRID type (b) SciBar type

Figure 4.22: Transverse cut of INGRID and SciBar type scintillators. The INGRID and SciBar type scintillator
have respectively transverse dimensions 5.0 cm×1.0 cm and 2.5 cm×1.3 cm.
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Figure 4.23: Charge deposition distribution of the hits belonging to a sand muon track (left) and neutrino event
candidate (right) separating the tracks with their angles.

The first hypothesis is removed by considering sand muon tracks at various angles. One expects
the probability of a particle to cross several scintillators in the same plane to increase with the particle
angle. We have shown in Figure 4.23 that the charge excess at low energy does not depend on the
particle angle.

Hints of optical cross-talk

We have studied the hits neighbouring the track in order to discriminate between the remaining
hypotheses. In particular, we have studied the probability of a low energy neighbour hit (“secondary
hit” < 6 p.e) to appear near a higher energy hit in a 2D tracking plane. We have shown that this
probability increases with the charge of the hit that has the highest charge in the tracking plane
(“main hit”). We used the sand muon through-going (non-stopping in the detector) sub-sample to
perform this study, in order to study only minimum ionizing particles. One expects, for the different
hypotheses:

1. For particles crossing 2 scintillators in the same plane, the higher the charge deposition of a
main hit (long path in the scintillator), the lower should be the energy in the secondary hit due
to a smaller path across it. This implies an anti-correlation between the charge of the main hit
and the probability to create secondary hits.

2. For the optical cross-talk, the higher the charge of the main hit is, the higher should be the signal
in the secondary hit due to the increasing number of propagating photons to its neighbours. One
expects a positive correlation between charge deposition in the main hit and probability to have
a secondary hit. Moreover, one expects a close to linear relation between these 2 quantities
due to the linear variation of number of photons propagating from the main to the secondary
scintillators with the charge deposition in the main hit. This cross-talk is not simulated in the
MC.

3. In case of electronic cross-talk, one expects a similar prediction as for optical cross-talk.

4. In case of delta electrons, their distribution N can be written as [13]:

dN
dTdx

∼
F(T )
T 2β2 (4.3.4)

with β the velocity of the particle that knocked-out the delta electron and T the kinetic energy
of the emitted electron. Given the Bethe-Block dE

dx formula, this implies correlation between
the charge deposition in the main scintillators and the probability to create secondary hits on
each side of the scintillator. Since the charge deposition is also correlated non-linearly with the
particle velocity (Bethe-Block formula), it is not trivial to predict the linearity of the probability
of secondary hit with the charge of the main hit.
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Figure 4.24: Probability for a neutrino event track to have a low energy transverse neighbour hit with th charge
of the main hit.

Figure 4.24 shows the probability of secondary hits with the charge of the main hit. One clearly
sees two different trends. For low charge in the main hit (< 30p.e), one observes an anti-correlation
with the probability to observe a secondary hit. This region corresponds to hits under the MIP value
(around 40 p.e in SciBar type scintillator), which indicates that this behaviour is due to particles
crossing several scintillators in the same plane. The anti-correlation behaviour is in agreement with
the expectations. For higher energy, one clearly observes a linear correlation between the probability of
a secondary hit and charge in the main hit. This indicates a cross-talk effect or possibly the increasing
amount of delta electrons produced with the increasing main hit charge. As discussed earlier, given the
linear behaviour, an optical cross-talk hypothesis is clearly favoured. Quantatively, this observation
would correspond to a 8% cross-talk effect at minimum ionising peak value (∼ 40 p.e in SciBar type
scintillators). In order to ultimately verify this effect, we installed a dedicated setup to measure a
possible optical cross-talk effect, which will be described in Section 4.4.

4.4 Scintillator cross-talk measurements

4.4.1 Scintillator cross-talk measurements

The aim of this study is to determine the probability for some light emitted in a scintillator to give a
signal higher that 2.5 p.e. in an adjacent slab, both for SciBar type and for INGRID type scintillators.

Experimental setup

The experimental setup is displayed in Figure 4.25. It consists of three scintillator slabs equipped
with the same wavelength shifting fibers and MPPCs as used in the INGRID and PM detectors. The
length of the slabs has been chosen as 60cm, which corresponds to the half of the real ones, in order
to facilitate their installation in the dark room. The reflective layer of the central slab (numbered as
slab #0) has been machined in order to allow for direct light injection from the top of the slab, at any
y position perpendicular to the longest dimension. This y transverse position is adjustable by means
of a screw (see Figure 4.26-left). The x position of the injection slit has been chosen at the middle of
the slab. The three slabs are mechanically constrained to ensure a tight contact between them, as in
the real detectors. The white paint at the ends of the slabs is covered by black adhesive tape to avoid
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direct light passage between slabs. The scintillator slabs can be changed to SciBar or INGRID type
without changing anything else in the setup. The sets of one fiber and one MPPC can be swapped
between slabs to check for possible differences in gain of the sets for the conversion of light to electrical
signal.

An ultraviolet (UV) light emitting diode (LED) sends light via an optical fiber. Two different
wavelengths have been tested for the LED, namely 400± 3 nm (model “ BIVAR-UV5TZ-400-15”) and
355 ± 15 nm (model “OSA OPTO LIGHT-EOLD-355-525”) and give very similar results. The light
coming out of the optical fiber (CAEN model BF1KFCFC-040M) can be seen in Figure 4.26-right,
where it is converted to visible light by means of a wavelength shifting polystyrene bar. The light
beam is parallel, 0.5 mm in diameter, and its propagation is clearly visible within the 1.5 cm thickness
of the bar, despite some absorption. The UV wavelength of 355 nm corresponds to the maximum of
emission of the PPO molecule (which is also the maximum of absorption of the POPOP, see Figure
4.27-left). Although the geometry of this UV beam does not exactly reproduce the light emitted by
a minimum ionizing particle in the scintillator, we assume that this arrangement allows to correctly
mimic the effect of a particle going through the slab. Furthermore, the 355 nm wavelength is absorbed
by the titanium dioxide contained in the reflective layer (see Figure 4.27-right), which ensures that
we do not introduce any UV light that could directly go from one slab to the adjacent one. From this
point of view, the other wavelength (400 nm) seem less adequate, and has been used as a cross-check.
As shown later, the similar results obtained with both wavelengths indicate that the direct UV light
traversing the reflective layer is negligible with respect to the light emitted by the scintillator itself.
The temperature and humidity are monitored during the entire test. Their stability (T= 22.2 ± 0.3◦C
and H=39.5 ± 1%) ensures that there is no large variation of the MPPC gain during the procedure.

Figure 4.25: Schematic view of the experimental setup used to measure the optical cross-talk between adjacent
scintillators.

Figure 4.26: Left: picture of the position adjustment device used for light injection. Right: view of the UV
light beam injected in the scintillator slab. A wavelength shifting polystyrene bar is used to make the UV light
visible on the picture.

141



CHAPTER 4. CHARGE CALIBRATIONS OF THE INGRID AND PM DETECTORS

Figure 4.27: Left: absorption and emission curves for the POPOP (top) and PPO (bottom) molecules. Right:
absorption factor of titanium dioxide as a function of the wavelength. A wavelength of 355 nm corresponds to
∼85% of the maximum absorbance.

The UV LED is powered via a dedicated capacitor that is charged by an Agilent U8001A power
supply providing a voltage between 2V and 5V, depending on the required amount of light we want
to inject. The discharge of the capacitor is triggered by an Agilent 33210A pulser, which signal is sent
to a transistor according to the setup shown in Figure 4.28-left. The pulser also triggers the digital
oscilloscope, and its frequency is chosen to be 1 kHz.

The high voltage is provided by a Keithley 2612 power supply, and brought to the MPPC photon
counter by shielded cables, through a 10kΩ resistor and a 10 nF capacitor is used for decoupling. The
signal from the MPPC is then sent to a small amplifier. This setup, shown in Figure 4.28-right, allows
to minimize the electronics noise.

Figure 4.28: Left: schematic view of the setup used to power the UV LED (“D2” on the left). Right: schematic
view of the setup used for the MPPC (represented by the diode noted “SIPM D1” on the right). The signal is
sent to an “OPA657” amplifier which gain is chosen ' 2 × 105, and all connections are made using shielded
cables.

A digital oscilloscope Lecroy HRO 66Z is used to visualize the signals received from the MPPCs.
It is also used as a data acquisition system to directly count the number of events where the cross-talk
signal is seen above the 2.5 p.e. threshold. A picture of the setup is shown in Figure 4.29. Figure 4.30
shows a typical signal as received from the MPPC attached to the central slab and displayed by the
digital oscilloscope when a light pulse is sent by the LED. One clearly sees a small pedestal and the
peaks corresponding to 1, 2, 3, ... up to 12 p.e.
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Figure 4.29: Picture of the cross-talk measurement setup installed in the dark room. The power supplies, the
pulser and the digital oscilloscope have been installed outside the dark room and are not shown here.

Figure 4.30: On this screen view of the digital oscilloscope, one clearly sees the signal from the central MPPC
when light is injected in the corresponding slab (purple and blue curves) as well as the yellow peaks corre-
sponding to signal maxima. The pedestal is the small yellow rightmost peak, and the peaks corresponding to 1,
2, 3, ... up to 12 p.e are clearly distinguished from right to left.

Measurement

The principle of the measurement itself is the following:

• We begin with the SciBar type scintillators. The light is injected in the central slab (hereafter
called “slab 0”), at a fixed position y = +6mm. This position is arbitrary chosen at the beginning,
as it corresponds to the middle of the distance between the wavelength shifting fiber and the
edge of the SciBar slab.

• The first procedure consists in sending in the slab 0 a quantity of light that is tuned in order
to give an MPPC signal similar to what is observed for a minimum ionizing particle (i.e. ' 40
p.e.).

– We choose the high voltage value for the central MPPC in order to have a low gain. This is
achieved using a voltage of 68.3V, slightly over the “breakdown” voltage for this particular
MPPC called MPPC0 (68.0V).

– We inject small light pulses in slab 0 and observe the signal peaks corresponding to 1, 2,
3, etc ... p.e. This allows to determine the conversion factor between electrical signal and
the number of p.e (see Figure 4.31-left).

– Then, we increase the amount of light per pulse (by increasing the voltage of the LED
power supply), in order to measure a voltage for the MPPC0 signal that corresponds to
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40 p.e. (see Figure 4.31-right). The individual peaks for 38, 39, 40, ... p.e. cannot be
separated, which justifies the preceding step of the procedure.

– By swapping the sets of MPPC+fiber between the slabs, we check for possible discrepancies
between the detection efficiency of the different sets. The maximum discrepancy observed
amounts to ±6%, the effect of which on the cross-talk measurement is discussed later in
this section.

• The amount of light injected in slab 0 now remains fixed throughout the entire procedure of
cross-talk measurement.

• We now want to measure the signal detected on one of the adjacent slabs, namely “slab 2”. For
this:

– We turn off the light injection in slab 0

– We adjust the high voltage of slab 2 MPPC in order to observe a dark noise rate similar
to what is measured in the INGRID and PM detectors, that is 1% of events above 2.5
p.e. The result is obtained for 68.67V, whereas the breakdown voltage of this particular
“MPPC2” is 68.19V. An example of the corresponding peaks are shown in Figure 4.32-left.

• The high voltage of MPPC2 now remains the same, and we turn the light injection back on in
slab 0.

• For different positions of the light injection device in slab 0, we now measure the percentage of
events with a signal above 2.5 p.e. in MPPC2. An example of the corresponding peaks is shown
in Figure 4.32-right.

On Figure 4.32-right, it is clearly seen that when light is injected in slab 0, one or two photoelectrons
are often detected by MPPC2. In this example, 3 or more p.e. are seen in 9% of the cases. As can be
seen from these curves, 4 or even 5 p.e. are sometimes detected, and all these signals are in time with
the light that is injected in slab 0. The discrepancy we have observed between the efficiencies of the
different fiber+MPPC sets (±6%) corresponds to a discrepancy in the number of p.e. detected, and
leads to a systematic error on this measurement of 6% × 9% = 0.54%.

Figure 4.31: Left: on this screen view of the digital oscilloscope, the signal from the MPPC0 corresponds to
the purple and blue curves, and the yellow peaks correspond to the same signal integrated over 500ns, as in the
INGRID and PM detectors. These peaks allow to determine the gain of the detection chain, in nVs/p.e. Right:
here, the yellow peak position corresponds to a signal of 40 p.e. detected by the MPPC0.

Results for SciBar type scintillators

We first check that the amount of light detected in slab 0 does not depend on the y position of
the light injection. This is true within 5%, except for position y=0, due to light injection in the
wavelength shifting fiber itself. The amount of cross-talk is then measured following the procedure

144



4.4. SCINTILLATOR CROSS-TALK MEASUREMENTS

Figure 4.32: Left: dark noise detected in SciBar Slab 2: on this screen view of the digital oscilloscope, the blue
peaks correspond to the signal of MPPC2 integrated over 500ns, in the absence of light injection in slab 0. The
high voltage of MPPC2 is tuned in order to measure 1% of the events above 2.5 p.e., as in the real detectors.
Left: Cross-talk signal detected in SciBar Slab 2 with the nominal 40 p.e. light injection in slab 0. One sees that
for this particular test, 9% of the events give a signal above 2.5 p.e. The corresponding signal is in time with
the trigger of the LED, and clearly visible on the purple curves (the oscilloscope time scale has been arbitrarily
changed with respect to Figure 4.31, to make all curves more visible).

described above, for different y positions of light injection. Figure 4.33 shows the results for SciBar
type scintillators. The more precise measurements have been performed for 355 nm and for slab 2.
For these measurements, an additional systematic error has been taken as 0.5%, to take into account
the different results obtained when measuring several times the same point. The cross-check results
obtained for slab 1 and 2 (mainly for positive y positions) and for 400 mn are also shown. These last
points have been measured with a 1% precision only due to some options of the oscilloscope functions
we used to analyse the peaks, hence the larger error bars. Several trends can be seen in these results:

• results obtained for slab 1 are very similar to those obtained for slab 2, and are almost indepen-
dent on the value of y, which means that the cross-talk does not depend on the distance between
the light injection point and the adjacent slab considered,

• 8 to 10% of the events show signal above 2.5 p.e. in both slabs 1 and 2. This is in agreement
with the charge excess observed in neutrino data (Table 4.2),

• the amount of cross-talk seems to be very similar for both wavelengths used for injection, namely
355 and 400 nm, which indicates that this cross-talk is due to the light emitted by the scintillator
itself rather than to the light we inject,

• The amount of cross-talk decreases when the position of light injection reaches the center of the
slab, probably because the central hole in the scintillator leads to a lower light emission,

• The amount of cross-talk decreases when the position of light injection reaches the edge of the
slab, at least for positive y values. This is due to light injection reaching the reflective layer.
This reflective layer is not reachable for negative y values, due to mechanical restrictions of the
adjustable screw.

A black adhesive tape inserted in between the two slabs is sufficient to make this cross-talk disappear.
The same disappearance is obtained by inserting a third slab, which shows that this cross-talk effect
has no influence on the next to adjacent channels.

Results for INGRID type scintillators

We now study the INGRID type scintillators using exactly the same procedure as for SciBar ones.
The amount of light injection is first tuned to give 20 p.e. in slab 0, which corresponds to a minimum
ionizing particle in INGRID type scintillators. This lower signal as compared to SciBar type scintilla-
tors is due to their lower thickness and larger width. Then, we check that the amount of light detected
in slab 0 does not depend on the y position of the light injection. As previously, this is true within
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Figure 4.33: Results obtained for cross-talk in the SciBar type scintillators. When the light corresponding to a
minimum ionizing particle is injected in slab 0, it is observed that 8 to 10% of the events show signal above 2.5
p.e. in both adjacent slabs (1 and 2)

5%, except for y = 0, where we observe a 20% increase due to direct UV light injection in the fiber. As
previously, the high voltage of the adjacent slab’s MPPC2 is tuned in order to observe 1% dark noise
above 2.5 p.e., and the injecting LED is then turned on. This time, no difference is observed with or
without injecting light in slab 0. Indeed, only 1% dark noise can be seen, for any position of the light
injection system between y=-21 mm and y=+21 mm, which correspond to the extreme values before
reaching the reflective layer. In order to check for any possible mistake in our test, we then increase
the amount of light injected in slab 0 up to 80 p.e., which corresponds to four times the light emitted
by a minimum ionizing particle in the INGRID type slabs. With such an amount of injected light,
and with the 400 nm LED only, some signal starts to be visible for extreme positions. An example
of this phenomenon for y=+20 mm is shown in Figure 4.34, where a clear 1 p.e. signal can be seen
in time with the pulser. On the same screen view, another curve is barely seen for 2 p.e., but it is
important to notice that no 3 p.e. curve is observed, and the amount of signal above 2.5 p.e. is still
1%. With the LED emitting at 355 nm, no such signal is seen, which seems to indicate that it is due
to direct UV light traversing the TiO2 reflective layer, and not to scintillator-emitted light.

Figure 4.34: Results obtained for cross-talk in the INGRID type scintillators. When the light corresponding to
4 times more than a minimum ionizing particle is injected in slab 0, we observe some cross-talk effect at the 1
p.e. level, but still no signal above 2.5 p.e. This small cross-talk effect is seen with the 400 nm emitting LED
only, and for extreme positions towards the adjacent slab.

Conclusion

We studied the cross-talk between scintillators in conditions that have been chosen as close as possible
to the real conditions in the PM. For SciBar type scintillators, we observe that in 8 to 10% of the cases,
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Figure 4.35: Charge distributions of the hits of neutrino event sample in PM comparing the new calibration
(data in red) with the simulation (blue). The results has been shown both for INGRID type (top) and SciBar
type scintillators (bottom) of the PM.

a signal above the 2.5 p.e. threshold is seen in the adjacent channel on both sides, that is due to optical
cross-talk between slabs. No such effect is seen on INGRID type scintillators, probably because of
their much thicker TiO2 reflective layer. This justifies the higher value of the cut used in the analysis of
the PM data, as these signals do not correspond to any particle. No additional correction are applied
on the MC attenuation length in the scintillator. Since the latter has been measured in the same
scintillators, it means the light escaping effect is already taken into account. Figure 4.35 shows the
comparison between data and MC of the neutrino event sample after the calibration and removing the
optical cross-talk. It confirms the general improvement of the agreement between data and MC that
we have shown for sand muon (see Figure 4.15). The comparison with Figures 4.14 and 4.19 shows
that the calibration is crucial to perform any particle identification based on the charge deposition.

4.5 T2K charge stability with time

To finish the T2K charge calibration study, we will proceed to a time stability check. We have used
so far a given data set corresponding to a part of T2K run 3 (June 2012) and we should check if
the calibration holds for different time period. For this purpose, we have used the T2K beam data
after PM installation, namely from run 2 to run 4, which has been taken between November 2010 and
July 2013. The study is performed using the “sand muon” sample that guarantees an almost pure
minimum ionization peak position (MIP), and a very high statistics. The T2K data taking period
has been separated in 200 constant time intervals. For each time inteval, the charge distribution is
fitted by a gaussian whose mean is reported in Figure 4.36. We have shown the relative variations
of the mean MIP around the nominal MIP value that correponds to the data set we used so far
in this chapter. One observes variations within ±10%, with a distinct higher average for run 2 as
compared to the other runs. We have shown the variations for the distinct scintillator types to show
that the variations are similar between the scintillator types, but also between the INGRID modules
and the PM. This confirms the charge calibration consistency between the different modules and
scintillator types. As for the global time variation, we interpret it as a possible effect of afterpulse
rate or cross-talk (between pixels) within the MPPC. In fact, we have calibrated the MPPC gain
in Section 4.2 to take into account possible effects from external condition variations (bias voltage,
temperature, humidity...). However, the crosstalk and the afterpulse rates are not calibrated with
time. The crosstalk in an MPPC corresponds to the situation when a photon hit one pixel, but where
the neighbour pixel avalanche is also triggered. The crosstalk varies with bias voltage, temperature or
humidity conditions. On the other hand, the afterpulse corresponds to the case when charge carriers
in the pixel Silicon are trapped temporarily due to imperfect Silicon semiconductor. These carriers are
released with a time delay and can produce another avalanche. The afterpulse rate is then expected
to vary with the bias voltage. For this reason, it is possible to observe a time variation in the mean
charge value due to these effects. We therefore interpreted the calibration we performed as stable with
time, but that can be improved in the future, by measuring the temperature (sensors already exist)
and applied bias voltage to correct the crosstalk and afterpulse rate of the MPPC. In the analyses
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presented in this thesis, we will take this remaining time variation as a systematic error.
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Figure 4.36: Time variation of the minimum ionisation peak position relatively to the data default. The default
data corresponds to the middle of run 3 data that have been used in the charge calibration we have shown.
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Chapter 5

Measurement of the muon neutrino CC0π
double differential cross section

Just because things get a little dingy at the subatomic level doesn’t mean all bets are off.

Murray Gell-Mann

E
rrors on neutrino cross-sections are the dominant cause of systematic errors in neutrino os-
cillation measurements. To reduce these systematics, a better knowledge of various neutrino
cross-sections is required. Historically, the neutrino cross section has been measured as a

function of the neutrino energy, which is not directly measurable and depends on nuclear models.
Since there is an important uncertainty on these models, it leads to distinguish the interactions using
some model independent quantities, that are measurable: the interaction final states. Namely, we
decided to classify the interactions by the observation of a charged lepton, and number of pions in
the final state, since the main model uncertainty comes from the pion production, absorption and
exchange models.
In T2K, neutrinos dominantly interact through charged current interactions with no pion in the fi-
nal state (CC0π) which represents 68% of the selected charged current interactions in ND280 in the
appearance measurements (Chapter 2). The CC1π and other charged current interactions represents
both 16% of the charged current total interactions selected. For this reason, we decided to focus on
the measurement of CC0π cross-sections. More accurately, we studied the double differential cross-
section of CC0π interactions in the PM, with muon momentum (pµ) and angle (θµ). This differential
cross-section measurement provides more constraints on neutrino interaction models, and in the direct
comparison with T2K neutrino spectrum expected at Super-Kamiokande.

In this chapter, we will first introduce the neutrino cross section basics. Then, we will describe the
selection we developed to enhance CC0π purity. We will particularly highlight the particle and muon
identification which is crucial to both select the interaction and identify the muon. This identification
is based on the charge deposition in the PM, which has been calibrated in Chapter 4. Afterwards,
we will present the Bayesian unfolding method we developed based on [64], in order to unsmear the
detector effects in our result. Finally, we will present the CC0π double differential cross section mea-
surement in the PM and discuss its impact.

5.1 Cross-sections and interaction models

5.1.1 Introduction

The neutrino interacts only through weak interactions. For this reason, the cross sections of different
neutrino flavour are small at Eν ∼GeV. We show the cross section of neutrino (divided by energy)
through charged current processes in Figure 5.1 from Eν ∈ [100 MeV, 500 GeV]. One observes that the
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neutrino charged current interaction cross section increases almost linearly with the neutrino energy
and is measured as ∼ 10−38 cm2/GeV for high energy (Eν � mµ).

Figure 5.1: Total neutrino CC cross sections per nucleon divided by neutrino energy and plotted as a function
of energy. The important increase from Eν ∼ 100 MeV to 1 GeV is due to the kinematics of the process which
should produce a muon. Taken from [65]. See Figure 5.3 for the legends of the different data sets.

One observes that the charged current quasi-elastic interaction (CCQE) dominates at low energy,
and especially in the T2K off-axis energy range:

νµ + n→ µ− + p (CCQE) (5.1.1)

As was shown in Chapter 2, INGRID intercepts a neutrino flux of higher energy which implies that
a significative amount of neutrino interacts through resonant π production. This production occurs
through the production of a baryonic resonance (a ∆++ for example) that decays to generate a pion:

νµ + p→ µ− + ∆++ → µ− + p + π+ (resonant CCπ) (5.1.2)

νµ + n→ µ− + ∆+ → µ− + n + π+ (resonant CCπ) (5.1.3)

This production is therefore limited by the production threshold of the baryon and occurs at higher
energy. One observes the peak (per GeV cross section) in Figure 5.1 that corresponds to the mass
resonance for Eν ∼ q2 ∼ m∆ = 1.232 GeV with:

q2 = (pν − kµ)2 (5.1.4)

the four-momentum transfer from the neutrino to the nucleus. At even higher energies (Eν ∼ 5 GeV),
the neutrino is more likely to exchange a virtual W boson with a q2 large enough to resolve the quarks
in the nucleus and therefore introduce a deep inelastic scattering (DIS). The signature of the DIS is
the production of several mesons (mostly π) or baryons. We have shown the three neutrino-nucleus
interactions in Figure 5.2.

In this section, we will focus on the CCQE cross sections which are dominant in the CC0π in-
teractions. Figure 5.3 shows the neutrino cross section of the specific CCQE process. Most of the
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Figure 5.2: Neutrino charged current interaction with a nucleus through quasi-elastic (left), resonant (center)
and DIS processes.

constraints are provided by bubble and drifting chamber experiments along with NOMAD [66] and
MiniBooNE [67] constraints. Apart from the latter, one observes that the CCQE cross sections are
in general agreement with the model which uses an axial mass MA = 1.0 GeV. The meaning of this
parameter will be further discussed in Section 5.1.3. In Section 5.1, we will first describe the neutrino
interaction with a quark, and then, with a free nucleon model which is used for the prediction in Fig-
ure 5.3. We will finally consider more complicated models and discuss the neutrino cross section model
used in T2K. We will show that the cross section result interpretations of Figure 5.3 highly depend
on the model, and especially, the MiniBooNE apparent disagreement with other measurements. It is
therefore necessary to correctly understand these models in order to interpret the PM cross section
results that we will show in Section 5.7.

Figure 5.3: Existing measurements of the νµ elastic scattering cross section on a neutron (νµ + n → p + µ−).
The free nucleon is assumed, along with an axial mass MA = 1.0 GeV. Taken from [65].

5.1.2 Interactions with a quark

The distinction between the different neutrino interactions occurs only for a nucleon or nucleus. The
charged current interaction of a neutrino with a single quark is only νµ + d → µ− + u, as shown in
Figure 5.4. The cross section may be derived directly using the electroweak theory. We calculated
this cross section from the basis in Appendix C.

In the approximation of the small masses, we found the neutrino cross section in the center of mass
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Figure 5.4: The charged current interaction of a neutrino with a down quark.

frame:

|M|2 =
1
8

G2
F s2 the squared module of the amplitude. (5.1.5)

dσ
dΩ∗

=
1

512π2 G2
F s (5.1.6)

σ =
G2

F s
π

(5.1.7)

where GF is the Fermi constant, Ω∗ the solid angle of the outgoing lepton and s the squared energy
available in the center of mass frame (s = (E∗2d + E∗2νµ ) where “*” indicates that quantities are given in
the center of mass frame).

σ linear energy dependency: We observe that the cross section depends linearly on s. The Lorentz
invariant quantity s becomes s = (p1 + p2)2 = (E1 + E2)2 − ( ~p1 + ~p2)2. Assuming that the neutrino
mass is negligible compared to the d quark mass, we obtain: | ~p1| = E1, E2 = m2 and | ~p2| = 0, which
implies that s = 2E1m2. We have shown in Appendix C that the cross section is Lorentz invariant in
the case of colinear incoming particles. Therefore, in the lab frame, the neutrino charged current cross
section on a free quark varies linearly with the neutrino energy. In Appendix C, we assumed that
q2 � MW and considered small lepton and quark masses, which implies that this approximation holds
only in the neutrino energy range Eν ∈ [∼ 1 GeV,. m2

W]. One observes that this linear dependency
agrees with the experimental data shown in Figure 5.1 for the charged current inclusive (CC inclusive)
measurements.
We will now introduce how this behaviour is extrapolated to the case of a neutrino interaction with a
whole nucleus, as it really happens.

5.1.3 Free nucleon

Since quarks are bound in nucleons, we have to estimate the cross section of neutrinos with a target
nucleon N. Figure 5.2 shows the CCQE interaction of a neutrino with a nucleus. Its cross section can
be estimated similarly than in the case of a free quark. The difference will be in the hadronic sector
current, where we should replace the quark current by a nucleon current taking into account quark
interactions, valence and sea quarks. One therefore obtains (see Appendix D):

dσ
dQ2 =

G2
F |Vud |

2M2
N

8π(pν · p2
Ni

)
[A(Q2) ±

s − u
M2

N

B(Q2) +
(s − u)2

M4
N

C(Q2)] (5.1.8)
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with

A =
(m2 + Q2)

M2
N

[(1 + η)G2
A − (1 − η)F2

1 + η(1 − η)F2
2 + 4ηF1F2 −

m2

4M2
N

((F1 + F2)2 + (GA + 2GP)2

− (
Q2

M2
N

+ 4)G2
P)]

(5.1.9)

B =
Q2

M2
N

GA(F1 + F2) (5.1.10)

C =
1
4

(G2
A + F2

1 + ηF2
2) (5.1.11)

η =
Q2

4M2
N

The form factors F1(Q2), F2(Q2), GA(Q2) and GP(Q2) are respectively called Dirac, Pauli,

axial and pseudo-scalar weak charged current form factors of the nucleon [22].
The axial form factor is often assumed [22] as a dipole for low Q2 value, e.g . 1 GeV2.

GA(Q2) =
gA

(1 +
Q2

M2
A
)2

(5.1.12)

This dipolar axial structure has been validated experimentally by numerous experiments in the .
1 GeV region, which are summarised in Figure 5.5 (electron scattering: π electroproduction) extracted
from [68].

Figure 5.5: Experimental data for the normalised axial form factor from pion electroproduction experiments in
the threshold region. The dashed line shows a dipole fit with an axial mass MA = 1.1 GeV. Taken from [68].

In Appendix D, we introduced that the vector part can be deduced in electron scattering exper-
iments by charged current conservation. These measurements are more accurate, since the electron
beam energy can be easily selected (on the contrary to neutrino beam that are created after decays of
producted hadrons). Moreover, we introduced (see Appendix D) that the pseudo-scalar weak charged
current GP is directly deduced trough GA measurements under partially conserved axial charged cur-
rent hypothesis. Therefore, we can deconvolute the problem by fixing the vector form factors and
measure only the axial one in neutrino experiments. Since the axial coupling gA can be deduced from
gV measuring neutron lifetime, the neutrino scattering experiments have focused on fitting the axial
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mass MA value through cross section measurements. These measurements have been done mostly
in bubble chamber experiments in Argonne or BNL laboratories, and are summarised in Figure 5.6.
The resulting MA value that has been fitted separately for neutrino scattering and electroproduction
experiments:

MA = 1.026 ± 0.021 GeV neutrino scattering (5.1.13)

MA = 1.069 ± 0.016 GeV charged π electroproduction (5.1.14)

Figure 5.6: Axial mass MA extraction for neutrino scattering (left) and π electroproduction experiments (right).
The targets (protons or deuterons, but also aluminium, iron, freon and propane) are made of small atomic nuclei
in average. Taken from [68].

One observes in Equation 5.1.12 that the larger MA, the higher is the axial coupling and then the
higher the neutrino cross section will be for a given momentum exchanged. Moreover, one observes
that the effect of MA only significantly occurs at low energies q2 . M2

A. Therefore, one interprets MA

as an effective mass of the nucleon representing the axial current contribution to the interaction with
a neutrino.

5.1.4 Interaction with a nucleus

In the previous section, we described the interaction of a neutrino with a single nucleon (in the strong
isospin symmetry approximation, see Appendix D). The interaction of a neutrino with the nucleus
(Z protons, A-Z neutrons) is more complicated due to the inter-nucleon interactions. To estimate the
charged current quasi-elastic cross section with a nucleus composed of Z protons and A-Z neutrons,
one should assume a descriptive model for the nucleon interactions. In the case of CCQE interaction
of a neutrino with independent fermions (so-called “impulse approximation”), the |M|2 probabilities
are summed in the cross section for the A-Z different input neutrons, which have different momenta.
Given that the momentum of a single nucleon may be different from the whole nucleus, the total cross
section is given by [69]:

dσ
dEldΩl

=
pl

8(2π)4M2
T Eν

∫
d3 ~piF(~pi, ~q, ω)|MνNucleon|

2 (5.1.15)

with El, Ωl the lepton energy and solid angle, pi the initial 3-momentum of a nucleon, ~q the 3-
momentum transfer, MT the target nuclear mass and MνNucleon the scattering amplitude of a neutrino
on a free nucleon described in Eq D.0.18.

The function F(~pi, ~q, ω) represents the distribution of nucleon momenta in the nucleus. It is often
assumed [69] that F(~pi, ~q, ω) simply corresponds to the convolution of a single particle by a single hole
Green functions (propagators). It represents the creation of a hole of energy ω′ and creation of a
particle of energy (q0 = ω) − ω′. This Green function approximation assumes that we can decompose
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neutrino interaction with the nucleus in a sum of neutrino interaction with single nucleons and re-
interaction of the leaving particles with the nucleus. In this approximation, F(~pi, ~q, ω) becomes:

F(~pi, ~q, ω) =
MT

(2π)2V

∫
dω′

p0
i (p0

i + ω)
Ph(~pi, ω

′)Pp(~pi + ~q, ω − ω′) (5.1.16)

with V the spatial normalisation volume. As hole and particle Green function, Ph/p(p, E) can be
defined as:

Ph(p, ω) = 〈N | a†pδ(H − EN − ω)ap |N〉 (5.1.17)

Pp(p, ω) = 〈N | apδ(H − EN − ω)a†p |N〉 (5.1.18)

Ph(p, ω) represents the probability to create a hole of momentum ~p and energy ω, which corresponds in
fact to the probability to find an existing nucleon in this energy state. The initial nucleon repartition
in the nucleus is then contained in Ph. There exists several models to describe these initial contents,
some of them are:

1. relativistic Fermi gas of nucleons that we will discuss in Section 5.1.4. In particular, this model
depends on a Fermi momentum which is the maximum momentum for initial nucleons in the
nucleus.

2. Spectral function model which is described in Section 5.1.4.

On the opposite, Pp(p, ω) represents the probability to create a particle of momentum ~p and energy ω
above the nucleus ground state |N〉 of energy EN . Therefore, it contains the informations on final state
interactions. As for nucleus initial state, different models exist to describe the nucleus final state:

1. Impulse approximation, which assumes neutrino-nucleus interaction is only a sum of neutrino
interactions with single nucleons, with no final state interactions.

2. The relativistic Fermi gas. It imposes that final state nucleons should have an energy above the
Fermi momentum.

3. Optical potential models that allow interactions of a neutrino where several outgoing nucleons
are emitted. These final state interaction effects are described in Section 5.1.4.

The different models used in the neutrino generators as NEUT (we will use in this thesis) correspond
to choices of F(~pi, q, ω). We have studied some of these models in the following sections

Relativistic Fermi gas model

The relativistic Fermi gas model (RFG) is based on the Fermi description of energy states in a solid.
The Fermi description occurs for same species fermions, so there is a neutron Fermi sea and a proton
Fermi sea. If no interaction occurs, the nucleons occupy the level of their respective Fermi sea and pile-
up in energy because of the Pauli principle. For the neutron and proton seas, there is a Fermi energy
(Fermi momentum | ~pF) which is the energy of the most energetic fermion in case of gas temperature
equal to 0. A QE interaction of a neutrino creates a hole in the neutron Fermi sea and a particle in
the proton Fermi sea. As the proton Fermi sea already occupies all states up to the Fermi energy,
the new proton has to populate higher energy levels. Being above the Fermi energy, this proton is
normally ejected (free particle). Note that re-interactions may occur in the nucleus after the primary
interaction and are know as final state interactions and described in Section 5.1.4. On the contrary,
in the neutron Fermi sea, a hole appears under the Fermi energy and may introduce a neutron re-
arrangement to fill this hole and minimise the nucleus energy. The most important part in this picture
is that the proton should be created above the Fermi level. Therefore, too low kinetic energy protons
with momentum |~p| < pF cannot be created, which is known as “Pauli blocking”. The Pauli blocking
naturally introduces a difference with what may be called “free nucleons” with no Pauli exclusion
principle and simple sum of interaction probabilities over the A-Z neutrons. As a consequence, we
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expect the cross section of neutrinos on a RFG to be slightly lower than for free nucleons. Moreover,
one expects a threshold in neutrino energy so that the transfered energy to proton (∆m + Q2 + En

F)
is large enough to go above the proton Fermi energy. This should happen mostly in the nucleus
with a low number of neutrons (A-Z & Z), in which En

F is not significantly higher than Ep
F . On the

contrary, in a nucleus with dominant amount of neutrons, one expects that the initial neutron has
often enough kinetic energy so that the final proton is created above the Fermi energy. In these nuclei,
the difference between free nucleons and RFG should be lower. In the following, we will not consider
difference between neutron and proton seas anymore and will refer to a “nucleon sea” to simplify the
scheme.

Figure 5.7: Flux unfolded MiniBooNE νµ CCQE cross section per nucleon as a function of neutrino energy [67].

The mathematical application of the RFG to nucleon description has been described by Smith and
Moniz in Ref [70]. It corresponds to replace the hole and particle propagator in Eq 5.1.18 by:

PRFG
h (~p, ω) = δ(p0 + ω − EB)Vθ(pF − |~p|) (5.1.19)

PRFG
p (~p, ω) = δ(p0 − ω)Vθ(|~p| − pF) (5.1.20)

where pF is the Fermi momentum and p0 =
√
|~p|2 + M2 with ~p the momentum of the created particle.

The Heaviside function θ(|~p| − pF) imposes that |~p| ≥ pF while δ(Ep − ω) imposes that the outgoing
particle has an energy Ep = ω, the energy transferred from the W boson. As we discussed, this
indirectly imposes that this reaction only occurs if the energy transferred ω is high enough so that
|~p| ≥ pF , i.e to create the particle state above the Fermi sea. In this model, we have V = 3π2N/p3

F that
represents the volume of the Fermi sphere (N is the number of target nucleons A-Z in the nucleus).
Eq 5.1.16 then becomes for RFG:

F(~pi, ~q, ω) =
MT V

(2π)2 p0
i p0

f

δ(p0
f − p0

i + EB − ω)θ(| ~p f | − pF)θ(pF − |~pi|) (5.1.21)

with p f and pi the final and initial nucleon four-momenta. The RFG model can be improved adding a
binding energy of the nucleon to the whole nucleus, EB. The only difference will be that the energy of
the outgoing particle will be slightly reduced (p0

f = p0
i −EB +ω due to the binding energy). This model

has been widely used for several decades and particularly as a basis to fit the axial mass parameter
in the bubble chamber experiments as described in Figure 5.6. This model only depends on Fermi
momentum pF and binding energy EB for each nucleus type. For example, in the present case of the
cross section on carbon, the parameters have been set in the analysis we will present to:

pF = 250 MeV.c−2 , EB = 25 MeV.c−2. (5.1.22)
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One observes that the condition δ(p0
f −p0

i +EB−ω) reduces the phase space possibility for the exchanged

boson energy ((q0 = ω) − ω′) as compared to the case EB = 0. The exchanged boson energy should be
higher to maintain p0

f ≥ 0. The consequence of the phase space reduction is that the binding energy

reduces the cross section. One observes that this effect is mainly relevant at low energy, (Eν EB) where
the phase space of ω is smaller so reduced in larger proportions.
We will now describe the limit of the RFG model, in order to finally introduce the modern treatment
of the neutrino cross sections with a nucleus.

Initial nucleon repartition failure A first limit of the RFG model is that it fails to reproduce simple
nuclei behaviours, as observation of a continuous Pauli blocking with outgoing nucleon momentum
(obviously discrete in the basic RFG), or local differences in nucleon distributions in the nucleus. It
has been attempted to solve these issues by:

• Turning the Fermi momemtum pF in a local variable pF(~r) in the nucleus to take into account
the local density variations. Note that it has nothing to do with the interaction itself but only
with the nucleon density.

• Assuming a non-constant potential, i.e binding energy (EB(~r) ∼ EB(~p)) in the nucleus. This
allows to take into account non-uniform nuclear effects.

We will describe the spectral function model that encompasses these effects in a more adequate model.

Nucleus final state and impulse approximation failure Recently, the MiniBooNE experiment provided
a measurement of the axial mass [67]:

MA = 1.35 ± 0.17 GeV.c2 (5.1.23)

which represents a variation of nearly 2σ from the axial mass fitted in Equation 5.1.14. Some hints
of a large MA was also found in K2K [71] and MINOS [72] measurements, but not in NOMAD [73]
(which has a smaller uncertainty):

MA = 1.20 ± 0.12 GeV.c2 K2K 16O (5.1.24)

MA = 1.14 ± 0.11 GeV.c2 K2K 12C (5.1.25)

MA = 1.19 ± 0.17 GeV.c2 MINOS 56Fe (5.1.26)

MA = 1.07 ± 0.07 GeV.c2 NOMAD 12C (5.1.27)

In particular, the MiniBooNE measurement shows a higher neutrino cross section than the one pre-
dicted by the existing constraints on data. Considering a RFG model, it led MiniBooNE to fit a
higher axial mass value, MA = 1.35 GeV. A proposed explanation was that the assumption of RFG
was wrong and some interactions occur between the neutrino and the entire nucleus (not only nucleon
per nucleon), which implies that the impulse approximation is wrong. These measurements, along
with the former measurement from bubble chamber experiments are shown in Figure 5.3 and 5.7. An
alternative model was then proposed in [74] to take into account the whole nuclear effects, interacting
through meson exchange currents (MEC). These effects are expected to be small in proton or deu-
terium targets of the bubble chamber experiments, but not on 12C which is MiniBooNE target. These
effects will be further described later in this section.

Spectral functions

Instead of a RFG model, the nucleon repartition in the nucleus is described with a probability Ph(~p, E)
(this is the hole Green function of Eq 5.1.18) to find a nucleon with a momentum ~p which will leave
the nucleus with an energy E. This allows to take into account the local density effects, but also
local nuclear effects. This spectral function may be estimated for each nuclei using a density and
nuclear effect models along with a many body calculation [75]. In particular, the short range nucleon
correlations (2 points correlations and more) can be taken into account using higher order terms in
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the Taylor development of the correlation function. However, a mean field approximation (nucleons
feel a mean effect from other nucleons) and only short range correlations are often only considered.

Figure 5.8: Momentum distribution of nucleons in 16O. The Mean field approximation (MF) and short range
correlations (corr) are respectively represented by the dashed and dotted lines. Modified from [76].

As one expects, this model reproduces way better the complex distribution of nucleons in a nucleus
and the nuclear interactions. Figure 5.8 shows the expected difference with a RFG model for a 16O
nucleus. In particular, one observes that the mean field approximation alone leads to a smaller
initial momentum, as in the case of a RFG approximation. This is expected since the mean field
approximation is similar to a RFG with an additional local binding energy EB. On the other hand,
the short range correlations affect not only the smallest momentum region, but also allow nucleons
to have large momenta. These short range correlations occur on top of the mean field approximation
and have generally a higher intensity than the latter. One of the reason is a probable screening effect
between nucleons in the mean field approximation. This higher intensity allows some nucleons to have
large momenta (≥ 2× pF) while remaining bounded to the nucleus. As in the case of an RFG having a
binding energy, the cross section predictions are lower than in the RFG non-binded case, especially at
low energies (Eν ∼ pF) where the binding effect has more impact. We have generated the CC0π cross
section as a function of the energy in the PM in Figure 5.9, and compared the RFG and the spectral
function models. One observes a cross section depletion in the low energy region (Eν < 1 GeV) for the
spectral function model. The impact at higher energy is visibly negligible.

Final state interactions

We describe the final state interactions (FSI) before the mesons exchange current. The reason is the
FSI can be directly implemented in the model of the impulse approximation shown in Equation 5.1.18,
through the outgoing particle propagator Pp. The FSI induce re-interactions of the outgoing hadronic
particle in the nuclear medium, through strong interactions, except for elastic scattering that also
occurs through electromagnetic interactions. The common re-interactions are shown in Figure 5.10,
and are:

1. Meson elastic scattering

2. Meson absorption

3. Pion or meson production

4. Charge exchange

These interactions modify the final state of the interaction in two different ways: they change the
outgoing hadrons kinematics (due to elastic scattering) but also the particle content of the final state

158



5.1. CROSS-SECTIONS AND INTERACTION MODELS

 (GeV)νE
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 / 
N

u
c.

)
2

 (
cm

π
C

C
-0

σ
0

0.5

1

1.5

2

2.5

3

3.5

4

-3910× Cross section variation with SF
RFG

SF

Cross section variation with SF

 (GeV)νE
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
o

m
in

al
V

ar
ie

d
-N

o
m

in
al

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 5.9: CC0π cross section (top) as a function of the energy comparing the RFG (black) and spectral
function (red), and their relative difference (bottom). This has been generated using NEUTv5.1.4.2.

in case of absorption, pion production or charge exchange. A true CC1π interaction subjected to a π
absorption can therefore be mistaken and reconstructed as a “CCQE-like” interaction. Therefore, in
the case true interactions (at the vertex) are studied, one needs to assume a final state interaction model
in order to retrieve the true interaction from the reconstructed one. We decided to measure the CC0π
cross section since it is based on direct observable, and in principle removes these model dependencies.
This allows to study different models a posteriori with the same data sample. Practically, this model
independency is not total since the detector is unable to reconstruct all the particle outgoing from the
nucleus.

Figure 5.10: Different final states interaction in a nucleus. Taken from [77].

The CC0π interactions should be affected by the pion production and absorption. We have studied
an example of a ±50% change of the π absorption in the carbon nucleus. We expect an increasing
π absorption should result in an increased CC0π cross section, by increasing the contamination from
CC − Nπ (N ≥ 1) where the π is absorbed. This result is shown in Figure 5.11. We also observe
an increasing effect with the neutrino energy. We interpret this as an increasing contribution from
CC−Nπ (N ≥ 1, with π absorbed) with neutrino energy. Indeed, we observed (Figure 5.1) the CC−Nπ
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cross sections increase relatively to CCQE cross section with neutrino energy and starts to bring a
noticeable contribution for Eν > 500 MeV, which is confirmed in Figure 5.11.
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Figure 5.11: CC0π cross section as a function of the energy comparing the nominal RFG (see Table 5.8) with
the same model where π absorption is decreased of 50% (blue) and increased by the same amount (red). This
has been generated using NEUTv5.1.4.2

5.1.5 Meson exchange currents

The impulse approximation assumes that the neutrino interacts individually with the nucleons. This
approximation does no take into account the possible nuclear effects, which involves the neutrino ac-
tually interacts with a bound nucleon state. The impulse approximation in Equation 5.1.15 can be
modified to take into account this multi-nucleon effect, changing the proton-hole pair to N proton-
hole creations. This multi-nucleon interaction is therefore called np-nh effect, and has been developed
in [74] and [78]. One expects these processes to occur at T2K and MiniBooNE energy (∼ 1 GeV)
in QE process, but not at high energy (E & 10 GeV) where DIS interactions dominate. When the
Q2 transferred momentum is high enough, the quarks are resolved by the exchanged boson and a
neutrino-quark interaction occurs, which corresponds to deep inelastic interactions. As nuclear effects
are small, perturbative QCD can be used to deduce the cross section in this case. On the contrary,
for low transferred momentum, nuclear effects prevent from using perturbative QCD and considerably
complicate the process. Since most of the present experiments as T2K and Noνa, but also possible
future experiments (LBNO, LBNE, Hyper-Kamiokande) use a neutrino beam with ∼ 1 GeV energy,
the understanding and measurements of these nuclear effects are crucial.

Figure 5.13 shows an example of 2 particles-2 holes (2p-2h). One notices that the production
of two protons is possible through nucleon interactions. These interactions occur through charged
mesons (mainly pions) at these energy, and are named Meson Exchange Current (MEC). This nuclear
interaction clearly shows the possible differences between NOMAD and MiniBooNE for example: on
the one side, NOMAD is defining as CCQE interactions in which a µ− and only one proton are detected.
In such a case, the signal is not composed of interactions 2p-2h. On the opposite, MiniBooNE defines
CCQE as µ−+ N · p + 0π, which implies that the np-nh interactions should be taken into account. This
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Figure 5.12: Quasi-elastic νµ
12C cross section per neutron as a function of the neutrino energy. Taken

from [74].

Figure 5.13: Comparison between a genuine CCQE interaction on a nucleus and a two particles-two holes
interaction. Taken from [79].

may explain why models without nuclear effects reproduce NOMAD results well, but not MinibooNE
ones.
The cross section is enhanced by the addition of µ + N · p signal with N> 1 to the µ + p signal, which
explains the increase of the cross section observed in Figure 5.12 and the MiniBooNE large cross
section in Figure 5.3. One also remarks that the classification of an interaction as “CCQE” is not
unique, and is meaningless in case of nuclear effects. This classification is based on free nucleon
principles, and becomes irrelevant when MEC interactions occur. In particular, interaction of the Z or
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W boson directly with the strong field (interacting mesons) is possible. The different nuclear effects
can be seen in Figure 5.15, and in particular, we can notice the possibility of a direct interaction
of the massive bosons with pions in second MEC diagram. These diagrams can be read using the
equivalent description shown in Figure 5.14. Various definitions of MEC are used: MEC can indicate
either all the nuclear processes, or a sub-class of them as shown in Figure 5.14. In the latter case, the
nucleon-nucleon (N-N) correlations can be described by a massive boson interacting with a nucleon
which communicates with another nucleon through pion exchange. On the contrary, the MEC would
be defined as massive boson interaction with the meson strong field. In this document, we will refer
to MEC as including all nuclear effects.

Figure 5.14: On the left, three different presentations of the same process are shown. This is compulsory to
understand the right diagrams, which present a CCQE (left of the right plot), CC1π (center) and 2p-2h (right).
Both plots are taken from [79].

Figure 5.15: The two sub-classes of the MEC. The “standard” MEC interaction of the neutrino with the nucleus
is shown in the center, while the interaction of the massive exchange W boson with another nucleon through π
exchange is shown on the left. On the right, the interferences between the two processes are presented. Taken
from [79].

5.2 CC0π signal definition for a model independent study

We present the first νµ CC0π double differential cross section measurement on hydrocarbon (CH) target
in T2K. We used the PM detector presented in Chapter 2 and applied the calibration developed in
Chapter 4. The term “double differential” refers here to the muon momentum pµ and angle θµ.
This measurement maximises the information provided in comparison with the absolute cross section.
Moreover, since the lepton variables can be measured, this measurement will not depend on the
neutrino cross section model (a priori), whereas the neutrino energy does. The CC0π signal definition
we chose is based on the final states of the interaction:

1 µ + 0 π+/−/0 + N p (5.2.1)

This definition is similar to the one MiniBooNE used in [67]. The core of this final state definition is
to rely on observables, as the pion production and the proton observations. The CC0π is exactly as
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its name indicates: a state where we can observe a muon (CC) without any pion production. We have
seen that an important issue in neutrino cross section is the pion production/exchange/absorption
models. Thus, the interactions classification according to the pion observation allows to accurately
test various pion production models. Note that a further refinement could be done along the number
of outgoing protons.
This measurement requires therefore in this analysis:

1. A dedicated CC0π selection in the PM.

2. To identify the muon.

3. To measure the muon angle, but also momentum in the PM without any magnetic field.

In the spirit of what has been shown for CC0π cross section, we define the following final state
classification:

• CC or NC is related to the observation of one or no lepton (mainly muon in our case).

• The number of pions is related to the observations of charged or neutral pions. In this study,
we will not isolate any interactions containing pion, and do not have any pion specific identifier.
For this reason, we have not differentiated neutral and charged pions.

• The observation of protons is of minor importance.

For example, we will classify an interaction with the final state: A µ + B π+/−/0 + C p as CC-Bπ if
A = 1 and NC-Bπ if A=0. To not overload the plots, we will classify the interactions containing more
than one pion as (CC/NC)-Nπ (N> 1). We have shown in Figure 5.16 event displays for CC0π, CC1π,
CC-Nπ and NC-Nπ.

In the Section 5.3, we will show how to isolate the CC0π signal from the other interactions.
Moreover, we will also introduce how the muon momentum is measured in this analysis. We will see
that it unfortunately involves a high event loss due to detector inappropriate acceptance.

5.3 The CC0π selection

The interacting neutrino spectrum is shown in Figure 5.17 for neutrino interacting in the PM fiducial
volume. In this figure and for the next ones, we assume a neutrino statistics corresponding to 1021

POT, unless something different is specified. It corresponds to the same order of magnitude as T2K
run 2 to 4 data that we have used in this thesis. The spectrum is peaked at 1.5 GeV in the PM. The
νµ interacts through charged and neutral current interactions respectively with a 72.7% and 27.6%
ratios. The νµ and νe background to the νµ beam represents 2.3% of the interacting neutrinos. The
most dominant interactions in the T2K oscillation analyses, the CC0π interactions, represent 40.6%
of the interacting neutrinos.

PM standard CC selection The PM design has been optimised mainly for the detection of leptons
arising from CC interactions, but also to detect the associated protons. The selection has been then
originally adjusted to detect neutrino CC interactions. This standard CC selection is described in [80]
and summarised in Chapter 4. This standard selection is applied both for INGRID and PM inde-
pendently. On top of it, before the 3D matching, a 2D track matching is also performed between
INGRID and PM tracks to gather the whole detector information for a given track. We will see that
the INGRID information is crucial in this analysis. Figure 5.16 shows events interacting in the PM
and for which some tracks propagate also through the downstream INGRID module.

The PM and INGRID 2D tracks are matched if they meet both these four conditions:
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Side view

Top view

(a) CC0π

Side view

Top view

(b) CC1π

Side view

Top view

(c) CC-Nπ

Side view

Top view

(d) NC

Figure 5.16: Event displays of different simulated neutrino interacting through CC0π (upper left), CC1π (upper
right), CC-Nπ (bottom left) and NC (bottom right). The interactions occur in the PM and propagate to the
INGRID central horizontal module. The dots size represents the amount of charge deposition. We indicated
the true particle associated to the track with different colours: black for the muons, red for the protons, and
the other colours represent the pions (green, blue, yellow). For the NC interaction, we have shown the pion in
black and the other hadrons in white.

1. The PM track ends in the ultimate or penultimate PM tracking planes. This guarantees a
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Figure 5.17: Simulated spectrum of neutrino interacting in the PM.

relatively high purity when the matching with INGRID track will be done, but prevents from
studying possible high angle tracks that may leave the PM sideways and end in non-central
INGRID modules.

2. The INGRID track starting plane is the first INGRID tracking plane. The pile-up possibilities
between PM and INGRID hydrocarbon target only is very low, and most of the incoming back-
ground comes from external neutrino interactions which produce neutron background, photons
or sand muons.

3. The angular difference between the INGRID and PM tracks is lower than 35◦.

4. At the halfway point between INGRID and the PM (located 13.5 cm downstream the PM most
downstream plane), the track transverse distance is lower than 8.5 mm.

Figure 5.18 shows both the reconstructed neutrino spectrum and the reconstruction efficiency of
CC0π interaction as a function of the neutrino energy. The standard selection naturally removes the
NC interactions, with a rejection efficiency of 53.4%, while slightly increasing the CC0π interaction
purity to 44.8% with a mean efficiency of 75.1%. The standard INGRID reconstruction is not especially
selecting the CC0π interactions, the slight increase in purity being directly related to NC interaction
rejection. As a comparison, the CC1π interactions have a similar reconstruction efficiency (75.5%). It
confirms that this reconstruction and selection are perfectly adapted for CC interaction but should be
modified to select mostly CC0π interactions. In this section, we will present our study which consists
in refining this existing selection to detect mainly neutrino interacting through CC0π interactions.
We will define a selection as cross section model independent as possible to keep the systematics on
model dependency small. In particular, cuts on the number of tracks or the energy deposition near
the vertex will be avoided, since they considerably depend on Final State Interactions.

We will first describe the particle identification (PID) algorithm we developped to identify the
muon in Section 5.3.1. Afterwards, we will describe the CC0π selection in Section 5.3.2 that relies on
this PID and will show the final data and MC comparison in the very last part of this section.
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Figure 5.18: On the left is shown the spectrum of reconstructed neutrino, through the standard (CC) INGRID
and PM reconstruction (defined in Chapter 4). On the right is shown the reconstruction efficiency of this
selection as a function of the neutrino energy.

5.3.1 Muon particle identification

Particle topology definitions

We have classified each track (particle) based upon its topology to maximise the separation power of
the PID, but also due to the necessity to measure muon momentum. The latter is developped in the
next paragraphs. Considering these two different constraints, we have classified the tracks between 5
topologies summarised in Table 5.1 and shown in Figures 5.19 for the INGRID stopped, escaping and
through-going tracks. Each sample distinction is mainly based on the difference in particle energy
deposition information that we will use for our PID. We discuss here the main specificities of each of
these 5 topologies:

1. Stopped in the PM: the last tracking plane of the PM is not active, nor the side channels of
each planes (channels 0 and 31). Only the energy deposition in PM scintillators is used. The
proton Bragg peak provides supplementary information (large energy deposition) to separate
muons from protons.

2. Escaping the PM: the last tracking plane or side channels of PM are active. The particle does
not deposit any energy in INGRID. This sample is similar to the previous one except for the
Bragg peak that could not be used and thus, the muon and proton separation is not as accurate
as in the previous sample.

3. INGRID prematurely stopped: the particle escapes from the PM and deposits energy in INGRID
without being reconstructed as an INGRID track. These particles most likely stop within the
first INGRID iron plane, and do not cross the 2 first INGRID iron planes that are necessary
to be reconstructed as an INGRID track (3 active scintillator planes). The Bragg peak energy
deposition is located in INGRID, and may be used in principle to increase the particle separation.

4. INGRID stopped: this topology is similar to the previous one, but with the particle recon-
structed as an INGRID track. This sample posesses the same advantages than the prematurely
stopped sample, but adding also a low background contamination. Together with the prema-
turely stopped one, this is the only topology that can be used to measure muon momentum
above 100 MeV.

5. INGRID escaping (side-escaping or through-going): the particle reaches INGRID and is recon-
structed as a track where the 2 downstream (through-going) or side INGRID channels (side-
escaping) are active. The side INGRID channels are defined as the channels located on the edge
of each INGRID tracking planes (channel 0 and 23). This topology should have an important
muon discrimination power due to the important track length (and so, high number of hits),
though it does not contain any Bragg peak as in the stopped track sample.
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Figure 5.19: Event display showing the INGRID stopped and INGRID escaping samples. The escaping sample
is constituted of side escaping and through going samples.

Momentum determination

The PM has no magnetic field to determine the momentum of detected particles. Therefore, we use
the INGRID modules located behind the PM (see Chapter 4) to determine the momentum based on
the distance crossed in iron. To determine accurately the momentum, muons produced in the PM
need to be stopped into the downstream INGRID module (Stopped topology in Figure 5.19).

This is compulsory to extrapolate the muon momentum from the accurate measurement of the
iron distance crossed by the muon. We illustrate this expected correlation between momentum and
distance crossed in matter in Figure 5.20, based on pure MC information. The use of INGRID
iron is mandatory because the small density of PM plastic is too low to measure momentum above
100 MeV. Given the maximum effective iron distance a muon could cross longitudinaly (58.5 cm)
one expects to measure muon momentum up to ∼ 1 GeV using the downstream INGRID module.
To determine the feasibility of this measurement, we study the impact of detector resolution on
momentum determination. Assuming 1 GeV muons (close to minimum ionizing particles whose energy
loss is 1.5 MeV.g−1.cm2) their dE/dx in iron is around 2.1 MeV.g−1.cm2 ([13]), which represents roughly
16.6 MeV/cm in iron (density 7.9 g/cm3). The 6.5 cm iron plates therefore allow a 108 MeV resolution
for 1 GeV muons in iron. For 1 GeV muons, this represents a 11% detector resolution on muon
momentum. This confirms the reasonable use of this observable (iron distance) to determine muon
momentum from 100 MeV to 1 GeV with a 11% resolution (for a minimum ionizing particle).
In this study, we must not neglect the distance crossed by the muon in plastic scintillator. Given the
plastic density (1.0 g/cm3) and PM maximal plastic longitudinal distance (46.2 cm), this represents a

PM PM INGRID INGRID INGRID
stopped(1) escaping(2) prematurely stopped(3) stopped(4) escaping (5)

Stopped in PM © × × × ×

Reaching INGRID × × © © ©

Has a track in INGRID × × × © ©

Track stopped in INGRID × × × © ×

Track escaping INGRID × × × × ©

Table 5.1: Definition of the five track possible topologies. The INGRID escaping track is both constitued of
through-going and side-escaping tracks.
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Figure 5.20: Simulated distance crossed in INGRID iron by muon of momentum pµ produced in a neutrino
interaction in the PM Hydrocarbon.

∼ 97 MeV energy loss for a 1 GeV muon. This indicates that a neutrino interacting in the upstream
detector part produces a muon that will lose nearly 100 MeV before reaching INGRID. It will not be
the case for a muon coming from a neutrino interacting in the downstream part of the PM, and may
introduce another smearing of the momentum distribution since it is absolutely not negligible towards
INGRID detector resolution. For this reason, we have also used the plastic distance crossed by the
muon to determine its momentum. To simplify the problem, we have set for each muon an equivalent
iron distance crossed (dµ) defined by:

dµ = Iron distance crossed in INGRID +
Plastic distance crossed in PM and INGRID

Density ratio
(5.3.1)

with Density ratio= 7.87
1.03 . We have shown the relation between muon momentum and equivalent iron

distance in Figure 5.20 taking into account detector resolution and reconstruction for true muons. The
100 MeV detector resolution is visible. The lack of events before 13 cm of iron crossed comes from the
selection that we will describe in Section 5.3.2.
We will therefore only use samples where the muon is reconstructed in the INGRID stopped topology
in order to be able to accurately measure its momentum. Up to here in this thesis, only the true
muons from MC have been used. In order to be able to apply this study on data, we need a muon
identifying algorithm to select the reconstructed muons.

Muon particle identification

The muon particle identification is based on the particle energy loss in the detector, dE
dx . Experimen-

tally, dE
dx is measured using the charge deposition in a scintillator corrected by the path length in the

scintillator. As described in [13], the dE
dx of a particle is directly related to its velocity. The muons

and pions are then often close to minimum ionizing particles (due to their small masses compared to
protons), while heavy hadrons as protons are often too slow to be minimum ionizing at T2K energies.
On the same argument, protons are more often stopped in the detector than muons. Before stopping,
these proton tracks will deposit a large amount of energy, corresponding to the Bragg peak, enhancing
the discrepancy between muons and protons. Figure 5.16 shows an event display of a CC-Nπ, that
illustrates these differences between muon and proton energy depositions.

For comparison, Figure 5.21 shows the charge per hit distributions of the reconstructed muons,
pions and protons. The dE

dx is represented by the number of photo-electrons (p.e) detected in a scintil-
lator. The charge has been corrected from possible angle dependency and also from fiber attenuation.
These corrections are developed in Appendix E. The distributions clearly confirm our hypotheses. A
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minimum ionizing particle letting 1.5 MeV/g/cm2, the 1 cm PM INGRID type scintillator (density
=1.03) should have a minimum ionizing particle peak around 1.5 MeV, represented here by a peak at
17 and 32 p.e respectively in the INGRID and SciBar type scintillators. One observes that we have
not corrected attenuation in the scintillator, which could explain the different MeV to p.e conversion
in the SciBar type scintillator plot.
As explained before, most of the differences between muons and protons are due to proton low velocity,
which is especially true in the last hits of the tracks. One has the idea to focus mainly on these hits
to distinguish between muons and protons. Though this was attempted, we decided to use all track
hits information in order to be less sensitive to systematics on p.e detected in a scintillator for small
tracks. Therefore, we developed a muon confidence level based on all the hit informations of each
track. In order to maximise the separation between tracks, we only used the hits that are exclusive
to each track, meaning not shared between different tracks.
The confidence level is based on the Bayes’ theorem to identify the muon using the collection of the
particle energy deposition ([dE

dx ]nhits):

µCL = P(µ|[
dE

dx
]nhits) =

P([dE
dx ]nhits|µ) · P(µ)

P([dE
dx ]nhits)

(5.3.2)

with P(µ|[dE
dx ]nhits) the probability of the track to be associated to a muon considering its collection of

energy deposition in the scintillators ([dE
dx ]nhits). P([dE

dx ]nhits|µ), P([dE
dx ]nhits) and P(µ) are respectively the

probability that a muon deposits the collection of energy losses [dE
dx ]nhits, the probability of any particle

to have the same energy loss, and the proportion of muons in the sample (among all the particles).
A complete partition of the particle space phase is represented by muon and its complement (to be
anything except a muon), which implies:

P([
dE

dx
]nhits) = P([

dE

dx
]nhits|µ) · P(µ) + P([

dE

dx
]nhits|µbar) · P(µbar) (5.3.3)

Though the use of correlations between the energy losses may introduce a supplementary informa-
tion, this procedure may be more adapted to a detector where the energy deposition is clearly constant
for a minimum ionizing particle. In the PM, the scintillator dead areas, the scintillator attenuations
and other effects are not corrected track by track and provide a relatively large dispersion in the energy
loss of a minimum ionizing particle. For this reason, we assumed in this study that all hits of a given
track are independent. This leads to:

P([
dE

dx
]nhits|µ) =

nhits∏
i=0

P([
dE

dx
]i|µ) (5.3.4)

which is also correct for the non-muon (µbar) case. Injecting Equations 5.3.3 and 5.3.4 in Equa-
tion 5.3.2, this leads to the muon confidence level definition in the case of independent energy losses:

µCL =
(
∏nhits

i=0 P([dE
dx ]i|µ)) · P(µ)

(
∏nhits

i=0 P([dE
dx ]i|µ)) · P(µ) + (

∏nhits
i=0 P([dE

dx ]i|µbar)) · P(µbar)
(5.3.5)

This muon confidence level is the base of our PID. As it exclusively uses the energy deposition informa-
tion, the charge response of the detector needs to be accurately calibrated to pertinently provide the
highest information without introducing large systematics. The calibration we introduced in Chapter 4
has been explicitely developed in order to use this PID. This is illustrated by observing the similarities
between data and MC charge distribution both for “sand muons” and events in the fiducial volume
defined in Chapter 4. The latter distribution has been shown in Chapter 4, though will not be used
to select any cut considering the blind analysis we perform.
A different muon confidence level is built for each track toplogy. The classification summarised in
Section 5.3.1 defines the motivation of such a separate treatment. For each topology, the confidence
level is built as follow using the MC:

1. We collected all tracks reconstructed with a given topology, whatever the interaction type in the
fiducial volume.
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2. For each reconstructed track, the true particle closest from the track is associated.

3. If the track is associated to a true muon, each of its charge deposition is added in the muon
charge distribution. A different distribution is filled depending on each channel hit in the track,
namely whether INGRID type in PM, SciBar type in PM or INGRID type in INGRID. This
separation is necessary to take into account the discrepancies between channel geometries (for
INGRID or SciBar type) but also to differentiate between PM and INGRID hits. This latter
caution is especially taken to deal with possible high energy hits in the PM due to vertex activity
in the PM (low energy protons or pions...) that does not affect INGRID, being only interested
in interactions in the PM. The number of muon in the topology is increased by one. The same
goes for the “not-muon” distribution if the track is associated with a particle different from a
muon

4. When all the tracks have been investigated, each of the 6 charge distributions are normalised to
generate discrete probabilities to have a muon (or “not-a-muon”) having such charge deposition
in such a channel (INGRID type in PM or INGRID, or SciBar type). The probability to have a
muon or “not-a-muon” is naturally given by normalising the particle counter mentionned above.

Figures 5.22 shows the probability for a muon and “not-a-muon”(µ) to let a hit of a given charge
in the various topologies. Note that we observed an anomaly for low charge depositions in the MC
in INGRID detector part in Chapter 4. Therefore, we decided not to use the hits that left a charge
(corrected) lower than 8 p.e, in order not to be sensitive to this anomaly. Instead, we choose to study
this effect as a systematics, instead of keeping it in the standard muon confidence level. For this
reason, such a cut will not bias our study in the end.
One observes in Figures 5.22 that the charge corrected is generally higher in the µ sample than in the
µ one. We explained earlier that this was expected due to protons higher mass that generate a higher
energy loss for a given momentum. We confirmed this energy loss dependency on particle velocity
showing the charge deposition for µ, π and protons in Figures 5.21. Since the µ and π have similar
masses (105.7 MeV and 139.6 MeV), they have a similar energy loss through electromagnetic processes
that dominate the hadronic ones in the 1 GeV energy region. The high proton mass (938.3 MeV)
reduces the particle velocity as compared to a muon with similar momentum, which increases the
energy loss (and so, the charge deposition) as can be shown in Figure 5.21. The particle composition
shown in Figure 5.21 has to be read to understand Figure 5.22: the more the muon background (µ) is
populated by protons, the better is the charge deposit separation in Figure 5.22. This can be seen for
example comparing the PM stopped and INGRID stopped topology, where the protons proportions
in the µ sample are higher in the former. One sees in Figure 5.22 that the separation is clearly better
in the PM stopped sample.

The muon confidence levels (µCL) of each sample are built using the Equation 5.3.5 and the dis-
tributions shown in Figures 5.22 and 5.23. These distributions have been normalised beforehand to
obtain P(µ) and P(µ). The µCL for the 5 topologies is shown in Figure 5.24 for all particles in MC,
and separated for each true particle type: µ, π and protons. The µCL global shape is peaked near
µCL = 0 and µCL = 1, which confirms the separation abilities of this variable. Moreover, the separation
between muons that populate high µCL and protons for µCL values confirms the discrepancies observed
in the charge deposition distributions. Pion separation is also observed in much smaller proportions,
due to some higher charge deposition in some hits. This may be due to some hadronic interactions,
but is more likely due to pion production that happens in multi-tracks events where the tracks may
generally be contaminated by 2 particles, in one of the 2 tracking planes.
Finally, we have summarised in Table 5.2 the proportions of tracks in each topology after the stan-
dard INGRID and PM reconstruction are applied. The muon purity for each topology is also shown.
The cross section measurement will be performed only with muons stopping in the INGRID sample.
We highlight here that this corresponds to only 3.7% of the total amount of tracks, though having a
relatively important muon purity (43.9%) prior to applying the PID. Prior to applying the PID on
signal data, we have shown the comparison between MC and data confidence level for the sand muon
sample in Figure 5.25. This confirms the PID ability to select true muons as “muon-like” particle for
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Figure 5.21: Charge distributions of simulated µ (blue), π (green) and protons (red) for the five topologies
defined in Table 5.1.
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Figure 5.22: Charge distributions of simulated µ (blue) and all the non muon particles µ̄ (red) for the five
topologies defined in Table 5.1.
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Figure 5.23: Particle content associated to tracks in each topology.
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data, and opens the possibility to use it in the cross section study in more complicated events. The
PID final optimisation for the CC0π study will be presented in Section 5.3.2.

PM PM INGRID INGRID INGRID
stopped escaping prematurely stopped stopped escaping

Number of events (proportions) 20.6% 41.1% 21.2% 3.7% 13.4%
Muon purity 22.5% 37.3% 27.1% 43.9% 86.9%

Table 5.2: Track proportions and muon purities in the different topologies.

5.3.2 CC0π selection

In this section, we present the selection we used to enhance CC0π purity and measure the muon
momentum (and angle). The selection is based on the following cuts, which has been applied in the
following order:

1. Only one µ-like particle and several proton-like particles. The µ-like particle should
stop in INGRID. A different cut value is used to define µ-like and proton-like particles. The
requirement of µ-like particles to stop in INGRID is essential to maintain the possibility to
measure their momentum. Note we will also use a part of the INGRID escaping sample, to
populate the high momentum region. However, we will see in Section 5.5 that the statistics in
these momentum bin should not be significantly larger compared to the other momentum bins
since it can prevent the unfolding method from converging. Therefore, we only used one tenth
of the INGRID escaping data in the current version of this analysis. An improvement of the
unfolding method should lead to use the full sample.

2. PM and INGRID track matching for the µ-like track. The INGRID MC does not
perfectly describe the whole neutrino hall geometry, and module environments. We know that
the external background is not well simulated in INGRID. For example, we have to tune the
MC predicted sand muon background using data, since the MC predicts 1.4 less background
than measured in data. Moreover, the dark noise simulation is not perfect either. This was
the main reason we required three active planes also in INGRID to reconstruct a track. This
contamination would typically affect mainly the short distance crossed in iron, and is unpredicted
using MC. We tightened the cut on the matching between INGRID and PM 2D tracks to take
this into account, and increase data and MC agreement. The cut value tuning is shown in the
second part of this section.

3. µ-like track transverse width. The interaction of the neutrino with electrons is not simulated
in this analysis, and can represent a considerable systematic error source. The outgoing electron
signature is an electromagnetic shower whose properties will be studied in Chapter 6 in INGRID.
We will apply a cut on the transverse track width based on this analysis to remove the µ-like
tracks that have a large track transverse width, which is the signature of the shower of an
electron.

In the coming three paragraphs, we describe the tuning of each cut value, before showing the final
result at the end of this section. We used T2K data taken from run 2 to run 4, which have been taken
between November 2010 and July 2013. The PM has been installed between run 1 and run 2, which
explains we have not used the run 1. Moreover, we have not used data taken during T2K runs 3a
(respectively 3b), since in this run, the horn current has been switched off (respectively, the current
has been changed from 250 kA to 200 kA). The total amount of data used correspond to 5.86 × 1020

POT out of the 6.04×1020 available during the same period. In the following sections, we will therefore
use MC simulations corresponding to 5.86 × 1020 POT.

Particle identification tuning

The CC0π signal is defined by observing the final state 1µ + N p + 0π. As shown previously, the PID
has a capability to discriminate between muons and protons. This is particularly adapted to CC0π
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Figure 5.24: µCL distributions comparison for the whole track samples reconstructed as a PM neutrino event
(left). On the right, the distinction is shown between true µ (blue), π (green) and proton (red) tracks.
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Figure 5.25: Confidence level comparison for data and MC sand muon events.

interactions, where we expect one and only one µ-like particle in the neutrino decay product (no
charged π that are essentially µ-like).

To determine the cut value on µCL for a particle to be µ-like, we used all the available muons
provided by the standard CC reconstruction described in the beginning of Section 5.3.
The PID cut values are tuned comparing µ purity and relative efficiency with the original muon
proportions. The relative efficiency is defined as:

ε =
Nselected
µ

Nreconstructed
µ

(5.3.6)

with Nselected/reconstructed
µ the number of muons selected after the µCL and reconstructed by the original

INGRID selection respectively. The results are presented in Figure 5.26. Muons naturally populate
high µCL regions. Therefore, we applied a cut at the value mcut defined by µCL ≥ mcut to select the
muons. The cut value has been chosen to maximise both purity and efficiency, but also to minimise
sensitivity to systematic errors. This last condition requires a cut in a region with relatively small
number of events in the µCL to minimise impact of bin by bin migration in systematic error evaluation.
Figure 5.26 shows that the muons are mainly spread from µCL = 1.0 to µCL = 0.8. A relatively good
compromise is obtained requiring mcut = 0.7, which increases the muon purity from µpurity = 48% to
µpurity after cut = 75% after this cut with a relative efficiency of εµ = 84%.

The same procedure is applied to select protons. Protons naturally populate low muon confidence
levels and we applied a cut pcut defined by µCL ≤ pcut to select them. Figure 5.27 shows the results for
proton purity and selection efficiency. Using a similar argument as for muons, we defined the optimum
cut value as pcut = 0.3.

On one hand, we highlight that the selection optimisation is not referring to CC0π in particular: all
muons and protons available in our sample were used. Though this could reduce in principle the purity
and efficiency of the selection, this ensures that the PID is independent from a particular cross section
model. Possible variations with the CC0π sample muons or protons are expected to only come from
mis-reconstruction, e.g. coming from a different background in CC0π interactions. This background
may vary with the cross section model, implying that we must not select explicitly CC0π interactions
to tune the PID. On the other hand, one remarks that the proton and muon cut values µcut and pcut

are different: a proton is not only a particle “which is not a muon”. Though an explanation based
on optimisation of purity and efficiency in the PID was given, another correlated motivation lies in
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the systematic error effects. Distorsion of the µCL may happen, particularly with the error on the
charge left by each particle in a scintillator. A “dead zone” in the µCL has the advantage to prevent
a large migration of muons/protons from one side to another of a single cut value. It leads to a lower
dependency of the selection on the systematic error of charge deposition.
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Figure 5.26: Relative efficiency and muon purity with the variation of µCL cut value. The cut applied for muon
selection in each bin is µCL ≥ Bin Value.
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Figure 5.27: Relative efficiency and proton purity with the variation of µCL cut value. The cut applied for proton
selection in each bin is µCL ≤ Bin Value.

We apply the PID cuts and only consider interactions in which a µ-like track stops in INGRID.
Considering only interactions containing at least one track stopping in INGRID, the original CC0π
purity is 39.4%. The PID cut requiring only one µ-like track and and other proton-like tracks increases
the purity to 63.8% with an efficiency of 58.6% in CC0π interactions. The precise informations on this
cut are summarised in Table 5.3. The MC and data comparisons after this cut is applied are shown in
Figure 5.28 both in muon distance in iron dµ and angle θµ. The number of events selected is globally
9% higher in data than the MC. The relative discrepancy is especially higher for interactions whose
muons produce short tracks in INGRID. This discrepancy is 58% in the first filled iron distance bin
(dµ ∈ [15◦, 20◦]). Though it may come from a cross section issue, this increasing discrepancy with
the smaller depth in iron indicates a possible background contamination on the edge of INGRID. To
separate the signal and a possible external background, the matching between 2D INGRID and PM
tracks has been refined in the next section.

µ-like PM and INGRID track matching

The original matching conditions between PM and INGRID 2D tracks have been introduced in the
beginning of Section 5.3. We consider possible sources of background such as sand muons, but also
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Figure 5.28: Event distribution of the data and MC as a function of distance in iron (left) and angle (right) after
the PID is applied.

neutrons or gammas coming from interacting neutrinos in the hall. We know that the external back-
groubnd simulation is highly under-estimated in the MC, since we had to increase the external back-
ground predicted by MC by a factor 1.4 so that the number of sand muons matches the date one.
This tuning does obviously not imply that the simulation of other background sources will be tuned
enough. Moreover, the matching conditions shown in the beginning of Section 5.3 are clearly per-
missive, and might be reduced without losing as significant amount of signal (for a reasonably good
tracking). Therefore, we change the matching conditions between PM and INGRID from:

|θX
PM − θ

X
INGRID| < 35◦ and |θY

PM − θ
Y
INGRID| < 35◦ (5.3.7)

|hX
PM − hY

INGRID| < 8.5 cm and |hX
PM − hY

INGRID| < 8.5 cm (5.3.8)

to

|θX
PM − θ

X
INGRID| < 25◦ and |θY

PM − θ
Y
INGRID| < 25◦ (5.3.9)

|hX
PM − hY

INGRID| < 7 cm and |hX
PM − hY

INGRID| < 7 cm (5.3.10)

with θX
PM/INGRID

, θY
PM/INGRID

the PM/INGRID 2D angle in the XZ, YZ planes respectively, and

hX
PM/INGRID

, hY
PM/INGRID

the PM/INGRID transverse position at the halfway point between PM and

INGRID in the XZ and YZ planes respectively.
These criteria have been only changed for the muon particles, since they may heavily affect the
muon momentum and angle determination. The matching conditions are only based on geometrical
considerations in order to not overtune this cut. Assuming the worst possible case, we may try to
match a track crossing the 3 last tracking planes of PM and the 3 first ones in INGRID. Assuming a
±2.5 cm resolution on the transverse position due to INGRID scintillator width (5 cm), we obtain the
following resolution for low angle tracks:

tan(θPM) =
2.5

4.6 · 2
→ θPM = arctan(

2.5
4.6 · 2

) = ±10.3◦ (5.3.11)

tan(θINGRID) =
2.5

10.7 · 2
→ θINGRID = arctan(

2.5
10.7 · 2

) = ±6.7◦. (5.3.12)

Considering the most pathological case, one expects for example the PM track angle to be positively
over-estimated by 10.3◦ and the INGRID track to be negatively over-estimated by −6.7◦. This implies
an angle discrepancy of 17◦ between the INGRID and PM tracks. Assuming a perfect reconstruction,
this latter criterion is likely over-estimated since the angle difference between true and reconstructed
values is likely to be correlated between INGRID and PM. In the case of 100% correlation, one would
expect a maximal difference of 10.3 − 6.7 = 3.6 cm which is the most optimistic case. Because of the
INGRID non perfect reconstruction, or possible dark noise hits along the track, we required the PM
and INGRID track angle difference to be less than 25◦.
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The transverse track position at the half distance between the end of PM and starting of INGRID is
also used. This halfway point is located 13.5 cm after the end of PM and before INGRID. Considering
the most pessimistic case we defined for the angle, the resolution on the transverse track position at
the halfway point is:

2.5
hPM

=
4.6 · 2

4.6 · 2 + 13.5
→ hPM = ±6.1 cm if INGRID type (5.3.13)

2.5
hINGRID

=
10.7 · 2

10.7 · 2 + 13.5
→ hINGRID = ±4.0 cm (5.3.14)

using Thales theorem. The same argument as for angle criteria can be used: assuming the worst
possible case, one would expect a transverse position difference of 10.1 cm between INGRID and PM
tracks. However, in the case of 100% correlated variations between transverse position in INGRID
and PM, one would expect only 2.1 cm variation. We finally required the difference between the PM
and INGRID transverse position to be less than 7 cm in order to tighten the existing cut, without
losing too many events a priori due to resolution issues. This value has not been tuned neither on
data nor MC, and maybe refined in the future.
This criterion only slightly increases the CC0π purity from 63.8% to 64.6% with a 71.2% efficiency. The
event breakdown associated to the cut efficiency and remaining purities is summarised in Table 5.3.
One clearly remarks that this cut has relatively low performances on MC. This is expected since it
should mainly remove a background existing in data that is not simulated by MC. Figure 5.29 shows
the data and MC distributions with the muon angle and its distance crossed in INGRID iron. One
clearly observes on the latter that the better agreement between data and MC than compared to
Figure 5.28. In fact, the discrepancy between MC and data has globally decreased from 9% to 6%.
Moreover, one observes relative shape variations from Figure 5.28, coming from the decrease of events
at small iron distances because of their lower angular and transverse position resolutions. Finally,
a large event discrepancy remains for the tracks having a muon crossing only dµ ∈ [15 cm, 20 cm]
in INGRID. Though the cut has highly increased data and MC agreement from 58% to 39%, the
discrepancy is still high and seems un-related to cross section issues considering that this variation is
absolutely not seen in the neighbour bins. We will investigate the source of such a discrepancy in the
next section.

 (cm)µd
0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

er
 o

f 
ev

en
ts

0

50

100

150

200

250

300

350

400

 after PM/INGRID track matchingµCC-0pi like INGRID stopped 

Data
CC-0Pi
CC-1Pi
CC-NPi
CC-Other
NC
Wall Bkg
INGRID H Bkg
INGRID V Bkg

eν+µν

 after PM/INGRID track matchingµCC-0pi like INGRID stopped 

(a) dµ

)° (µθ
0 10 20 30 40 50 60 70 80 90

N
u

m
b

er
 o

f 
ev

en
ts

0

50

100

150

200

250

 after PM/INGRID track matchingµCC-0pi like INGRID stopped 

Data
CC-0Pi
CC-1Pi
CC-NPi
CC-Other
NC
Wall Bkg
INGRID H Bkg
INGRID V Bkg

eν+µν

 after PM/INGRID track matchingµCC-0pi like INGRID stopped 

(b) θµ

Figure 5.29: Event distribution of the data and MC as a function of distance in iron (left) and angle (right) after
the PID and matching cuts are applied.

µ-like track transverse width

We observed in the previous section that a discrepancy between data and MC remains, especially in
the first dµ ∈ [15 cm, 20 cm] bin. Among other possibilities, we figure out this background may be due
to νµ interacting with the electrons of the PM. This interaction is not simulated in the MC. Those
neutrinos would interact in a neutral current interaction:

νµ + e− → νµ + e− (5.3.15)
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This would lead to a momentum transfer from the neutrino to the electron that may escape from the
atom and produce a reconstructed track in PM and INGRID. We have performed a complete electron
study in INGRID in Chapter 6 to remove the possible νe background. The main results of this electron
rejection may be adapted to the current study in order to remove what may be an electron background.
In particular, we will see in Chapter 6 that the main feature of the electron tracks in INGRID are
their smaller length, but also larger width (due to an electromagnetic shower production) compared
to the muon track. But, though the muon track length can be equal to the high energy electrons
one, the track width should be clearly higher for electrons independently from the particle energy.
The track transverse width of an electromagnetic shower is a material property, and is around 6.8 cm
in INGRID iron (see Chapter 6). Since the scintillators have a 5 cm resolution, this electromagnetic
shower development can be clearly identified in INGRID. In this analysis, we only consider the elec-
tromagnetic shower development in INGRID. The conversion length in carbon is higher (∼ 40 cm [13])
and so, the electromagnetic shower may not develop in the PM. This study may be refined using the
PM in the future. Using the MC, we generate electrons in PM and study their track transverse width
in INGRID averaged over all INGRID planes. Figure 5.30 exhibits an important discrepancy between
muons and electrons both produced in PM but propagating through INGRID. We have shown the
average track width with the latest scintillator plane crossed in INGRID. The average track width
is clearly higher for electrons (∼ 1.9 channels) as compared to muons (∼ 1.3 channels) due to the
electromagnetic shower development. The further the electron track penetrates iron, the larger is the
transverse width because of the electromagnetic shower development (See Chapter 6).

We set a cut on the average track width to reduce electron contamination coming from possible
νµ interactions with electrons. The variation in track transverse width with iron distance penetrated
in INGRID naturally implies a different cut for different iron distances. Figure 5.30 shows the muon
and electron average track width distributions for various distances in iron. As predicted earlier, the
average transverse track width difference between muons and electrons is smaller for tracks stopping
in the first INGRID iron layers. Based on muon and electron track width distribution, we require a
µ-like track crossing less than 30 cm in iron to have an average transverse track width lower than 1.3
channels. For the longer tracks (dµ > 30 cm), we require the µ-like track to have an average transverse
width smaller than 1.5 channels.

We apply this cut both on the µ-like track in MC and data. The transverse track width cut barely
changes the MC CC0π purity from 64.6% to 65.1% with an efficiency of 99.6%, which confirms most
of the µ-like tracks in MC CC0π interactions are effectively muons. On the other hand, the total
number of events in data is reduced by 2.2% while MC is reduced by 1.1%. Figure 5.31 shows the
distribution of the iron depth of the muon and shows that this change mainly affects track crossing
the iron distance dµ < 20 cm. The data and MC discrepancy is reduced from 36% to 16% in this bin.
Figure 5.32 shows the data average track width distribution and confirms the data higher track width
observation.

Results on CC0π selection

The CC0π selection described above is summarised in Table 5.3. Table 5.4 shows the data and MC
relative comparison with the statistical error bars. The binning has been changed from previous plot
to increase clarity, and is now the same as the one we will use for the unfolding (Section 5.5). The
general agreement is reasonable though showing an overall higher rate in data. The data exhibit a 3σ
higher fluctuation in the bin (dµ ∈ [15 cm, 20 cm], θµ ∈ [0◦, 20◦]).

5.4 Cross section analysis method

The double differential cross section will be measured as:

d2σ

dpµdθµ
=

NSelected
CC0π (pµ ∩ θµ)

φ · NT · ε(pµ ∩ θµ) · δpµ ∩ δθµ
(5.4.1)

with:
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Figure 5.30: Distribution of the track width in INGRID for simulated muons (blue) and electrons (green)
coming from respectively νµ and νe interacting in the PM. The tracks are separated considering their penetration
in INGRID iron.
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Figure 5.32: Distribution of the CC0π candidates µ-like track (stopping in INGRID) for MC (blue) and data
(red).

• NSelected
CC0π (pµ ∩ θµ) the number of CC0π events passing the CC0π selection with a muon having a

momentum and angle p ∈ [pµ, pµ ± δpµ], θ ∈ [θµ, θµ ± δθµ] .

• ε(pµ ∩ θµ) is the reconstruction and selection efficiency for such CC0π events with µ falling in
the same momentum and angle intervals. This efficiency correction is necessary to obtain the
number of interacting neutrino from the number of reconstructed and selected ones.

• The cross section per neutrino, and per nucleon is obtained respectively dividing by φ, the total
neutrino flux going through the PM during the data taking, and NT is the number of target
nucleons in the same module.

• δpµ and δθµ are the interval widths, respectively in GeV and degrees. The ideal double differential
cross section measurement will be given by imposing δpµ → 0 and δθµ → 0.

To apply the Equation 5.4.1 to the CC0π cross section, we will take into account the binning in pµ
and θµ that naturally changes the equation to:

d2σ

dpi
µdθ j

µ

=
NSelected

CC0π (pi
µ ∩ θ

j
µ)

φ · NT · ε(pi
µ ∩ θ

j
µ) · wi · w j

(5.4.2)

with i and j the bin indicators respectively in pµ and θµ, and w the bin width that replaces the interval
width to achieve a cross section measurement per GeV per degrees. We will detail in this Section how
the different variables are obtained.

Table 5.3: Event breakdown considering the different cuts to enhance CC0π purity.

CC0π CC-Others NC Other bkg CC0π CC0π Selected Selected
Purity Efficiency MC Data

One track INGRID stopped 3703.72 4059.16 1204.26 440.899 0.3936 9408.03 9263
One µ-like track only 2170.18 949.759 203.754 76.5119 0.6382 0.5859 3400.21 3710
µ-like track matching 1546.31 637.099 148.71 61.8697 0.6459 0.4175 2393.99 2548
µ-like track width 1540.43 627.891 139.121 59.2869 0.6509 0.4159 2366.73 2492
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5.4.1 Number of CC0π selected events

Applying the CC0π selection on the data, we obtain the number of events in each reconstructed dµ and
θµ bins (Data Selectedi, j). In order to deduce the number of CC0π events in each dµ and θµ bins, we will
subtract the background using the MC production (MC Bkg Selectedi, j). Using Table 5.4, we deduce
the number of CC0π selected events whose muon falls in the di

µ and θ
j
µ bin as si, j (signal=NSelected

CC0π (pµ∩
θµ)):

si, j = Data Selectedi, j −MC Bkg Selectedi, j (5.4.3)

We will retrieve the signal event in true pa
µ, θ

b
µ bins from di

µ, θ
j
µ bins using a Bayesian unfolding

method shown in Section 5.5. The background prediction will be purely MC based, and by this, is
expected to change with the cross section model. We developed a CC0π selection whose cuts are
as much model independent as possible to minimise this effect. However, the background prediction
will be the main source of cross section model dependency (so systematics) in our result compared
to the other MC based factor (efficiency). Therefore, to minimise the impact of the remaining cross
section systematics, the CC0π selection needs not only to be relatively model independent but also to
minimise the background contamination. The high CC0π purity of 65% is a prerequisite to minimise
the background cross section model dependency on the final result. It also minimises the impact of
detector and flux systematics. We expect the latter to mainly affect the neutrino flux prediction φ for
the rate, but to also affect the background estimation due to systematics coming from the flux shape.

Table 5.4: Data and MC CC0π-like selected events, for in each pµ, θµ bin.
θµ ∈ [0◦ − 20◦] θµ ∈ [20◦ − 30◦] θµ ∈ [30◦ − 60◦] θµ ∈ [60◦ − 180◦]

dµ ∈ [0 cm, 10 cm]
Data : 0.00 ± 0.00 Data : 0.00 ± 0.00 Data : 0.00 ± 0.00 Data : 0.00 ± 0.00

MC: 0.00 MC: 0.00 MC: 0.00 MC: 0.00
Data−MC

MC : 0.00 ± 0.00 % Data−MC
MC : 0.00 ± 0.00 % Data−MC

MC : 0.00 ± 0.00 % Data−MC
MC : 0.00 ± 0.00%

dµ ∈ [10 cm, 15 cm]
Data: 1.00 ± 1.00 Data: 0.00 ± 0.00 Data: 0.00 ± 0.00 Data: 0.00 ± 0.00

MC: 1.19 MC: 0.00 MC: 0.00 MC: 0.00
Data−MC

MC : -16.30 ± 83.70 % Data−MC
MC : 0.00 ± 0.00 % Data−MC

MC : 0.00 ± 0.00 % Data−MC
MC : 0.00 ± 0.00%

dµ ∈ [15 cm, 20 cm]
Data: 44.00 ± 6.63 Data: 37.00 ± 6.08 Data: 28.00 ± 5.29 Data: 0.00 ± 0.00

MC: 23.55 MC: 39.17 MC: 31.50 MC: 0.00
Data−MC

MC : 86.81 ± 28.16 % Data−MC
MC : -5.55 ± 15.53 % Data−MC

MC : -11.12 ± 16.80 % Data−MC
MC : 0.00 ± 0.00%

dµ ∈ [20 cm, 25 cm]
Data: 44.00 ± 6.63 Data: 41.00 ± 6.40 Data: 45.00 ± 6.71 Data: 0.00 ± 0.00

MC: 47.34 MC: 32.57 MC: 44.79 MC: 0.00
Data−MC

MC : -7.05 ± 14.01 % Data−MC
MC : 25.89 ± 19.66 % Data−MC

MC : 0.47 ± 14.98 % Data−MC
MC : 0.00 ± 0.00%

dµ ∈ [25 cm, 30 cm]
Data: 42.00 ± 6.48 Data: 43.00 ± 6.56 Data: 72.00 ± 8.49 Data: 1.00 ± 1.00

MC: 37.58 MC: 47.16 MC: 70.08 MC: 0.56
Data−MC

MC : 11.77 ± 17.25 % Data−MC
MC : -8.81 ± 13.91 % Data−MC

MC : 2.73 ± 12.11 % Data−MC
MC : 78.64 ± 178.64%

dµ ∈ [30 cm, 35 cm]
Data: 70.00 ± 8.37 Data: 102.00 ± 10.10 Data: 57.00 ± 7.55 Data: 0.00 ± 0.00

MC: 58.95 MC: 79.35 MC: 52.93 MC: 0.04
Data−MC

MC : 18.75 ± 14.19 % Data−MC
MC : 28.54 ± 12.73 % Data−MC

MC : 7.68 ± 14.26 % Data−MC
MC : -100.00 ± 0.00%

dµ ∈ [35 cm, 40 cm]
Data: 92.00 ± 9.59 Data: 71.00 ± 8.43 Data: 57.00 ± 7.55 Data: 0.00 ± 0.00

MC: 91.08 MC: 63.38 MC: 55.47 MC: 0.32
Data−MC

MC : 1.01 ± 10.53 % Data−MC
MC : 12.03 ± 13.29 % Data−MC

MC : 2.76 ± 13.61 % Data−MC
MC : -100.00 ± 0.00%

dµ ∈ [40 cm, 45 cm]
Data: 73.00 ± 8.54 Data: 58.00 ± 7.62 Data: 68.00 ± 8.25 Data: 0.00 ± 0.00

MC: 75.56 MC: 61.67 MC: 56.02 MC: 0.00
Data−MC

MC : -3.39 ± 11.31 % Data−MC
MC : -5.94 ± 12.35 % Data−MC

MC : 21.38 ± 14.72 % Data−MC
MC : 0.00 ± 0.00%

dµ ∈ [45 cm, 50 cm]
Data: 77.00 ± 8.77 Data: 101.00 ± 10.05 Data: 50.00 ± 7.07 Data: 0.00 ± 0.00

MC: 71.13 MC: 93.52 MC: 44.53 MC: 0.00
Data−MC

MC : 8.25 ± 12.34 % Data−MC
MC : 8.00 ± 10.75 % Data−MC

MC : 12.27 ± 15.88 % Data−MC
MC : 0.00 ± 0.00%

dµ ∈ [50 cm, 55 cm]
Data: 125.00 ± 11.18 Data: 79.00 ± 8.89 Data: 49.00 ± 7.00 Data: 1.00 ± 1.00

MC: 103.05 MC: 75.57 MC: 41.00 MC: 0.17
Data−MC

MC : 21.30 ± 10.85 % Data−MC
MC : 4.54 ± 11.76 % Data−MC

MC : 19.51 ± 17.07 % Data−MC
MC : 490.11 ± 590.11%

dµ ∈ [55 cm, 60 cm]
Data: 142.00 ± 11.92 Data: 74.00 ± 8.60 Data: 51.00 ± 7.14 Data: 0.00 ± 0.00

MC: 132.41 MC: 69.15 MC: 40.64 MC: 0.00
Data−MC

MC : 7.24 ± 9.00 % Data−MC
MC : 7.02 ± 12.44 % Data−MC

MC : 25.49 ± 17.57 % Data−MC
MC : 0.00 ± 0.00%

dµ ∈ [60 cm, 65 cm]
Data: 244.00 ± 15.62 Data: 104.00 ± 10.20 Data: 25.00 ± 5.00 Data: 0.00 ± 0.00

MC: 291.11 MC: 85.63 MC: 29.76 MC: 0.01
Data−MC

MC : -16.18 ± 5.37 % Data−MC
MC : 21.45 ± 11.91 % Data−MC

MC : -16.00 ± 16.80 % Data−MC
MC : -100.00 ± 0.00%

dµ ∈ [65 cm, 70 cm]
Data: 177.00 ± 13.30 Data: 68.00 ± 8.25 Data: 27.00 ± 5.20 Data: 0.00 ± 0.00

MC: 164.42 MC: 77.60 MC: 21.31 MC: 0.00
Data−MC

MC : 7.65 ± 8.09 % Data−MC
MC : -12.37 ± 10.63 % Data−MC

MC : 26.70 ± 24.38 % Data−MC
MC : -100.00 ± 0.00%

dµ ∈ [70 cm, 75 cm]
Data: 3.00 ± 1.73 Data: 19.00 ± 4.36 Data: 12.00 ± 3.46 Data: 0.00 ± 0.00

MC: 2.07 MC: 25.85 MC: 13.84 MC: 0.01
Data−MC

MC : 44.78 ± 83.59 % Data−MC
MC : -26.50 ± 16.86 % Data−MC

MC : -13.31 ± 25.02 % Data−MC
MC : -100.00 ± 0.00%

dµ ∈ [75 cm, 80 cm]
Data: 0.00 ± 0.00 Data: 4.00 ± 2.00 Data: 8.00 ± 2.83 Data: 0.00 ± 0.00

MC: 0.47 MC: 2.24 MC: 6.55 MC: 0.00
Data−MC

MC : -100.00 ± 0.00 % Data−MC
MC : 78.42 ± 89.21 % Data−MC

MC : 22.06 ± 43.15 % Data−MC
MC : 0.00 ± 0.00%

dµ ∈ [80 cm, 85 cm]
Data: 0.00 ± 0.00 Data: 0.00 ± 0.00 Data: 4.00 ± 2.00 Data: 0.00 ± 0.00

MC: 0.00 MC: 0.50 MC: 2.57 MC: 0.00
Data−MC

MC : 0.00 ± 0.00 % Data−MC
MC : -100.00 ± 0.00 % Data−MC

MC : 55.67 ± 77.84 % Data−MC
MC : -100.00 ± 0.00%

dµ ∈ [85 cm, 150 cm]
Data: 0.00 ± 0.00 Data: 0.00 ± 0.00 Data: 4.00 ± 2.00 Data: 0.00 ± 0.00

MC: 0.00 MC: 0.00 MC: 1.29 MC: 0.48
Data−MC

MC : 0.00 ± 0.00 % Data−MC
MC : 0.00 ± 0.00 % Data−MC

MC : 210.89 ± 155.44 % Data−MC
MC : -100.00 ± 0.00%
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5.4.2 Efficiency

The reconstruction and selection efficiency is evaluated using the MC production. The efficiency is
estimated in each true bin a,b as:

ε(pa
µ, θ

b
µ) =

NSelected
CC0π (pa

µ ∩ θ
b
µ)

NFV interacting
CC0π (pa

µ ∩ θ
b
µ)

(5.4.4)

with NFV interacting
CC0π (pa

µ ∩ θ
b
µ) the number of CC0π interactions in the MC fiducial volume (defined in

Chapter 4). Table 5.5 summarises the efficiency of the true bins. The efficiency low values come
mainly from imposing muons to stop in INGRID. The refinement of the selection will barely affect
this primordial cut, which is the consequence of detector design which is not perfectly adapted to a
differential muon momentum cross section study. The efficiency is purely MC based but is expected to

Table 5.5: Summary of the CC0π efficiency in the true (pµ, θµ) bins.

[0 GeV, 0.5 GeV] [0.5 GeV, 0.7 GeV] [0.7 GeV, 1.0 GeV] [1.0 GeV, 5 GeV] [5 GeV, 30 GeV]
θµ ∈ [0◦ − 20◦] 0.53% 1.64% 1.39% 0.13% 0.10%
θµ ∈ [20◦ − 30◦] 0.42% 1.10% 0.82% 0.08% 0.00%
θµ ∈ [30◦ − 60◦] 0.10% 0.22% 0.13% 0.06% 0.00%
θµ ∈ [60◦ − 180◦] 0.01% 0.02% 0.05% 0.29% 0.00%

barely change under the neutrino flux or cross section model systematics. The fact that the detector
efficiency is barely cross section model dependent is guaranteed by the model independent CC0π
selection we developed. The efficiency is likely to be affected mostly by detector systematics, and we
will show these errors are sub-dominant in this analysis.

5.4.3 Neutrino flux prediction

The flux prediction is done using the T2K flux simulation, JNUBEAM, which has been developed by
the T2K beam group. Figure 5.33 shows the neutrino flux that intersects the PM fiducial volume for
an intensity of 1021 POT. The normalisation flux we will use is represented by the νµ component which
corresponds to a total of 5.09× 1013νµ. The number of POT in data is monitored with CT5 at the end
of the primary beam line, and corresponds to 5.86 × 1020 POT. We only selected data satisfying the
“good spill” beam criteria which indicates that the beam is correctly delivered. The corresponding
neutrino νµ flux is therefore equal to 2.9959 × 1013 neutrinos per cm2 in the PM. This flux prediction
will obviously not be affected by any neutrino cross section model. However, the main systematics
coming from the flux intensity and shape will mainly impact the flux predictions.

5.4.4 Number of target nucleons

We estimated the number of target nucleons in the PM fiducial volume for each target chemical
element. The total mass of the scintillators contained in the longitudinal FV (namely from scintillator
planes 4 to 31) has been measured as:

MS ci = 364.19 kg (5.4.5)

which implies that the actual mass in the transverse and longitudinal PM FV is:

MS ci = 364.19 kg ×
100

120.3
= 302.73 kg. (5.4.6)

The scintillator has been weighted without any fiber inserted. Although fibers are a target for the
neutrinos, only interactions on the hydrocarbon part of the scintillator (CH) are simulated in the MC.
The scintillator fibers are cylinders of radius rFib = 0.05 cm and 120.3 cm length, but only 100 cm
are contained in the fiducial volume. We have seen that their density is 1.03 g.cm3. The number of
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Figure 5.33: PM fiducial volume intersecting neutrino flux as a function of the neutrino energy Eν for different
neutrino species. The flux is given per cm2. The MC prediction is established for a beam intensity of 1021 POT
with 250kA horns, in the neutrino mode.

scintillators in one tracking plane and in the FV is 28, which implies 28 × (32 − 4 + 1planes) = 784
scintillators. The actual mass of the scintillator fibers contained in the PM FV is therefore:

MFib = π · 0.052 × 100 × 0.00103(kg.cm3) × 784 = 0.63 kg. (5.4.7)

Finally, we can deduce the number of hydrocarbon target nucleons only if we know the hydrocar-
bon mass over the total scintillator and fiber mass. As we explained in Chapter 4, the scintillator
is composed mainly of polystyrene (C8H8) but also of 1% PPO (C15H11NO) and 0.03% POPOP
(C24H16N2O2) by weight. The fiber is only made of polystyrene. Finally, the scintillator coating is
composed of polystyrene with 15% infused TiO2 by mass. Finally, it is required to estimate the coating
and active volume in a scintillator to obtain the mass composition of a scintillator and its fiber of each
element. The estimation of these 2 volumes is done in the T2K internal note [80], and its results will
be directly used here. It leads to the elemental composition summarised in Table 5.6:

We deduce that 98.57% of the total target in PM FV is made of hydrocarbon, in terms of mass.
Ideally, one should have taken the remaining 1.43% other elements into account by generating the MC
production, systematically considering any interaction in T, O or N as background and subtracting
it from the data. In the study presented here, we have estimated the background considering only
hydrocarbon. We will show that this global effect effect is negligible as compared to the flux systematics
(Section 5.6). We will assume in this measurement that this effect is a 100% correlated systematic
error equal to 1.4%. This assumes the neutrino cross section is similar for the same hydrocarbon and
T, O, N mass, which is not exactly true, though being a good approximation.
Finally, the only target nucleons are neutrons in the case of CC0π, and we will therefore not count the
protons upon which the neutrino cannot interact through charged current interaction. Assuming only
hydrocarbon, we deduce the number of target neutrons out of the total scintillator and fiber mass as:

Element H C N O Ti
Mass ratio 7.61% 90.96% 0.07% 0.59% 0.76%

Table 5.6: Elemental composition of a coated scintillator with its fiber.
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NT =
CH mass in scintillators and fibers

mass of 1 mole CH
· NA × NCH

Nucleons (5.4.8)

=
0.9857 · (MS ci + MFib)

MC + MH · NA × ((A-Z)C + (A-Z)H) (5.4.9)

= 8.299 × 1028 (5.4.10)

with NA = 6.02214 × 1023 the Avogadro constant, MH = 1.008 g.mol−1 and MC = 12.011 g.mol−1

the atomic masses of hydrogen and carbon and (A-Z)H = 0, (A-Z)C = 6 their amount of neutrons.

5.4.5 pµ and θµ binning

The binning used for the reconstructed dµ and θµ variables has been introduced in Section 5.3. The
binning is chosen based on the detector resolution. In this section, we will define the binning we
use in true pµ and θµ variables. The motivations for such a choice will be introduced in Section 5.5.
Briefly, since the true variables are recovered from the reconstructed ones, they cannot convey more
informations than the detectors allow to (except if we over use the MC). Therefore, the true binning
should also represent the detector resolution and we introduced earlier that the INGRID plane thick-
ness represents ∼ 100 MeV resolution in the most favoured case. The binning in true muon kinematic
variables is summarised in Table 5.7 along with the MC true information on the number of CC0π
event selected in each bin.

In this study, we will not use the bins θµ ∈ [60◦ − 180◦] and [5 GeV, 30 GeV] for any measurement.
These bins are only kept in order to cover the neutrino whole phase space which is mandatory not
to lose any events in the other bins when we apply the Bayesian unfolding method. Additionnal
comments on this bin choice will be given in Section 5.5.

5.5 The Bayesian unfolding method

5.5.1 Introduction to unfolding and motivations

We aim to use the data to deduce a direct cross section measurement with muon momentum and
angle. This could be done either by a direct fit of the data from the simulation, or by an unfolding
method. In a fitting procedure, one inputs a model in the MC and determines the parameter values
that maximise the agreement between MC and data. By doing so, we are testing the parameter values
that reproduce the best our data assuming a given model. For measurements whose models have been
clearly established, this method would be preferred.
On the opposite, the unfolding method aims to retrieve the original data distribution by “unsmearing”
the detector finite resolution effects. By doing so, our data sample would be modified to give directly
the original distribution, and this will be our measurement. This is the exact opposite of a fitting
method. In this undolfing procedure, only the distorsion due to detector effects is used. Therefore,
rather than finding optimum parameters for a given model, the unfolding procedure allows to test
different models and directly compare them to the unsmeared data distribution. As explained before,
neutrino cross section models suffer from high uncertainties and there is no major indication towards
one of them. For this reason, we develop a bayesian unfolding procedure to measure the double
differential CC0π cross section. It aims to provide measurements that will ultimately be compared

[0 GeV, 0.5 GeV] [0.5 GeV, 0.7 GeV] [0.7 GeV, 1.0 GeV] [1.0 GeV, 5 GeV] [5 GeV, 30 GeV]
θµ ∈ [0◦ − 20◦] 24.37 98.98 261.94 281.46 28.69
θµ ∈ [20◦ − 30◦] 28.42 116.20 241.53 83.70 0.00
θµ ∈ [30◦ − 60◦] 45.23 118.46 110.05 49.75 0.00
θµ ∈ [60◦ − 180◦] 15.26 8.36 5.95 3.28 0.00

Total 113.26 342.0 619.47 418.19 28.69

Table 5.7: True number of CC0π events selected by CC0π selection in the MC.
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with existing and future models.
The Bayesian unfolding method [64] has the advantage of being robust on a large part of the cross
section phase space since it ideally does not depend on the prior, although this is only reached for an
infinite number of iterations. In practice, the number of iterations is limited which introduces a small
dependency on the initial prior. We will see that the number of iterations should even be limited to
relatively low values to prevent from possible fluctuations due to over-tuning on the data sample. We
have chosen the iterative Bayesian unfolding over other possible aternatives, as:

1. bin-by-bin corrections since they do not take into account possible correlations between different
observed and true distribution bins. Moreover, this requires to have similar binning for the true
and observed distributions.

2. Matrix inversion with regularisation. We may build the transfer matrix from the true distribution
(for example, momenta distribution) to generate the observed event distribution (iron distance
distribution for example) after passing through the detector. After having inverted this matrix,
one may expect to retrieve the true distribution from the observed distribution. However, this
method has two important flaws: first, the transfer matrix may be non invertible. It is mostly
the case when the matrix is degenerate, e.g for a highly non-diagonal matrix (broad detector
compared to binning) or for cases where the MC sample used to estimate the matrix is limited.
This may be solved using a higher stastistics in MC and choosing larger bins to reduce the
bin by bin migration. But even in the case of an invertible matrix, the results after inversion
(“unfolding”) may be highly different from the true distribution. The transfer matrix is based
on the MC sample which will involve an over-tuning of the “unfolding matrix” on this particular
sample. When applied to the data, the statistical fluctuations in the data sample will be also
unfolded as the real physical effect. Since the unfolding matrix has been built only to unsmear
the physical detector effects, the unfolded statistical fluctuations may lead to a result that is
very different from the possible data true distribution. This effect may be cured partly using a
regularisation method to remove the high frequency fluctuations and “smooth” the corrections
of the unfolding on data. However, this introduces a possible bias in choosing the regularisation
factors and will highly depend on the MC ability to reproduce the data. Various methods are
shown in [81].

In this section, we will introduce the unfolding method that we use to unsmear the detector effects.
We will first introduce the unfolding method technique that we developed, based on [64]. Then we
will insist on the unfolding method limitations or crucial aspects that we found in order to measure
accurately the CC0π cross section. Finally, we will present the application of this method to the
double differential cross section measurement.

5.5.2 Unfolding method construction

General unfolding method

The unfolding algorithm is based on the Bayes’ theorem:

P(A|B) · P(B) = P(B|A) · P(A), with A and B random variables.. (5.5.1)

In our particular case, we aim to un-smear the detector smearing effects on the measured data dis-
tribution. The unfolding method consists in looking for the original causes Ci that has generated the
measured effects E j after propagation through the detector and distorsion by finite resolution. The
binning in E j is established on the variable used in the measurement, while Ci is binned with the
original variable. These 2 variables can be different, and so can be their binning. We wish to estimate
P(Ci|E j) to deduce the original causes from the data measured. A contrario, a MC simulation allows
to estimate for a given cause Ci, the subsequent effects after passage through detector and reconstruc-
tion: P(E j|Ci). This represents the “likelihood” of a cause to produce an effect. But, one may retrieve
P(Ci|E j) directly by testing various causes Ci in the MC simulation, measuring the consequent effects
E j and deduce the probability for a given effect E j to come from a cause Ci by simply dividing by the
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probability of this event to induce all possible causes. In fact, one sees that this procedure is exactly
analogous to apply the Bayes’ theorem. Applying the Bayes’ theorem, we obtain:

P(Ci|E j) =
P(E j|Ci) · P(Ci)

P(E j)
(5.5.2)

which allows to deduce P(C j|Ei) from L j
i = P(E j|Ci) directly obtained using the MC. L is named

likelihood or smearing matrix. The probability density P(Ci) is also directly deduced from the MC,
but can also be changed to other distributions in the case of unfolding as we will see. If the [Ck] are
independent random variables from each other, one deduces that: P(E j) =

∑
k P(E j|Ck) · P(Ck) which

leads to:

P(Ci|E j) =
P(E j|Ci) · P(Ci)∑
k P(E j|Ck) · P(Ck)

. (5.5.3)

Application to CC0π cross section measurement

We aim to measure the cross section defined in Equation 5.4.2. To do so, we needs the num-
ber of selected events interacting through CC0π interaction in the PM fiducial volume, NSelected

CC0π =

Data Selectedi, j −MC Bkg Selectedi, j. The i-th and j-th exponents refer to the true θµ and pµ bins.
The Bayesian unfolding method will be developed in order to retrieve these quantities based on the
reconstructed corresponding variables, namely the muon angle (θRec

µ ) and its distance crossed in IN-
GRID iron (dµ). As we discussed, this unsmearing matrix is constructed using the Bayes’ theorem
from the likelihood matrix. The latter is obtained by simulating various neutrino events in each θµ
and pµ bins and measuring the associated θRec

µ and dµ quantities after passage through the detector.
Let U the unfolding matrix, that is defined in two dimensions as:

U i, j
k,l = P((pi

µ ∩ θ
j
µ)|(dk

µ ∩ θ
Rec l
µ )) =

P((dk
µ ∩ θ

Rec l
µ )|(pi

µ ∩ θ
j
µ)) · P(pi

µ ∩ θ
j
µ)∑

n,m P((dk
µ ∩ θ

Rec l
µ )|(pn

µ ∩ θ
n
µ)) · P(pn

µ ∩ θ
n
µ)

(5.5.4)

the corresponding neutrino cross section is then given by:

d2σ

dpi
µdθ j

µ

=
si, j(pi

µ ∩ θ
j
µ)

φ · NT · ε(pi
µ ∩ θ

j
µ) · wi · w j

=
U i, j

kl sk,l(dk
µ ∩ θ

l
µ)

φ · NT · ε(pi
µ ∩ θ

j
µ) · wi · w j

(5.5.5)

where the signal sk,l is now expressed in the reconstructed quantities dk
µ k-th and θRec l

µ l-th bins:

sk,l = dk,l − bk,l where d are the selected data and b the selected non CC0π background. (5.5.6)

We have indicated in blue the variables that rely on the cross section and detector simulation. One
observes that the signal is the selected data with the MC evaluated background subtracted. the MC is
also used to estimate the likelihood matrix Lk,l

i, j = P((dk
µ∩θ

Rec l
µ )|(pi

µ∩θ
j
µ)), the reconstruction efficiency εi

and in some cases, the prior P(pi
µ∩θ

j
µ). A cross section model dependency then exists in these quantities.

In Section 5.3, we have defined a selection we tried to keep as model independent as possible
to minimise the model dependency of the efficiency εi, j. The unfolding matrix connects the event
distributions after detector smearing in muon depth in iron and angle to the original event distribution
in muon true momentum and angle. We observe that this matrix should depend on the simulation of
the detector, the particle propagation... However the cross section model dependency should be small,
since the relation between final and original variables does not depend on it (in principle). This is the
reason for choosing to study differential cross sections as a function of muon kinematic observables.
Note that this would not have been the case studying the neutrino cross section with energy. In the
latter case, the unfolding matrix should have connected muon observables and neutrino energy which
implies the use of a cross section model. Therefore, one concludes that the background estimation bk,l

will be the main source of cross section model dependency in our result.
Instead of a complete two dimensional unfolding algorithm, we developed several sequential one-
dimensional unfoldings in momentum and angle described in this section. For clarity, we will only
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5.5. THE BAYESIAN UNFOLDING METHOD

present the 1D momentum unfolding, and directly provide the results for the combined momentum
and angular unfoldings at the end of this section. Equation 5.5.5 then becomes for the momentum
unfolding:

dσ
dpi

µ

=
si, j(pi

µ)

φ · NT · ε(pi
µ) · wi

(5.5.7)

Unfolding matrix determination

In the example of muon momentum differential cross section, the cause bins Ci are naturally the num-
ber of events in a muon momentum bin, while the effect bins E j are the number of events as a function
of the iron distance penetrated by the muon. The two variables are not bijective due to the detector
resolution, which is represented by the “non-diagonality” of the likelihood matrix, and by extension,
of the unfolding matrix.

Likelihood matrix: The likelihood matrix is estimated using the CC0π selection defined in Sec-
tion 5.3.2. We applied the PM reconstruction and CC0π selection on 1000 MC files containing neutrino
interactions corresponding to 1024 POT. For each true muon momentum pµ, the corresponding num-
ber of events in each dIron

µ is counted and stored in the likelihood matrix. On top of this, for a given
cause momentum pµ, we assumed that the events are dispersed over all the iron distance bins, which
is equivalent to no trash bin in our analysis. The normalisation is chosen so that:∑

j

P(E j|Ci) · P(Ci) = 1. (5.5.8)

Figure 5.34 shows the likelihood distribution. One observes that the likelihood matrix is almost
diagonal, which confirms that the binning choice is adapted to the detector resolution (see Figure 5.20).
This aspect is further discussed in Appendix F.
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Figure 5.34: The likelihood matrix for the five momentum bin choice (nominal). The Y axis represents these
momentum bins, and the X axis represents the bins in distance crossed in iron by the muon.

Prior and iterations: The distribution P(Ci) represents the density function for a muon in a CC0π
interaction to have a momentum pi. One might then use the MC momentum distribution as a prior.
However, it implies that the data unfolded distribution will be affected by the MC prior P(Ci) we
chose, i.e the result would depend on the MC ability to reproduce data and induces cross section
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model dependency. To avoid this situation, we need to let the data constrain the result by themselves
as much as possible. Ideally, we would use a prior that represents a total uncertainty state. As pointed
out in [82], a flat prior does not match this condition since it imposes instead a high constraint on P(Ci)
by imposing strict equiprobability in each bins. To solve this problem, we use an iterative procedure.

1. An original prior P(Ci)0 is chosen.

2. The data d j and background b j are used (Equation 5.5.7) to estimate the posterior distribution

Post(C j)0 = U j
i (d j − b j). This distribution is then normalised to obtain the posterior distribution

from the prior P(Ci)0 constrained by the likelihood L j
i = P(E j|Ci) and data d j.

3. The prior P(Ci)1 is set equal to Post(C j)0. The procedure restarts at step 2 with P(Ci)1 as the
prior, and is iteratively applied until |P(Ci)n+1−P(Ci)n| < ε with ε a convergence criterion defined
by the user.

This procedure aims to reduce as much as possible the result dependency on the original prior (see
Appendix F). For this reason, we have chosen in this analysis a flat original prior P(Ci)0 = 1

Nbins
pµ

.

Unfolding convergence and statistical error estimation

The algorithm convergence will be reached not only if the unfolded MC agrees with the true MC pµ
distribution, but also if the statistical error estimation is correctly given by the unfolding method. In
order to do so, we will use a pull variable in muon momentum which is defined as (for the i-th bin):

Pulli =
Ni− < Ni >

σi (5.5.9)

with Ni the number of events in the i-th bin in momentum, < Ni > the average number of events
for the various statistical fluctuations and σi the estimated error on the number of events in each
bin. We expect a pull distribution to be gaussian in each momentum bin. A pull distribution mean
value compatible with 0 indicates the result has converged and is not biased. On the other hand, the
pull gaussian width should be compatible with 1 to guarantee a correct error estimation. To study
these distributions, we need to estimate both the average number of events and the associated error
contained in each momentum bin.
The statistical error for the true pµ bin can not be estimated as the square root of the number of events
since each bin is populated using various reconstructed dµ bins with different statistics. It cannot be
evaluated either as:

δpi
µ =

√√√ N∑
j=1

U i
jd

j
µ (5.5.10)

since this applies only if the statistical error does not impact the unfolding matrix. We will see that
the unfolding matrix changes with the statistical error of the reconstructed bin. It implies that the
estimation of the statistical error is not trivial, and we will therefore estimate the statistical error in
each pµ bin numerically. In order to estimate the statistical error, we will:

1. generate random variations on the number of CC0π-like events in each MC dµ bin. We assume
that the number of events in each bin follows an independent Poisson distribution.

2. subtract non-variated background in each dµ bin. The background has been estimated using the
MC information (as in Table 5.3).

3. apply the unfolding method using the non-variated likelihood matrix and a flat prior to deduce
the number of events in each pµ bin.

This method will be applied on the genuine 2D unfolding to finally estimate the statistical error in
Section 5.6. Here, we will first show that the statistical error also impacts the unfolding matrix. In
order to show this, we construct the pull distributions assuming the statistical error estimated in
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5.5. THE BAYESIAN UNFOLDING METHOD

Equarion 5.5.10. One expects the pull distribution to behave as gaussian variables with σ = 1 if the
statistical error does not affect the unfolding matrix. In the opposite case, correlations appear between
the pµ bins of the unfolding matrix that will change the statistical error in each bin. Figure 5.35 shows
the pull distributions corresponding to the five momentum bins. One observes that the statistical error
is reduced compared to the estimation in Equation 5.5.10, which indicates the momentum bins are
mainly anti-correlated. Figure 5.36 shows the corresponding correlation matrix which confirms this
result. The unfolding method therefore introduces correlated statistical errors between
the unfolded bins.
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Figure 5.35: The pull distributions of the statistical error in each momentum bins assuming an error σi as
defined in Equation 5.5.10.

For comparison, we will assume in the remaining of this section that the statistical error is given
by Equation 5.5.10. This will allow to compare the variation of the unfolding matrix under statistical
fluctuations through pull distribution. The correct numerical treatment of the statistical error we
introduced will be only used for the genuine study in Section 5.6.
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Figure 5.36: The correlation matrix of the statistical error in pµ bins

Summary of the unfolding procedure

We present the validation and optimisation of our unfolding method in Appendix F. We will just
summarise here the results and present the features of the unfolding method we will ultimately use.
In the case of a two-dimensional unfolding, one has to take care of the higher number of bins which
induces larger fluctuations through higher correlations. In order to control these fluctuations using a
one-dimensional unfolding method, we have developed several one-dimensional unfoldings to mimic a
two-dimensional unfolding. More explicitely, for a given signal distribution in the muon iron depth
distance and angle:

• We select the corresponding binning in the reconstructed variables, namely dk
µ and θRec l

µ . The
binning in the reconstructed variables we used is defined in Section 5.3. The reconstructed
binning does not require a specific tuning, but should only be kept thin enough to avoid to loose
information.

• We select the binning in the true variables, pi
µ and θ

j
µ. This binning requires a specific care.

Appendix F shows that the unfolding rapidly diverges after several iterations, if the true bins
have a very different statistics and high correlations. For this reason, we have optimised the
binning based on:

– the expected number of events in each true bin.

– the detector resolution that introduces correlations between the bins.

Due to the PM limited resolution in the muon momentum (6.5 cm thickness planes in INGRID)
and in the angle (scintillator width), we choose an asymmetric binning in the true variables in
order to minimise the correlations. Table 5.7 summarises this binning in true variables and the
expected statistics in each bins.

• For each reconstructed angle bin, the momentum unfolding is applied. Ten iteration steps are
required before the unfolding stops.

• For each momentum bin, the reconstructed angle bin is deduced from the previous unfoldings.
The reconstructed angle distribution is unfolded for each momentum bin. Only five iteration
steps are required for the unfolding along the angle variable.

192



5.6. SYSTEMATIC AND STATISTICAL ERRORS

• Finally, we chose original priors that are not totally flat. The reason is the high probability of
a large angle or backward going muon (θµ > 60◦) to be reconstructed having with θµ ∈ [0◦, 20◦].
This introduces some long range correlations between the true bins θµ ∈ [0◦, 20◦] and θµ > 90◦

that prevents the convergence of the unfolding. Figure 5.37 shows the number of interacting true
CC0π events with muon angle and momentum. It shows that only the low momentum region
pµ < 0.5 GeV has a significant amount of large angle muons. Therefore, we impose a flat angular
prior for the pµ < 0.5 GeV bin, while we assume the bin θµ > 60◦ to have one tenth of the other
bin content. The prior is assumed flat for the other angular bins. As for the momentum bins,
we assume that the largest momentum bin pµ > 10.0 GeV is empty in the initial prior, while
the prior is flat for the other bins. Figure 5.38 shows these two initial priors. Considering the
distribution of the number of events shown in Figure 5.37, we assume that the prior we chose
is relatively independent from the cross section model and not fine-tuned on any specific MC
distribution.
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Figure 5.37: Distribution of the CC0π interactions in the PM as a function of the muon momentum and angle.
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Figure 5.38: The different momentum (left) and angular (right) priors used in the final unfolding version. These
distributions are shown without normalisation.

5.6 Systematic and statistical errors

We identify three main sources of systematic errors:
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• The flux systematic errors (Section 5.6.2).

• The cross section model systematic errors (Section 5.6.4).

• The PM and INGRID detectors systematic errors (Section 5.6.3).

We assume that the correlations between the different main detector sources are negligible. The
correlations between several systematic error sources within each main category will be discussed in
each dedicated section.

5.6.1 Statistical error estimation

We have seen that the detector acceptance limits the double differential cross section statistics, since
the stopping muon subsample has a very small statistics (Table 5.4). To evaluate the statistical error,
we generated 5,000 toy experiments. Each of these toy experiments corresponds to a different collection
of fake data set of selected CC0π-like in each (dRec

µ , θRec
µ ). Each toy experiment set is obtained by

simultaneously generating random numbers in each (dRec
µ , θRec

µ ) bin. We assume the number of fake
data events follow the Poisson distributions, and the chosen mean in each bin is shown in Table 5.4.
Figure 5.39 shows the variations of the unfolded cross section errors for each (pTrue

µ , θTrue
µ ) bin. It

is important to recall that this statistical error is originally only driven by the number of events
in each (dRec

µ , θRec
µ ), but that these data distributions will also affect the unfolding matrix. As we

explained, the statistical error is not only given by unfolding the fluctuations with the unfluctuated
matrix, but cumulates both the effects of fluctuated unfolding matrix and fluctuations in data. This
is clearly shown in the case of the bin (pTrue

µ , θTrue
µ ) = (1, 2) ∈ ([0, 500 GeV], [20◦, 30◦]) for example,

where the statistics is not small but which is highly correlated to their neighbour high statistics
([0, 500 GeV], [30◦, 60◦]) bin. It shows that the current unfolding method gives limited predictions for
the bins which have both a small statistics and high correlation to neighbouring bins having a high
statistics. For this reason, the statistical error may be reduced by the improvement of the selection,
binning choice and unfolding, and not only by data taking. We will discuss the possible improvements
in the conclusion of this chapter. The error in each bin with significant data is between 10% and 35%
and are assumed to be uncorrelated within each (pTrue

µ , θTrue
µ ) bin in this thesis. Since we explained

most of the bins are anti-correlated to their neighbour bins (see Section 5.5.2), it is conservative.

5.6.2 Flux related systematics

The uncertainties in the neutrino beam production are dominated by the uncertainty on the hadron
interaction models. This includes the proton-Carbon (target) cross section, the pion multiplicities
and the secondary nucleon production. The uncertainties come from the NA61/SHINE measurements
of pion and kaon production (see Chapter 2), that are adapted to T2K using the FLUKA2008 MC.
The total proton-nucleus interaction uncertainties are also set to contain the discrepancy between the
NA61/SHINE data and the other external data sets that we use in the NA61 uncovered space phase
regions. As for uncertainties on the secondary nucleon production, they are set by comparing the
FLUKA2008 predictions with other external data sets [83], [84]. Finally, uncertainties on the T2K
beamline are also taken into account. These uncertainties include the proton beam incident position,
profile and intensity on the target (measured by the devices presented in Chapter 2), the neutrino
off-axis angle measured by INGRID and the horn magnetic field intensity and shape. Figure 5.40
summarises the contributions of each systematic error to the neutrino flux predictions at the PM and
INGRID (using FLUKA2008). The result is shown using 43 neutrino energy bins that are defined as:

• one bin Eν ∈ [0 MeV, 500 MeV]

• 35 bins of 100 MeV width from Eν = 500 MeV to 4.0 GeV

• 6 bins of 1 GeV width from Eν = 4.0 GeV to 10.0 GeV

• A final bin covering Eν ∈ [10.0 GeV, 30.0 GeV]
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µ , θTrue

µ ) bin using 5,000 generated toy fluctuated experiments.
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One observes that the secondary nucleon, proton-nucleus and pion productions dominate for neutrino
low energy Eν < 5 GeV. As we explained in Chapter 2, the neutrino flux in this region has mostly pion
parents. In the neutrino high energy region, the systematic error is instead driven by the uncertainty
on kaon production as expected. Figure 5.41 shows the flux predictions in each bin combined using
the FLUKA generated correlation matrix. The correlations in the neutrino energy region of interest
for our measurement (0−5 GeV) are high and positive (> 0.6) for most of the energy bins. This comes
from the cross section uncertainties on proton-nucleus and secondary nucleon production which are
the dominant error sources at neutrino energy Eν < 5 GeV and suffers from a global measurement
uncertainty (normalisation factor of the whole spectra). In average, one observes an expected 10% −
20% (almost normalisation effect only) systematic error coming from the neutrino flux on any absolute
measurement. As we have explained, this is highly reduced in the case of neutrino oscillation due to
relative measurements. As for the cross section study, we are unfortunately driven by this error,
though it could be removed in the case of relative measurements on two materials intercepting the
same flux (e.g PM carbon and INGRID module 3 iron).
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Figure 5.40: Relative error on the neutrino flux prediction for each energy bin at PM and INGRID coming from
the T2K beam prediction MC.

We assume that the central horizontal INGRID module (module number 3) and PM intercept the
same neutrino flux. The contribution of the flux systematic errors on the cross section study will
mainly impact the neutrino flux absolute rate φ at first order, and background prediction at second
order. The selection efficiency should remain almost stable under flux uncertainties. To estimate the
systematic error on the cross section measurement, we generate 2,000 toy experiments with different
flux predictions. Each toy experiment is constructed as follow:

• A set of 43 correlated random numbers (one for each bin in neutrino energy) is generated using
the correlation matrix. To do so, we generate 43 gaussian random numbers and apply the
correlations using a Cholesky procedure. It provides a relative variation in each energy bin, “a
reweighting factor” compared to the original flux prediction.

• The background, efficiency, and flux predictions are estimated applying the reweighting factor
for each neutrino event considering its energy.

• The unfolding method is applied to recover the cross section value of the toy experiment.

Figure 5.42 shows the relative variations of the toy experiment cross section compared to the default
one for each (pTrue

µ , θTrue
µ ) bin. As expected, we observe a ∼ 20% effect in most of the bins, which

mainly comes from the neutrino flux variations. Unlike the statistical error, the unfolding matrix will
be only negligibly changed in the case of neutrino flux systematic error. The first reason is that this
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Figure 5.41: Correlation matrix of the flux uncertainties at the PM and INGRID, for the different neutrino
energy bins.

error affects neither the detector resolution in momentum and angle, and therefore, nor the likelihood
prediction. As for the prior, since the flux systematics are highly correlated between the reconstructed
(dRec
µ , θRec

µ ) bin, the background should almost vary by the same normalisation factor in all bins, which

lead Data Selectedi, j−MC Bkg Selectedi, j to change. But in the case the background is relatively small,
it follows that the constraints on the iterative procedure from Data Selectedi, j −MC Bkg Selectedi, j

are not changed. For this reason, the unfolding matrix is expected to be almost stable in the different
toy experiments, and this is the reason why the original 10−20% flux error is reproduced in the CC0π
cross section measurements in each bin. The latter errors are slightly higher due to the variation of
the shape of neutrino spectra that affect the background predictions. The correlations between the
(pTrue

µ , θTrue
µ ) is evaluated, and Figure 5.43 summarises this through the “root mean square matrix”

in order to show both the exact errors and their correlations. We define the root mean square matrix
as the square root of the covariance matrix for positive coefficients and minus the square root of the
module of the coefficient for negative correlations. One observes the high correlations between the
cross section bins due to the flux original correlations between the neutrino energy bins.

5.6.3 Detector systematics

The PM and INGRID detector systematics affect the cross section result mainly through the selection
(see Section 5.3.2). The detector uncertainties we study and take into account are:

• the charge deposition of INGRID and PM hits.

• the scintillator inefficiency due to the imperfect simulation of the dead areas.

• the electronic noise that can affect the number of hits (dark noise).

Since this selection is based on the particle charge deposition that allows PID, we expect the charge
deposition uncertainty to have the highest impact on the cross section results. In this study, we
assumed that each detector systematic errorr are uncorrelated to each others. It seems a reasonable
assumption in this case given the sources of these systematics.
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Figure 5.42: Relative systematic errors coming from the neutrino flux predictions in each (pTrue
µ , θTrue

µ ) bin
using 2,000 generated toy fluctuated experiments.
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Figure 5.43: Root mean square matrix between (pTrue
µ , θTrue

µ ) bins of the relative systematic errors coming from
the neutrino flux predictions. These errors are given in percent for clarity.

Charge deposition

We identify three origins of difference between the data sample and the MC production:

• The charge deposition due to the unperfect tuning of the scintillator shape in the MC.

• The remaining charge deposition discrepancy between MC and data for particles (identified as
hadrons) of very low charge deposition in INGRID scintillators that we observed in Chapter 4.

• The variation in the averaged number of photo-electrons measured with time. Though the
corrections shown in Chapter 4, we observed an average charge deposition variation with the
period of the data taking.

Scintillator shape In order to estimate the MC and data charge deposition discrepancies with the
track angle, we have used the independent sand muon sample we presented in Chapter 4. We will refer
to the “mean charge deposition” as the center of the gaussian we used to fit the minimum ionisation
peak value (MIP). Note this is not the arithmetic mean of the hit charge distribution, in order to remove
possible effects from very high energy hits. This mean charge deposition is evaluated separately for each
angle. Figure 5.44 shows the distributions for the PM INGRID and SciBar scintillators. One observes
the lack of MC sample at very large angles (θµ > 40), preventing from any reasonable assumption.
We assumed that the difference between data and MC in this high angle region is the same that for
θµ ∈ [36◦, 39◦].

The relative MIP positions (MIPData−MIPMC
MIPMC

)θ provide the differences of the charge deposition between
MC and data for a given track angle. The impact of this systematic error on the cross section
results is evaluated by reprocessing the MC sample, and applying to each hit the charge correction
(MIPData−MIPMC

MIPMC
)θ depending on the track angle θ the hit belongs to:

Hit chargeS yst = Hit charge × (
MIPData −MIPMC

MIPMC
)θ. (5.6.1)

We expect such a variation to mainly impact the PID and therefore, the estimation of background
and efficiency. Figure 5.45 summarises the error in each cross section bin and their correlations. One
observes that the systematic error in most of the bins varies within ∼ 1 − 10%, with a higher impact
on the region of low muon momentum, as it was expected.
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Figure 5.44: Sand muon average MIP charge (corrected by fiber attenuation and track angle) as a function of
the track angle. A 3◦ binning resolution was chosen to adapt to detector resolution. One observes the relatively
constant distribution due to the angle correction (path length in a scintillator). The INGRID and SciBar type
scintillators are separated considering their different shape and so, inefficiency region.
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Figure 5.45: Root mean square matrix of the relative systematic error coming from charge deposition variations
with angle on each (pTrue

µ , θTrue
µ ) bin. These errors are given in percent for clarity.

200



5.6. SYSTEMATIC AND STATISTICAL ERRORS

Low energy hadron effect This effect is only observed in INGRID (see Chapter 4). To estimate it, we
release the imposed condition that a INGRID hit should have a higher charge than 8 p.e to be used
in the PID (see Section 5.3.2). Figure 5.46 summarises the impact on the cross section measurement
in each bins. This impact is lower than 5% in most of the bins, except for low statistics bins where
the impact is enhanced by the unfolding matrix uncertainty to ∼ 10%.
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Figure 5.46: Root mean square matrix of the relative systematic error coming from low charge deposition in
INGRID on each (pTrue

µ , θTrue
µ ) bin. These errors are given in percent for clarity.

Charge deposition stability with time We have observed in Chapter 4 that the MIP mean charge varies
with the data taking period. This effect should impact the PID since we assumed a constant charge
deposition in the MC to tune the muon confidence level. In order to evaluate the systematic error
associated to this effect, we have separated the data taking time in 200 constant time intervals, and
have estimated the MIP average value by fitting the sand muon charge distribution with a gaussian
(see Chapter 4). Figure 5.47 shows the results for the INGRID type scintillators in PM, where a
7.3% relative error is observed. We assume that these time variations are distributed in a gaussian
distribution. Based on Chapter 4, we assume that the MIP variations come from a remaining time
dependency of the game. Therefore, we assume a 100% correlation between INGRID and SciBar type
scintillators.

The impact of this MIP change on our cross section result has been estimated by generating 2 toy
experiments changing the mean MIP value by −10% and −5% and reproducing the whole cross section
analysis study. We proceed similarly to the estimation of the error coming from charge deposition
variations with track angle. We scale the charge deposit in each hit by a different factor depending
on the toy experiment. The only difference is that we re-applied the whole track reconstruction,
considering that a lower or higher mean MIP can importantly affect the number of hits crossing
the 2.5 p.e threshold, and thus, the track reconstruction. The relative variation in the example of
(pTrue

µ , θTrue
µ ) = ([0.7 GeV, 1.0 GeV], [0◦, 20◦]) is displayed in Figure 5.48. The variation in each

(pTrue
µ , θTrue

µ ) is fitted by a degree-one polynomial.

Finally, we use the polynomial fit of each bin to estimate the systematic error. The relative
variation of the cross section corresponding to a ±7.3% change in MIP mean value is calculated
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whole data taking period. Each entry for a given time interval has been weighted by the number of events to
take into account the non-uniform intensity during the T2K data taking.
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as Error = apµ,θµ · 0.073 + bpµ, θµ. Figure 5.49 summarises the systematic error in all the bins and
their correlations. One observes that the systematic errors due to the MIP variations are relatively
important (∼ 5 − 18%) and correlated.
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Figure 5.49: Root mean square matrix of the relative systematic error coming from the variation of charge
average deposit on each (pTrue

µ , θTrue
µ ) bin. These errors are given in percent for clarity.

Hit inefficiency

The extruded scintillators active material is an error source in the measurement. The TiO2 coating
introduces a dead zone (non-interactive) between the scintillators. However, the variation of this
coating with the different scintillator is not reproduced in the simulation. We use instead the same
values for the TiO2 and active regions for all INGRID and SciBar type scintillators in the MC. The
effect of the active material variations on charge collection has already been estimated in Section 5.6.3.
This section is dedicated to evaluate the impact on the inefficiency of a potential hit. This can lead
to a mis-reconstructed or non-reconstructed track. The effect is expected to vary with angle: a high
angle track should nearly always hit an active region in a scintillator layer and therefore, have a low hit
inefficiency. The inefficiency has been estimated using the sand muon sample according to the method
developed in [48]. For each sand muon track, the hit inefficiency is estimated using the following
method shown in Figure 5.50:

1. The starting and ending planes of the tracks are estimated as the most upstream and downstream
scintillators hit in the reconstructed track (separately for XZ and YZ views).

2. For each 2D view, we turn off the first tracking plane and fit the remaining hits by an order
one polynomial. The intersection of this polynomial with the turned-off tracking plane is then
estimated. The scintillator located at this intersection is expected to be hit in reality. Therefore,
we return to the tracking plane and check if this scintillator or one of its two closest neighbour
is actually turned on.

3. We pursue the same analysis until the ending plane is reached.
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Figure 5.50: Scheme of the hit inefficiency determination. Extracted from [48].

Figure 5.51 shows the result of the hit efficiency comparison between the MC and data. As
expected, the hit inefficiency decreases with the track angle. We estimated the inefficiency distribution
without separating the SciBar and INGRID-type scintillators. In principle, this approximation should
highly impact if the relative proportion of SciBar and INGRID scintillator types crossed is significantly
different between the CC0π and sand µ tracks, both for INGRID and SciBar type scintillators. This
is expected not to be the case. One observes the lack of statistics in MC sand µ for angles > 40◦.
Therefore, we will assume that the discrepancy between MC and data for angles above 40◦ is the
same than for the angle bin [36◦, 39◦], which seems to overestimate the discrepancy. Fortunately, it
corresponds to a region with a small number of events in our analysis, and so, this assumption will
have a minor impact on the result. One observes the MC and data discrepancy to have a peak for
track angles ∼ 30◦.

The impact of the hit inefficiency on the CC0π cross section is evaluated in a very similar procedure
than for the charge deposition error. The relative data and MC variations shown on Figure 5.51 have
an average 0.3% root mean square, which represents the 1σ inefficiency difference between MC and
data. We simulate 6 different toy experiments, in which the inefficiency is increased compared to the
default MC. The hit inefficiency is increased from 0 (which corresponds to the original MC) to 2.5%
(larger inefficiency toy experiment) with a step of .5% between the different toy experiments. Then,
we mask the hits given the corresponding inefficiency, and apply the reconstruction and selection on
the MC in order to take into account both the original reconstruction and CC0π selection effects.
The background, efficiency and likelihood matrix are re-evaluated for each toy experiment, and the
cross section is deduced. The cross section variation with the toy experiment inefficiency is fitted
with a linear function for each (pTrue

µ , θTrue
µ ) bin independently, since we expect the inefficiency to

differently impact small (high impact) and long tracks (small impact). Figure 5.52 shows the result
for the bin (pTrue

µ , θTrue
µ ) = ([0.7 GeV, 1.0 GeV], [0◦, 20◦]), and one observes that the linear fit is a

reasonable hypothesis to model the cross section increase with hit inefficiency. For each bin, the 1σ
error corresponds to the variation for a hit inefficiency of 0.3%, which represents a ∼ 1% variation of
the cross section (see Figure 5.52). The variation of the cross section and inefficiency is not direct:
the hit larger inefficiency results in a lower background and higher efficiency. Since the data remain
the same, the overall effect is an increase in the predicted cross section.

Figure 5.53 summarises the 1σ error value in the RMS matrix and confirm a 1% average effect.
One observes a 7% effect in the bin ([0.0 GeV, 0.5 GeV], [20◦, 30◦]), due to the unfolding procedure
and the fact that the neighbour have a large statistics ([0.0 GeV, 0.5 GeV], [30◦, 60◦]). Such an effect
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can be decreased with an improvement of the current unfolding algorithm.
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Figure 5.53: Root mean square matrix of the relative systematic error coming from the variation of hit ineffi-
ciency on each (pTrue

µ , θTrue
µ ) bin. These errors are given in percent for clarity.

Electronic dark noise

We observed in Chapter 4 that the dark noise varies within the T2K data taking. The reasons are
multiple, but should probably come from MPPC and electronic gain variations with temperature,
humidity or beam intensity conditions. In the MC, such a variation is not reproduced and we assumed
that the dark noise hit distribution follows a constant Poisson distribution with an average of 5.05
hits per electronic integration cycle (584 ns) per module. The increase in dark noise hit rate generally
results in a possible track mis-reconstruction or no reconstruction, reducing the number of events. To
study the impact of this time variation on the cross section, we first evaluate the dark noise variation
with time for the data set we have used in this analysis. The method is exactly similar to what has
been done for the MIP time variation previously: we divided the T2K data taking in the same constant
time intervals. For each time interval, we measured the number of hits in off-time cycles for each cycle
and separately for the PM and INGRID modules. Each of these distributions is fitted by a Poisson law,
and the Poisson mean is taken as the average dark noise hit number during this time interval for the
corresponding module. Figure 5.54 shows the time variation of the Poisson mean. Figure 5.55 shows
the distribution of the dark noise in the INGRID horizontal module for the different time intervals.
We assume a gaussian model to fit the time variation of the dark noise. Such a shape is not expected
since data are not taken continuously during the year, which implies variable conditions between the
different T2K runs and discontinuous dark noise average values. Nevertheless, we use the gaussian
±1σ variation as an estimator of the 68% confidence interval for dark noise value. Though the dark
noise mean distribution seems broader than a gaussian, the very thin peak around 5.5 hits observed
in Figure 5.55 should partly counter-balance this effect. Therefore, the gaussian approximation seems
reasonable. We observe that the 1σ variation corresponds to a change of 1.1 hit in the average dark
noise hit per cycle per module. Note that this value is different for the PM and INGRID due to
the higher number of channels in the former. We assume that the correlations between the PM and
INGRID dark noise values are 100% correlated in time, since the modules are located so close that
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Figure 5.54: Time variation of the mean dark noise rate per cycle and per module during T2K running. The
mean is obtained by fitting the dark noise (using off-time integration cycles) rate by a Poisson law. The INGRID
horizontal central module is shown in blue, and the PM in red. One observes that the PM was not installed
during the first time period (Run 1).

they should be subject to the very same external conditions. The variations of the PM dark noise rate
will be therefore deduced from the INGRID module variations, scaling the number of dark noise hits
by the nominal ratio of PM and INGRID dark noise hits RDN = 12.46

5.05 .

In order to evaluate the impact on the cross section, four toy experiments have been constructed
by changing the dark noise average number of dark noise hits (i.e the Poisson mean) in the MC, from
the nominal 5.05 to 2, 4, 6 and 8 hits per cycle per module in INGRID modules (scaled by RDN for
the PM). The reconstruction, selection and unfolding procedures are applied, and the impact over the
CC0π cross section is evaluated.

Figure 5.56 shows the relative variation of the CC0π cross section with the toy experiments, for
the example of (pTrue

µ , θTrue
µ ) = ([0.7 GeV, 1.0 GeV], [0◦, 20◦]). For each bin, we fit the variations with

a different degree-one polynomial. The relative 1σ error is finally estimated using the 1σ variation
of the dark noise, i.e the fit values for a dark noise rate of 5.0 ± 1.1. Figure 5.57 summarises the 1σ
errors for each bin and their correlations.

5.6.4 Cross section model systematics

In Section 5.1, we introduced how to modify the neutrino interaction with a single quark to an
interaction with a nucleus. To do so, we emphasized that a nuclear model (a generator) should be
used. In this thesis, we use the T2K neutrino event generator, NEUTv5.1.4.2. This event generator
is based on 25 parameters, whose central values are shown in Table 5.8. In particular, the CCQE
interactions are based on the Smith-Moniz [70] relativistic Fermi gas repartition of the nucleon with
a Fermi momentum set at pF = 250 MeV and a binding energy at EB = 25 MeV. The interaction
with a single nucleon is based on the Llewellyn-Smith [85] formalism for which the axial mass has
been set to MQE

A = 1.21 GeV. This relatively high value compared to bubble chamber experiment

constraints (MQE
A ∈ [1.0, 1.05] GeV) is set to take into account the MiniBooNE constraints with no

MEC. In the nominal NEUT parametrisation, no meson exchange current is simulated. The use of a
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Figure 5.57: Root mean square matrix of the relative systematic error coming from the variation of dark noise
rate on each (pTrue

µ , θTrue
µ ) bin. These errors are given in percent for clarity.

higher MA value implies a larger cross section since it varies with the axial mass as GA(Q2) =
gA

(1+
Q2

M2
A

)2

(see Section 5.1), with a higher increase for large Eν since it implies larger W boson momentum Q2 in
average. The pion production is based on the Rein and Seghal model [86], for which the axial mass is
also set to MRES

A = 1.21 GeV in NEUT. The impact of this parameter on the axial coupling is similar
to the CCQE case.
In order to illustrate what has been shown in Section 5.1, we vary the axial masses within the 1σ errors
defined in Table 5.8. Figure 5.58 shows the CC0π cross sections for these two different parameters.
The increasing impact of MA with Eν (in fact with the exchanged boson momentum Q2) is illustrated,
along with the contribution of MRES

A for high energy CC0π. We have already presented the effect of
the spectral function model in Figure 5.9 and final state interactions as π absorption in Figure 5.11.
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Figure 5.58: Comparison of the νµ CC0π cross section as a function of the neutrino energy, for different axial
QE and resonant masses (left and right respectively).
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The 25 parameters (Table 5.8) of the cross section model are varied. In this study, the 1π Eν shape,
the neutrino binding energy errors are neglected for now, due to incompatibility with the current MC
version. The uncertainty of the models is expected to mainly contaminate the background prediction,
and through it, the unfolding matrix. The efficiency is expected to be affected in small proportions
since it mainly depends on the detector simulation. The likelihood matrix is also almost only detector-
dependent, and we do not expect any important variation of it from cross section model uncertainties.
We assumed that the 23 parameters we used are uncorrelated to each other. Figure 5.59 shows the
root mean squared matrix combining the effect of the 23 systematic errors as a sum of the square.
One observes that the cross section model uncertainty is ∼ 10%− 20% in most of the bins, apart from
the bin corresponding to pµ ∈ [1.0, 5.0] GeV. In fact, it appears that the cross section model highly
impacts the unfolding of the angle and generates a large systematic error in this bin. An improvement
of the unfolding method, alternating the momentum and angular unfolding one after another for each
iteration step should therefore solve this issue in the future. As for the other bins, the residual cross
section model dependency comes from the remaining important background (∼ 35%). The decrease of
this systematic error will require to improve the particle identification algorithm to enhance the CC0π
purity.

5.6.5 Summary

Figure 5.60 combines the statistical and systematic errors. One observes that the flux correlations are
removed, mostly due to the statistical error small and negative correlations. Figure 5.61 shows the
correlation matrix.

Cross section model parameter Nominal Uncertainty
MQE

A 1.21 GeV 16.5%
MRES

A 1.21 GeV 16.5%
π less resonant ∆ decay 1 16.5%

Spectral function 0 100%
Fermi momentum 250 MeV/c 12%

Binding energy 25 MeV/c 27.3%
CCQE normalisation low energy (Eν < 1.5 GeV) 1 11%

CCQE normalisation medium energy (1.5 < Eν < 3.5 GeV) 1 30%
CCQE normalisation high energy (Eν > 3.5 GeV) 1 30%
CC1π normalisation low energy (Eν < 2.5 GeV) 1 21%
CCπ normalisation high energy (Eν > 2.5 GeV) 1 21%

CC coherent π normalisation 1 100%
CC other shape 0 40%

NCπ0 normalisation 1 31%
NC coherent π normalisation 1 30%

NCπ± normalisation 1 30%
NC other shape 1 30%

W shape 87.7 MeV 52%
1π Eν shape 0 50%

Pion absorption 1 50%
Pion charge exchange (low energy) 1 50%
Pion charge exchange (high energy) 1 30%

Pion QE scattering (low energy) 1 50%
Pion QE scattering (high energy) 1 30%

Pion inelastic scattering 1 50%

Table 5.8: Nominal NEUT generator values for the 25 cross section model parameters and the associated 1σ
errors.
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Figure 5.59: Root mean square matrix of the total cross section model systematic error on each (pTrue
µ , θTrue

µ )
bin. These errors are given in percent for clarity.
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Figure 5.60: Root mean square matrix of the total error on each (pTrue
µ , θTrue

µ ) bin. These errors are given in
percent for clarity.
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Figure 5.61: Correlation matrix of the systematic and statistical error added quadratically, for each (pTrue
µ , θTrue

µ )
bin. One observes that the original high correlations from neutrino flux are washed out for low statistics bins
(small pµ) where the statistical error dominates.
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5.7 Cross section measurement results

5.7.1 The double differential cross section result

Figure 5.62 shows the final result of the CC0π double differential cross section. One observes that
the cross section increases with the muon momentum, with a peak around 1 GeV, as was shown in
Figure 5.1 (as a function of Eν). In Figure 5.3, one observes that the neutrino CCQE cross section is
nearly constant for Eν > 1 GeV, which implies that the cross section per neutrino energy decreases
after Eν ∼ 1 GeV. Since we observe a similar effect in Figure 5.62 and 5.3 (considering pµ ∼ Eν), it
also confirms that the final state interaction CC0π is mostly composed of CCQE vertex interaction.
The content of each pµ, θµ bin is shown in Table 5.9.

We have shown the dσ
dpµdθµ

double differential cross section with the statistical and systematic error
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Figure 5.62: The CC0π double differential cross section on PM hydrocarbon with muon momentum and angle.

pµ θµ Data MC Stat. Syst Flux XSec. Det.

[0.0, 0.5] GeV
[0.0◦, 20.0◦] 1.77 0.88 0.71 0.55 0.42 0.27 0.23

[20.0◦, 30.0◦] 3.38 3.35 1.35 1.39 1.07 0.73 0.49
[30.0◦, 60.0◦] 5.49 6.85 1.67 1.85 1.41 1.03 0.62

[0.5, 0.7] GeV
[0.0◦, 20.0◦] 3.52 3.56 0.72 1.05 0.83 0.45 0.47

[20.0◦, 30.0◦] 17.17 12.19 3.42 5.12 3.19 1.61 3.67
[30.0◦, 60.0◦] 24.91 22.16 4.42 6.63 4.33 4.98 0.69

[0.7, 1.0] GeV
[0.0◦, 20.0◦] 9.11 7.62 1.03 2.92 1.72 2.25 0.73

[20.0◦, 30.0◦] 26.84 22.70 3.12 8.60 4.29 7.40 0.85
[30.0◦, 60.0◦] 27.10 22.40 2.71 12.81 4.74 11.80 1.55

[1.0, 5.0] GeV
[0.0◦, 20.0◦] 6.19 6.90 0.51 13.48 0.97 13.41 1.03

[20.0◦, 30.0◦] 6.46 8.09 1.26 6.43 1.09 6.22 1.21
[30.0◦, 60.0◦] 1.60 1.64 0.21 1.10 0.27 1.06 0.18

Table 5.9: CC0π cross section in each (pTrue
µ , θTrue

µ ) bin. The data are shown in the third column, the true MC in
the fourth. The statistical and systematic errors are respectively shown in the fifth and sixth columns. the flux,
cross section model and detector contributions in the systematic error are respectively shown in the seventh,
eighth and ninth columns.
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in Figure 5.63 and 5.64 which represent respectively the double differential cross section distribution
with momentum in each angle bin and the same distribution with muon angle in each momentum
bin. One observes in Figure 5.63 that the momentum bin corresponding to pµ > 1 GeV is heavily
affected by statistical and cross section model uncertainties (red) as we observed in the error Table 5.9.
This important effect comes from the original statistic and cross section model uncertainties, and this
effect is largely enhanced through the unfolding procedure. The reason is that our unfolding algo-
rithm primarily operates a momentum unfolding for each bin angle, and then, an angular unfolding
for each momentum bin. Since all the events in the bin pµ > 1 GeV are almost contained in the sole
reconstructed angular bin θµ ∈ [0◦, 20◦] (see Table 5.4 for large dµ ∼ large pµ), the unfolding in the
last momentum bin is submitted to large fluctuations. As we explained, a reconstructed bin with a
very large statistics compared to the bins it is correlated to (through the likelihood matrix) implies
a divergence since a statistical variation in the high statistic bin leads to a very high change in small
statistics bins to compensate the effect. A similar enhancement by the unfolding is also observed
in Figure 5.64 for the same sample of high momentum outgoing muons pµ > 1 GeV. This unfolding
enhancement can be solved in the future, by unfolding alternatively in momentum and angle bins for
each iteration step, or developing a full 2D unfolding.

Figures 5.63 and 5.64 show the MC prediction assuming the cross section model parameters defined
in Table 5.8, i.e a RFG with a large axial mass MQE

A = 1.21 GeV compared to the bubble chamber best
fit (Figure 5.6). One observes no significant discrepancy of the model as compared to our measurement,
except from a general larger cross section in the data set than in the simulation. In order to improve
clarity, we have shown the simple differential cross sections dσ

dpµ
and dσ

dθµ
in Figure 5.65 and 5.66

respectively. The systematic errors and their correlations are deduced from the errors shown in
Table 5.9 and the correlation matrix shown in Figure 5.61. This result shown in Figure 5.65 and
5.66 confirms that the cross section predicted by the MC is lower than the measured one in the
pµ ∈ [500 MeV,1 GeV] region. The high correlations between the flux uncertainties do not totally
explain this discrepancy, since the low and high momenta data bins are in relatively good agreement
with the model. As the CC0π measurement presented here is aimed to be model-independent to
provide direct input to test various models, we will dedicate the remaining part of this chapter to
investigate the impact of the model on the agreement between the data and MC cross sections. In
this analysis, the statistical error is dominant (Table 5.42) and is only slightly correlated between
the bins. Therefore, we will assume here a simple model where there are no correlations between the
bins. It leads to slightly over-estimate our sensitivity in the present case (considering the remaining
correlations are mainly positive due to flux normalisation effect). In order to compare the different
models, we adopt the following strategy:

• the cross section model uncertainties are removed, so that the comparison does not depend on
external data set (which were used to tune these systematics).

• the model is fixed in the data (constant background) and only the simulation is varied according
to the cross section model. The data are taken as pivot. We therefore neglect the impact of
model variation on data.

5.7.2 The spectral function model

We introduced the spectral function (SF) in Section 5.1, and have shown that its effect corresponds to
an equivalent binding energy that reduces the cross section at low energy. Figure 5.67 and 5.68 show
the comparison between the RFG and SF models and the data as a function of the muon momentum
and angle. Both figures show no improvement of the agreement between the MC and the data when
changing the RFG into SF. This is understood since most of the spectral function effects occur in the
low energy region, where our detector is less sensitive because of the requirement for tracks to cross
three INGRID tracking planes. Since no preference is shown for the SF model, we will use the RFG
one in the remaining part of this chapter. Note that Figures 5.67 and 5.68 also show the enhancement
of the cross section for a larger axial mass MQE

A = 1.41 GeV.
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Figure 5.63: CC0π dσ
dpµdθµ

double differential cross section as a function of the muon momentum, in the low
(top), medium (center) and high (bottom) angle muon regions. The total error is shown in red, and the flux
errors (highly positively correlated) in light blue.
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Figure 5.64: CC0π dσ
dpµdθµ

double differential cross section as a function of the muon angle, in the four momen-
tum bins. The total error is shown in red, and the flux errors (highly positively correlated) in light blue.
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Figure 5.65: CC0π dσ
dpµ

differential cross section as a function of the muon momentum. The total error is shown
in red, and the flux errors (highly positively correlated) in light blue. The model used for the comparison is a
relativistic Fermi gas (RFG) with MQE

A = 1.21 GeV.
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Figure 5.66: CC0π dσ
dθµ

differential cross section as a function of the muon angle. The total error is shown in
red, and the flux errors (highly positively correlated) in light blue. The model used for the comparison is a
relativistic Fermi gas (RFG) with MQE

A = 1.21 GeV.
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Figure 5.67: Comparison of different models with the data CC0π dσ
dpµ

differential cross section as a function of
the muon momentum. The total error is shown in red, and the flux errors (highly positively correlated) in light
blue.
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Figure 5.68: Comparison of different models with the data CC0π dσ
dθµ

differential cross section as a function of
the muon momentum. The total error is shown in red, and the flux errors (highly positively correlated) in light
blue.
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5.7.3 The axial mass fit

Since the RFG model is not excluded by the PM CC0π data, we performed a fit of the axial mass,
considering no uncertainty on the neutrino model apart from the axial mass. It assumes that the entire
difference between data and MC is due to an MQE

A effect. We have generated 1,000,000 toy experiments,

in which we varied the MQE
A parameter uniformly in MQE

A ∈ [0.0 GeV, 3 GeV] and estimated the MC
cross section. We built the negative log-likelihood quantity to estimate the agreement between the
model and data, under a bin uncorrelated hypothesis:

ln L = −[
Nbinspµ∑

i=1

Di −MCi

2σ2
i pµ

+

Nbins θµ∑
j=1

D j −MC j

2σ2
j θµ

] (5.7.1)

where Di and MCi (D j and MC j) are the content of data and MC i-th momentum bin (respectively
j-th angle bin). MCi is the quantity that varies among the toy experiments. The values σ2

i pµ
and σ j θµ

are respectively the 1σ errors in the i-th momentum bin and j-th angle bin. They are extracted from
Table 5.9 and from the correlation matrix (Figure 5.61) by summing the different angle contributions
in each momentum bin (respectively the momentum contributions in each angular bin). Here, we use
the information on both muon angle and momentum, and assumed they are independent. In fact,
under the uncorrelated bin hypothesis we used from the beginning, the projections along the muon
momentum and angle are independent. Figure 5.69 shows the result of the 1,000,000 toy experiments.
The best fit value corresponds to the negative log-likelihood minimum and the 1σ errors are defined
for − ln(L) = (− ln(L))min + 1

2 . The corresponding MQE
A value is:

MQE
A = 1.33 ± 0.17 GeV (5.7.2)

One first observes that we obtain a larger MQE
A value as compared to the “bubble chamber experi-

ments best fit” 1.026 ± 0.021 GeV. There is a disagreement of nearly 2σ. Our CC0π measurement
favours a higher MQE

A value in agreement with the MiniBooNE [67], MINOS [72] and K2K [71] results

summarised in Equations 5.1.23 and 5.1.27. The small uncertainty on the PM MQE
A best fit value

(comparable to MiniBooNE result) is partly due to the fact we neglected bin correlations. In case of
positive correlations, a higher MQE

A value can be induced with a lower sensitivity, since the effect of

MQE
A is similar to a flux normalisation effect, with small differences on the pµ shape. Nevertheless, in

this uncorrelated approximation, we confirm the discrepancy of the current measurements with the
former bubble chamber constraints. In Section 5.1, we introduced the nuclear effects as a possible
explanation of this discrepancy. Indeed, these effects are expected to be negligible in the case of
deuterium or protons that constitutes most of the targets that contribute to the “bubble chamber
experiments best fit”. On the opposite, these nuclear effects should be taken into account in more
complex nuclei as 12C which constitute most of the PM target (90.96%).

5.7.4 Effect of meson exchange currents

We have therefore replaced the RFG model by including the meson exchange current (MEC) in the
NEUT neutrino generator. The particular MEC model used in this study is the model from Bodek et
al. [87]. As before, only the MC is varied. Figure 5.70 and Figure 5.71 show the comparison between
data and MC CC0π cross sections as a function of muon momentum and angle respectively. One
observes that the MEC effects are similar to an increase of the axial mass, and enhance the neutrino
cross section. As we explained in Section 5.1, this enhancement is mainly due to np-nh effects. One
observes in this case a better agreement between PM data and the simulation taking into account
these nuclear effects.

We finally fit the axial mass value in the case of MEC. We used the same procedure as defined in
the previous section, and generated 1,000,000 toys to construct a negative log-likelihood distribution.
As before, we consider that bins are uncorrelated. Figure 5.72 shows the MQE

A fit and indicates an
axial mass:

MQE
A = 1.11+0.18

−0.17 GeV (5.7.3)
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Figure 5.69: Negative log-likelihood distribution for 106 toy experiments varying uniformly MQE
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Figure 5.70: Impact of the meson exchange currents on the MC agreement with the CC0π dσ
dpµ

differential cross
section data with the muon momentum. The total error is shown in red, and the flux errors (highly positively
correlated) in light blue.
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Figure 5.71: Impact of the meson exchange currents on the MC agreement with the CC0π dσ
dθµ

differential
cross section data with the muon angle. The total error is shown in red, and the flux errors (highly positively
correlated) in light blue.

This final result confirms that the RFG model fails to describe the neutrino interaction in the case
of complex nuclei. One observes that we retrieve a relatively low MQE

A value in agreement with the
MA fit shown in Figure 5.6 when one takes into account the nuclear effects. In this scenario, the
enhancement is therefore interpreted as a n-particle-n-holes effect, and not due to a large MQE

A . It
confirms the behaviour observed in [67] and interpreted in [74]. As we explained, this constraint is
limited, since we assumed uncorrelated bins and negligible background variations in the selected events
compared to pure MC variations.

5.8 Conclusions

In Chapter 2, we have shown that the cross section model systematics are dominant in the T2K
analyses. These analyses encompass precise measurements of the atmospheric parameters and search
of CP violation through the νe appearance channel. We studied the CC0π channel since this is the
dominant interaction channel at T2K neutrino energy. We have developed the first double differential
CC0π analysis in the PM, using the INGRID downstream module to measure the muon momentum.
We also built a PID both to isolate a CC0π enhanced sample and to identify the muon. We have
implemented an iterative Bayesian unfolding method, and have shown the advantages and limitation
of this method and optimised it in the case of the PM. Finally, we provided the CC0π cross section
measurement. We observed it agrees with the NEUT generator we used. The result mainly favours
a large axial mass value, as it has been observed in recent neutrino experiments as MiniBooNE [67],
MINOS [72] or K2K [71]. As for our measurement, we have shown that this large MA value can be also
interpreted as large nuclear effects with an axial mass compatible with the former bubble chamber
measurements.
Though we have seen that the detector is not perfectly adapted to this measurement, this CC0π study
can still be improved. We explained that an improved unfolding, as a full 2D or an alternative unfolding
with the iteration step along muon momentum and angle, will increase the unfolding matrix stability,
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Figure 5.72: Negative log-likelihood distribution for 106 toy experiments varying uniformly MQE
A between

0 and 3 GeV in the case meson exchanged current are added. The bin correlation and cross section model
uncertainties are not considered.

and so should reduce the impact of the errors on the result. In particular, we observed a remaining
important cross section model dependency, though having tried to minimise it. We observed that this
dependency can be decreased either by improving the unfolding method (which is currently applied
sequentially on momentum and angle), or improving the CC0π selection to reduce the background
contamination.
The selection based on the PID and the unfolding method aimed to be as general as possible in order
to be applied to a detector more adapted to cross section measurements. In particular, we plan to use
the same method for the incoming WAGASCI detector that will be installed in the ND280 pit. This
detector will be constituted of water and carbon targets, with 3D-grid scintillators that allow both to
reconstruct large angle tracks and increase the detector granularity. The use of a downstream magnet
and thinner iron planes should considerably increase the momentum measurement capability of this
detector compared to the PM. Moreover, it will be possible to determine the antineutrino cross section
using the charge separation in the downstream magnet. The ultimate goal of this WAGASCI detector
and of this CC0π study is to drastically reduce the cross section uncertainty in the T2K appearance
result, through the measurement of the relative cross section on WAGASCI hydrocarbon and water
targets that should encompass the differences between the ND280 and SK targets.
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Chapter 6

Search for Lorentz invariance violation at the
T2K near detector

There are two possible outcomes : if the result confirms the
hypothesis, then you’ve made a measurement. If the result is

contrary to the hypothesis, then you’ve made a discovery.

Enrico Fermi

I
n the Standard Model, the Lorentz transformation invariance is a fundamental symmetry
that constrains the interactions between particles. It is also a symmetry of the Standard
Model added with massive neutrino, that we introduced in Chapter 1. Nevertheless, the

Lorentz symmetry violation is predicted in most of the theories beyond the Standard Model that
attempt to describe the gravitation and the other interactions within a common framework. This
violation occurs in super string [88], quantum gravity [89] or non commutative geometry [90] theories.
In this chapter, we will first introduce the Lorentz invariance violation (or Lorentz violation) and its
impact on the neutrino sector. Then, we will present the dedicated selection we built in order to
search for a Lorentz violation effect in the INGRID detector. We will then present the fast Fourier
transform and likelihood methods that we used in this search. Finally, we will present the results of
the first search for Lorentz violation effects in T2K.

6.1 Introduction

Since the Lorentz violation effects appear when including the gravitation, one expects that the Lorentz
violation effects becomes significant at the Planck mass scale, i.e at MP ∼ 1019 GeV. These effects are

therefore suppressed by a factor
ET2K
ν

MP
∼ 10−19 at the T2K energy scale. On one hand, a measurement

of an absolute and direct Lorentz violation is therefore practically impossible at the current experi-
ment energy ranges. It is therefore unlikely to observe such a violation in direct neutrino time of flight
measurement for example. For example, considering the T2K 295 km baseline, it takes nearly 1 ms
for a neutrino to fly from J-PARC to Super Kamiokande. One therefore expects the Lorentz violation
effect to generate a possible effect of ∆t ∼ 10−22 s which would require a clock system with a 10−10 ps
accuracy to be observed.
On the other hand, relative measurements are expected to probe the Lorentz violation effect with a
higher sensitivity. By analogy with the measurement of the speed of light in “ether” by Michelson and
Morley, one expects that inteferometry provides a sensitivity that exceeds other methods, and espe-
cially, direct time of flight measurements. Neutrino oscillations occur indeed from an interference of
different neutrino mass states at the detection point. Therefore, the neutrino oscillations are expected
to be one of the most sensitive probes to search for Planck scale effects [91].
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CHAPTER 6. SEARCH FOR LORENTZ INVARIANCE VIOLATION AT THE T2K NEAR DETECTOR

6.1.1 The Standard Model Extension and Lorentz invariance spontaneous symmetry breaking

We will define the low energy region in opposition with the Planck scale, that defines the high en-
ergy region. In the low energy region, it is for now pratically impossible to extract any constraint
directly from unification theories as the super strings or quantum gravitation. Therefore, the Lorentz
violation effects at low energy are encompassed in an effective theory. This theory, called the “Stan-
dard Model Extension” [92] (SME), is based on the Standard Model to which are added arbitrary
Lorentz violation terms that are coordinate independent. For this reason, the SME encompasses all
effects of the Standard Model in the limit of no Lorentz violation. In particular, the causality, coor-
dinate invariance, energy momentum conservation, spin statistics, CPT theorem and gauge structure
SU(3)c×SU(2)L×U(1)Y are retrieved in this limit. As for the Lorentz violating terms, they do not
transform under an active Lorentz transformation since they are fixed in space-time (coordinate inde-
pendent). It implies that physics is modified with active rotational and boost transformations.
In fact, one expects Lorentz violation to break also the fundamental properties of the Universe at
the Planck scale, such as causality, or positivity of free energy states. This problematic situation can
be avoided in the case of spontaneous Lorentz symmetry breaking (SLSB). For this reason, the SME
describes the Lorentz invariance as a fundamental symmetry of the Lagrangian, whose only solutions
break Lorentz transformation invariance. It leads to preserve causality and positive energy states even
at high energy [93], given some special hypothesis.
In this description, the Lorentz symmetry breaking is described in analogy with the electroweak sym-
metry breaking. The Lorentz tensor fields are added to the Lagrangian to preserve covariance. The
vacuum is filled with Lorentz violating tensor and Higgs fields, which have all a null value. When the
Universe cools below the Planck scale, the Lorentz violating fields may acquire a non zero value in
vacuum as shown in Figure 6.1. In this case, the fundamental solution of the Lagrangian (or vacuum
expected “value”: VEV) at high energy is no more null, but becomes a tensor (as in the Higgs case,
it becomes a scalar). The vacuum is now filled with a non zero tensor field, which therefore breaks
the Lorentz invariance. Figure 6.1 shows this symmetry breaking in an example where the tensor is
a vector. When the Universe continues to cool down, its temperature reaches the electroweak scale
Ew at some point. At this energy, the Higgs field also acquires a VEV, which impacts on the vacuum
fundamental state adding a scalar contribution (see Figure 6.1 and Chapter 1).
In conclusion, the Lagrangian preserves the Lorentz invariance, and therefore, physics is independent
from the referential frame in the SLSB by Noether theorem. Note that neither this independence,
nor the causality are preserved at the Planck scale in the case of explicit violation of the Lorentz
symmetry. Since we believe Lorentz invariance and causality are fundamental properties of Nature,
we will therefore use a spontaneous symmetry breaking and use the SME in this thesis.

As we explained, the spontaneous symmetry breaking restores the invariance of physics with the
observer (referential frame). However, we will show that physics does not depend on the
observer, but on the direction observed in space-time. For this purpose, we will define here
what “active” and “passive transformations” mean. Figure 6.2 shows the difference between these
two concepts. The active particle transformation corresponds to apply the transformation directly on
the fields, as shown in Figure 6.2 (left) in the example of an active rotation on the particle field. On
the opposite, the passive transformations correspond to transforming the observer referential frame
instead, as shown on the right of Figure 6.2. The field (particle) is therefore transformed passively.
This distinction is particularly important since these transformations are not equivalent anymore in
the SME. As we have seen, there are some preferential directions since some Lorentz tensor fields
generate the spontaneous symmetry breaking energy and have therefore a fixed and non zero VEV.
One therefore expects these fields to be left invariant when Lorentz transformations are applied on
them (active transformations). On the opposite, the other fields do transform following their spin and
momentum, and therefore, physics is no more equivalent under active transformations as shown in
Figure 6.2 in the case of a rotation. This is not the case for observer coordinate transformations, since
the Lagragian is Lorentz invariant. It explains that the physics is expected not to change with the
referential frame, but to depend on space-time directions that one observes. As we explained, these
effects are expected to be highly suppressed at the GeV scale though.
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6.1. INTRODUCTION

Figure 6.1: The spontaneous symmetry breaking in the case of a O(1) symmetry. Note that in this case, no
Goldstone boson can appear since the solution has no additional degrees of freedom. In the case of electroweak
or Lorentz symmetry spontaneous violation, the higher group dimensions involve the Goldstone bosons. In
the cooling process of the Universe, the spontaneous Lorentz symmetry breaking (shown on the top figure) is
followed by the electroweak symmetry breaking (bottom figure), as MP � EW , EW ∼ 100 GeV the scale of
electroweak symmetry breaking. Adapted from [94].

6.1.2 Lorentz violation in neutrino oscillations

As for the neutrino sector, the addition of the Lorentz violating fields to the Standard Model La-
grangian (Chapter 1) provides the neutrino Lagrangian [95]:

LSME =
1
2

iψ̄AΓ
µ
ABDµψB − ψ̄AMABψB + h.c (6.1.1)

where ψA is the neutrino flavour state νA. Note that here, A ranges over 2N values to describe both
neutrinos and antineutrinos: A ∈ e, µ, τ, ..., eC , µC , τC , ..., and Γ

µ
AB and MAB are defined as:

Γ
µ
AB ≡ γ

µδAB + cµνABγν + dµνABγ5γν + eµAB + i f µABγ5 +
1
2

gαµνAB σαν (6.1.2)

MAB ≡ mAB + im5ABγ5 + aµABγµ + bµAB +
1
2

Hµν
ABσµν (6.1.3)

where σ are the Pauli matrices, a, b, e, f are Lorentz violating vector fields and c, d, g,H the order
two Lorentz violating tensors. These tensor fields should depend on the neutrino flavour in the most
general case (implying the need of A and B flavour indices). This description using eight additional
fields is valid at low energy, and in particular, at the T2K E ∼ 1 GeV scale. At higher energy, since the
background Lorentz fields are an infinite series in energy, additional terms should be added. The fields
cµνAB, d

µν
AB,H

µν
AB are CPT conserving (even) while aµAB, b

µ
AB, e

µ
AB, f µAB, g

µν
AB are CPT violating terms (CPT-

odd). One observes that the coefficients a, b,H have the dimension of a mass, while the others are
dimensionless. The Lagrangian leads to the Dirac equation of the SME for a free neutrino (obtained
if Dµ → ∂µ):

(iΓµAB∂µ − MAB)ψB = 0 (6.1.4)

As we have shown in Chapter 1, the neutrino oscillations occur because of the energy difference between
the eigenvalues of the Hamiltonian. In the case of SME, the Hamiltoninan Hab can be constructed
from Equation 6.1.4 (equivalent to the Schrodinger case shown in Chapter 1) and leads to:

Hab = |~p|δab

(
1 0
0 1

)
+

1
2|~p|

(
(m′2)ab 0

0 (m′2)∗ab

)
+

1
|~p|

(
[(aL)µpµ − (cL)µνpµpν]ab −i

√
2pµ(ε+)ν[(gµνσpσ − Hµν)C]ab

i
√

2pµ(ε+)∗ν[(g
µνσpσ + Hµν)C]∗ab [−(aL)µpµ − (cL)µνpµpν]∗ab

) (6.1.5)
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CHAPTER 6. SEARCH FOR LORENTZ INVARIANCE VIOLATION AT THE T2K NEAR DETECTOR

Figure 6.2: The active particle (left) and passive particle (right) transformations of an original particle mov-
ing along the y axis in a Lorentz violating field along the y axis. Einstein represents the observer, and the
transformation operated here is a 2D rotation. Taken from [94].

where C is the charge conjugation matrix and ε+ a complex vector [95] analogous to the neutrino
helicity basis. Hab is expressed in the neutrino/antineutrino flavour basis, with a representing the
standard flavour basis e, µ, τ, and b the antineutrino flavour states. Therefore, the top left and bottom
right blocks respectively represent the ν→ ν and the ν̄→ ν̄ oscillations. The first term can be removed
through a phase rotation. In the second term, m′2 ≡ mlm

†

l is the neutrino light mass matrix that derives
from the usual seesaw mechanism (see Chapter 1), and which can be written in the flavour basis:

m′ = ML − mDM−1
R mT

D =

mee meµ meτ

mµe mµµ mµτ

mτe mτµ mττ

 (6.1.6)

where the left (ML), right (MR) and Dirac (mD) mass matrices were defined in Chapter 1. Finally, the
third term encompasses the Lorentz violation effects on neutrino oscillations. Following [95], we define
(aL)µab ≡ (a + b)µab and (cL)µab ≡ (c + d)µab which are respectively CPT odd and even by construction. One
observes that the Lorentz fields e, f do not contribute to neutrino oscillations, and should be probed
for example through time of flight experiments. One also observes that:

• in the diagonal terms, the (cL)µab appears in a product with pµ, while the (aL)µ coefficients do not.
This was expected through the dimensional analysis and will imply that the impact of (cL)µab on
neutrino oscillation will increase with the neutrino energy. Note that both the coefficients come
in factor of a general

pµ
|~p| factor. It shows that ν → ν and ν̄ → ν̄ oscillations will depend on the

neutrino direction.

• the Lorentz violation predicts non standard ν → ν̄ oscillation also. The contribution of the g
fields will vary with the neutrino energy, while it will not be the case for the H field

This lead to obtain the neutrino oscillation formula in the case of the SME. Before that, one shows
that the ν→ ν̄ are negligible compared to diagonal terms that modify ν→ ν and ν̄→ ν̄ oscillations [96].
For this reason, we will not take into account the ν→ ν̄ effects here.
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6.1.3 Application to short baseline compared to standard oscillation

As we have shown, the Lorentz violation modifies the neutrino oscillation by adding effects that
both depend on neutrino direction and energy. These effects should therefore be seen at the Super-
Kamiokande detector as a modification of the standard three flavour oscillations. Moreover, one shows
that these terms also impact on smaller baselines. Therefore, this effect can be also probed in the
near detectors of the T2K experiment. In this chapter, we present the study we have performed using
the INGRID near detector. This detector has been chosen because its data statistics is significantly
larger than the one of the ND280 off-axis detector. In this study, we will measure the variation of the
neutrino oscillation with the beam direction in an absolute reference frame in space. For this purpose,
we select a frame centered on the INGRID detector, based on the Sun-centered frame considering
the Sun is motionless during the T2K data taking period we use. Figure 6.3 shows this coordinate
system, except for the time origin T = 0, which is chosen as the UNIX time origin. The oscillation
dependency with the absolute direction in space can therefore be probed using the Earth revolution
and rotation around the Sun, that will induce variations in the Target-INGRID neutrino directions.
Therefore, neutrino oscillations should vary with the sidereal time T⊕, since the the absolute direction
in space varies with the latter.
In the case of a small baseline compared to the standard neutrino oscillation L � Losc, the standard

Figure 6.3: The Sun-centered coordinate system used in this thesis. The motion of the Earth in the Sun-centered
frame (X,Y,Z) is shown on a). Then, the same axis are shown in the Earth centered referential frame, and the
Earth coordinates (x,y,z) of the detector are introduced in Figure b). Finally, the neutrino beam direction is
given in the referential frame we have shown in Figure c), and is centered at the INGRID detector with the
polar axis. Taken from [94].

neutrino oscillations are suppressed. Therefore, the effective Hamiltonian (Equation 6.1.5) is reduced
to:

Hab =
1
|~p|

[(aL)µpµ − (cL)µνpµpν]ab (6.1.7)
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The oscillation probability from a flavour state νµ to another state νx can then be estimated as:

Pνµ→νx = (
L
hc

)2|(C)µx+(As)µx sin(ω⊕T⊕)+(Ac)µx cos(ω⊕T⊕)+(Bs)µx sin(2ω⊕T⊕)+(Bc)µx cos(2ω⊕T⊕)|2 (6.1.8)

where L is the neutrino baseline, ω⊕ is the sidereal time angular frequency defined as ω⊕ = 2π
23h56m04.0982s

and T⊕ the local sidereal time we defined earlier. The A, B,C coefficients are the amplitude of the
different ω⊕ variations, and are expressed with the (aL)µ and (cL)µν coefficients. They can be separated
into constant and energy dependent terms:

(C)ab = (C)(0)
ab + E(C)(1)

ab (6.1.9)

(As)ab = (As)
(0)
ab + E(As)

(1)
ab (6.1.10)

(Ac)ab = (Ac)(0)
ab + E(Ac)(1)

ab (6.1.11)

(Bs)ab = E(Bs)
(1)
ab (6.1.12)

(Bc)ab = E(Bc)(1)
ab (6.1.13)

(6.1.14)

where each term is given by:

(C)(0)
ab = (aL)T

ab − N̂Z(aL)Z
ab (6.1.15)

(C)(1)
ab = −

1
2

(3 − N̂Z N̂Z)(cL)TT
ab + 2N̂Z(cL)TZ

ab +
1
2

(1 − 3N̂Z N̂Z)(cL)ZZ
ab (6.1.16)

(As)
(0)
ab = N̂Y (aL)X

ab − N̂X(aL)Y
ab (6.1.17)

(As)
(1)
ab = −2N̂Y (cL)T X

ab + 2N̂X(cL)TY
ab + 2N̂Y N̂Z(cL)XZ

ab − 2N̂X N̂Z(cL)YZ
ab (6.1.18)

(Ac)(0)
ab = −N̂X(aL)X

ab − N̂Y (aL)Y
ab (6.1.19)

(Ac)(1)
ab = 2N̂X(cL)T X

ab + 2N̂Y (cL)TY
ab − 2N̂X N̂Z(cL)XZ

ab − 2N̂Y N̂Z(cL)YZ
ab (6.1.20)

(Bs)
(1)
ab = N̂X N̂Y [(cL)XX

ab − (cL)YY
ab ] − [N̂X N̂X − N̂Y N̂Y ](cL)XY

ab (6.1.21)

(Bc)(1)
ab = −

1
2

(N̂X N̂X − N̂Y N̂Y )[(cL)XX
ab − (cL)YY

ab ] − 2N̂X N̂Y (cL)XY
ab (6.1.22)

where Ni is the vector of the neutrino beam direction, in the Sun centered coordinates. This vector can
be expressed as a function of the co-latitude χ of the detector location in the Earth centered system,
and θ, φ the zenith and azimuthal angles shown in Figure 6.3:

N̂X

N̂Y

N̂Z

 =

 cos χ sin θ cos φ + sin χ cos θ
sin θ sin φ

− sin χ sin θ cos φ + cos χ cos θ

 (6.1.23)

In conclusion, we expect to observe neutrino oscillations that change with the sidereal time. Moreover,
these oscillations are enhanced with the square of the baseline length. Note that this particular trend
is slightly modified for long distance oscillations (L ' Losc) as for Super-Kamiokande Lorentz violation
search. One also observes a linear and square energy dependency of the neutrino oscillation. As
expected, the energy dependency comes in factor of the (cL)µν coefficients only. We remind the (cL)µν

only probes the Lorentz violation, while the (aL)µν coefficients offer the possibility to also test the CPT
violation. One observes that a constant term (C)ab does not introduce any sidereal time dependency
in the amplitude. Expanding the Equation 6.1.8, one shows that the time averaged oscillation can be
written:

< Pνµ→νx >Sideral Time= |(C)µx|
2 +

1
2

(|(As)µx|
2 + |(Ac)µx|

2 + |(Bs)µx|
2 + |(Bc)µx|

2) (6.1.24)

One observes the Lorentz violation does not only predict a sidereal time effect, but also a time
averaged oscillation. Such an effect can therefore be probed to explain the time independent effects,
as the LSND [97] or MiniBooNE low energy anomalies [94]. It is an alternative explanation to the
sterile neutrino hypothesis.
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6.1.4 The Lorentz violation search in INGRID

In neutrino mode, more than 95% of the flux is composed of νµ. Moreover, INGRID has little capacity
of identifying electron neutrinos due to the relatively poor longitudinal and transverse granularity.
Therefore, LV effects are studied in INGRID using the oscillation mode with the highest statistics,
namely the νµ disappearance mode. We expect the survival probability to vary with time as:

Pνµ→νµ = (
L
hc

)2|(C)µµ + (As)µµ sin(ω⊕T⊕) + (Ac)µµ cos(ω⊕T⊕) + (Bs)µµ sin(2ω⊕T⊕) + (Bc)µµ cos(2ω⊕T⊕)|2

(6.1.25)
The neutrino beam direction from the target to INGRID is given by the vector Ni which is shown in
Equation 6.1.23 with the geographical coordinates:

χ = 55.551◦ , θ = 93.637◦ , φ = 270.319◦ (6.1.26)

On Figure 6.4, we show that Lorentz violation is expected to impact on the neutrino oscillation
as a function of the sidereal time, at the mean INGRID neutrino energy Eν = 2.7 GeV. The set of
coefficients used is summarised in Table 6.1. It corresponds to the current limits on the SME pa-
rameters [91]. Note we used all best limits, except the MINOS ones. One observes both the time
independent effects and the sidereal time oscillation. One observes that the time dependent effect
is . 1% which highlights the accuracy required in this search. Since the errors on the neutrino flux
predictions are & 10%, the INGRID sensitivity to the time independent effects is small. For this
reason, we only search for Lorentz violation for an average neutrino energy. This shape only analysis
simplifies the treatment of the systematic errors, without almost changing the sensitivity.
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Figure 6.4: The νµ survival probability as a function of the sidereal time in the INGRID detector, for a neutrino
energy Eν = 2.7 GeV which corresponds to the average neutrino energy of reconstructed neutrino in INGRID.
Generated using [98].

Moreover, we explained, the oscillation amplitude and average values depend on the neutrino
energy. Figure 6.5 shows this enhancement of the oscillation with the neutrino energy, and its impact
can be seen on both time independent and dependent oscillations. In the study presented in this thesis,
we will only search for Lorentz violation for an average neutrino energy. We will show in Section 6.6
that the neutrino energy dependent study cannot improve this result at the present time.

Since the beam intensity varies during T2K data taking, we cannot simply consider the νµ rate as
an indicator of Lorentz violation. For this reason, we will use the number of νµ detected per POT as
the observable equivalent to the νµ survival probability in Figures 6.4 and 6.5. Moreover, we will also
use the local sidereal phase (LSP) defined as:

LSP =
T⊕

23h56m04.0982s (6.1.27)
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Table 6.1: 3σ sensitivity to SME coefficients related to νµ → νe oscillation, for various experiments (all values
given in ×10−20). Extracted from [91].

Coefficient MiniBooNE Double Chooz MINOS
aT

L 4.2 GeV - -
aX

L 6.0 GeV 1.6 GeV 2.2 GeV
aY

L 5.0 GeV 6.1 GeV 2.2 GeV
aZ

L 5.6 GeV - -
cTT

L 9.6 - -
cT X

L 8.4 - 0.009
cTY

L 6.9 - 0.009
cTZ

L 7.8 - -
cXX

L - - 0.46
cXY

L - - 0.22
cXZ

L 11 - 0.11
cYY

L - - 0.45
cYZ

L 9.2 - 0.11
cZZ

L 34 - -
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Figure 6.5: The νµ survival probability as a function of the sidereal time and neutrino energy in the INGRID
detector. One observes both the time independent and sidereal time variations increased with the neutrino
energy. Generated using [98].

The variation of Pνµ→νµ with the sidereal time(∈ [0, 23h56m04.0982s]) is therefore replaced by the vari-
ation of the number of νµ per POT with the local sidereal phase (∈ [0, 1]).

6.2 The INGRID selection

To construct a νµ sample only, one needs to remove the possible contamination from oscillated other
neutrino flavours that can wash out the oscillations. LV effects allow νµ to oscillate to ντ and νe flavor
states. Figure 6.6 shows the charged current cross sections for ντ and νµ interactions, as a function of
the neutrino energy, along with their ratio. ντ interactions start to be significant only above 4 GeV,
well into the tail of the INGRID energy spectrum distribution (see Figure 6.56). For these kinematic
reasons, the charge current interactions from ντ are neglected. The effect on the νµ rate versus LSP,
in the case of the size predicted as shown in Figure 6.4, when including ντ can be seen in Figure 6.7.
There is a very small global enhancement in the total rate, that cannot be detected by this analysis,
and the distortion of the rate versus LSP is estimated to be below 0.05%, and therefore negligible. In
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Figure 6.6: Left: νµ and ντ cross sections as function of the neutrino energy; right: ratio of the two cross section
distributions.
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addition, although the SME coefficients pertaining to νµ may be, in principle, different than the ones
governing νµ oscillations, it is assumed that such a difference would not be detectable in INGRID,
given the small mumber of intrinsic νµ in the T2K beam. As we explained, the possibility of νµ → νµ
oscillation is also assumed to be negligible. Since there can not be any contamination from sterile
neutrino, we will only consider the νe as a possible contamination source in our νµ sample.

The original INGRID reconstruction we introduced in Chapter 4 focuses on reconstructed charged
current interactions. No specific treatment of the electron neutrino contamination has been studied
since they represent a very low (∼ 1%) proportion of the T2K interacting flux. However, in the case
of Lorentz violation study, such a small effect will be an issue. In fact, we aim to study the time
dependent oscillations in order to remove most of the systematic errors that can affect our sensitivity.
Therefore, a 1% effect is no longer negligible. Moreover, in the case all the oscillated νµ are changed
into νe, the oscillation effect will be totally washed out if they are not separated and if their recon-
struction efficiency is the same. Therefore, we will develop a proper νµ selection in this section. We
will not focus on the neutrino interacting through NC in this selection, since they only contribute to
change the rate, but not the shape of the event rate distribution with sidereal time. Indeed, since the
sum of the three flavour νe +νµ+ντ is constant with sidereal phase (whether or not there is LV) and the
NC cross section is the same for each flavours, one deduces that the number of neutrino interacting
through NC is time-independent.
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6.2.1 The neutrino baseline

It was shown, in Equation 6.1.25, that the νµ oscillation probability in the case of Lorentz Violation
depends on the square of the baseline, that is the distance between the νµ production point and the
detector. In the case of INGRID, neutrinos are produced in the 100 m long decay volume downstream
of the T2K target; given that this distance is sizeable with respect to the 280 m distance between the
detector and the target, it will have to be taken into account in this analysis. Figure 6.8 shows the
νµ production z coordinate distribution in the T2K decay volume; it is possible to define an effective
baseline, to be used in the calculation of the oscillation probability, by determining the mean of this
distribution. As such mean is 37.8 m, the effective INGRID baseline from the T2K target is 242.2 m.
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Figure 6.8: νµ production z coordinate distribution in the T2K decay volume.

6.2.2 The muon neutrino selection

Although LV effects have been studied through several different oscillation channels [91], the method
and extraction of the SME parameters in this analysis is widely different from previous experiments.
For this reason, a model independent study is implemented assuming no prior on the possible LV
effects in T2K. In particular, the number of oscillated νµ events in INGRID is left as a free parameter
in the analysis. All νµ are conservatively assumed to oscillate into νe. From this assumption, criteria
to exclude νe events in INGRID can be developed. The reconstruction efficiency for both νµ and νe

using the standard INGRID selection was evaluated. The definition of efficiency used in this analysis
is:

ε ≡
# of ν events passing all analysis cuts

Total # of ν events in fiducial volume
(6.2.1)

As shown in Table 6.2, the νe reconstruction efficiency (48.4%) is comparable to the νµ reconstruction
efficiency (52.7%).

The high efficiency obtained for νe lies in the fact that although a 1 GeV electron only crosses 7.2 cm
in iron before stopping [99], it creates an electromagnetic shower, a small fraction of which propagates
through a much longer distance. As can be observed in Figure 6.9(left), for 30 GeV electrons, about
half of the shower energy is deposited at a depth greater than 8X0, corresponding to ' 13cm in iron. A
study of longitudinal profiles of electron induced showers in iron [100] shows that for 10 GeV electrons,
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6.2. THE INGRID SELECTION

Table 6.2: Reconstruction efficiency for INGRID standard selection. The efficiency is shown for both νµ and
νe.

νµ νe

Reconstruction efficiency 52.7% 48.4%

25% of the shower energy is deposited downstream 12.5 cm. Although lower energies have not been
investigated in this paper, it can be seen by extrapolating the trend observed in Figure 6.9 (right)
that around 3 GeV, still a few percents of the shower energy can be deposited at even larger depths.
This can allow electron showers to be reconstructed as tracks, since it is only required for a particle to
be detected in INGRID that it crosses at least 13 cm. As a consequence, the reconstruction efficiency
for νe events cannot be neglected with respect to the reconstruction efficiency of νµ events in INGRID.
Furthermore, these efficiencies even become equivalent at high energies, as can be seen in Figure 6.10.
An example of νµ and νe induced tracks in INGRID can be seen in Figure 6.11.
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Figure 6.9: Left: Energy loss of a 30 GeV electron induced shower, plotted here as the fraction of initial shower
energy deposited as a function of depth (expressed radiation lengths) ([13]). In iron, the radiation length is
X0 = 1.76 cm ([13]). Right: Shower profile in iron for various incident energies. The unit used (NEP) is
proportional to the amount of energy deposited, and the depth is here expressed in cm ([100]).

• νe intrinsic contamination in the beam. This one represents a very small fraction (< 1%) of the
interacting neutrinos and does not vary with sidereal time in the disappearance mode. Therefore,
possible LV oscillations to νµ from beam intrinsic νe are neglected.

• νe coming from νµ oscillations due to LV. In this case, if the detection efficiency is similar for νµ
and νe, the νµ disappearance would be partially washed out (partially only because of ντ). This
contamination source should be removed.

νe rejection requirement

The systematic error introduced by the νe rejection requirement can be evaluated using simulation,
but cannot be checked by directly comparing to data, since no νe control sample exists. To overcome
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Figure 6.10: Reconstruction efficiencies for νµ and νe induced tracks, as a function of the neutrino energy. No
distinction is made between charged-current and neutral-current interactions.

this difficulty, the selection criteria will be tuned in order to minimise its impact on the νµ systematic
error. For this, the selection criterion will be set such that the νe contamination is lower than the νµ
statistical error. Therefore, the statistical error on the νµ sample will still be the dominant source of
error even with a 100% systematic uncertainty on the νe selection. The optimisation of the νe rejection
requirement consists of adjusting the balance between the efficiency of the optimised cuts and purity of
the νµ sample defined under this requirement. On one hand, a large νe selection efficiency corresponds
to a low νµ purity and, therefore, to a high νe contamination that can wash out the LV effect. On the
other hand, a stricter requirement diminishes the νe contamination but reduces the statistics of the νµ
sample at the same time, leading to a loss of sensitivity.

The optimisation of the νe rejection requirement is driven only by the INGRID potential of Lorentz
Violation discovery. In particular, by:

• the need to be able to detect a 3σ deviation from a no-LV signal. In order to be conservative,
a 5σ deviation from a no-LV signal will be assumed, which induces a larger Lorentz violation
effect and, therefore, a larger contamination from electron neutrinos.

• the requirement that the number of reconstructed electron neutrinos be smaller than the muon
neutrino statistical error.

In the following, σµ (σe) is the interaction cross section for νµ (νe) in INGRID; εµ (εe) is the
reconstruction efficiency, that is the probability for a νµ induced (νe induced) event to be reconstructed
and kept as a νµ event in the analysis, as defined in 6.2.1. Letting νLV

a and νRec
a be the number of

incident neutrinos after LV oscillation and reconstructed neutrino events of flavor a respectively, one
has:

νRec
µ = νLV

µ σµεµ (6.2.2)

and

νRec
e = νLV

e σeεe. (6.2.3)

Assuming the conservative approach that all oscillating muon neutrinos oscillate into electron neutri-
nos, and the νµ selection efficiency is 100%, a 5σ signal corresponds to the detection of a number of

oscillated muon neutrinos, νRec,osc
µ , corresponding to:

νRec,osc
µ ' 5Error(νRec

µ ) = 5
√
νRec
µ , (6.2.4)
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6.2. THE INGRID SELECTION

Figure 6.11: Event display showing a νµ (left) and νe (right) CCQE interaction in the INGRID central hor-
izontal module. The track is associated to the charged lepton, respectively the µ and e. One observes the
electromagnetic shower in the case of the electron propagation through the detector.
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which, in case of 100% νµ reconstruction efficiency, is equivalent to:

νInt,osc
µ = 5

√
νInt
µ , (6.2.5)

where νInt
µ and νInt,osc

µ are, respectively, the number of interacting events in the INGRID fiducial volume,
and the number of interacting events in the INGRID fiducial volume that have undergone oscillation.
In a conservative approach, all νµ oscillate into νe, i.e:

νLV
e = νLV,osc

µ , (6.2.6)

with νInt
i = σiν

LV
i , i = e, µ and σi the cross section. Assuming that the neutrino cross section of the

two species are almost the same in the INGRID energy range [101], it implies that:

νInt
e = νInt,osc

µ , (6.2.7)

Using Equation 6.2.7, Equation 6.2.5 can be therefore written as:

νInt
e = 5

√
νInt
µ . (6.2.8)

The second requirement, that the number of reconstructed νe be small compared to the uncertainty
on νµ, can be expressed as:

νRec
e ≤

√
νRec
µ . (6.2.9)

Since νRec
i = εRec

i νInt
i , i = e, µ, with εRec

i the reconstruction efficiency of the i-th neutrino species,
Equation 6.2.9 can be written as:

εRec
e νInt

e ≤

√
εRec
µ νInt

µ . (6.2.10)

The requirement expressed in Equation 6.2.8 can therefore be written as:

5 εRec
e ≤

√
εRec
µ , (6.2.11)

giving the requirement:

εRec
e√
εRec
µ

≤ 0.2. (6.2.12)

As the standard INGRID selection does not match this criterion (see Table 6.3), a new νµ se-
lection method was developed, based on 4 variables that aim to distinguish tracks produced by an
electromagnetic showers from muon tracks:

1. Average track transverse width,

2. Track length,

3. Root mean square of the track dE
dx ,

4. Number of hits close to the interaction vertex.

Since the criterion defined in Equation 6.2.12 is checked after all the cuts are applied (and not cut by
cut), the interplay between cuts to match the criterion will not be trivial to optimize. To simplify this
optimisation, these variables will be used to define a likelihood (see Section 6.2.2).
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6.2. THE INGRID SELECTION

Reweighting

In this analysis, the detected νe we want to reject come from νµ oscillations. Since the νµ survival
probability introduces a dependence on the SME cL coefficient values (equation 6.1.22), the probability
in turn depends on E2. Without any prior on this energy dependence, it is impossible to know the
oscillated νe energy spectrum. Therefore, it is assumed that the νe spectrum shape is the same as the
νµ spectrum one.
As no oscillated νe is introduced in our simulations, the only νe we can use correspond to the beam
intrinsic νe, whose energy spectrum is different. A reweighting factor is therefore necessary to reproduce
the oscillated νe, i.e. the νµ beam spectrum. For each intrinsic νe event in the beam, the reweighting
factor is taken as:

Creweight(E) =
νµ probability(E)

beam intrinsic νe probability(E)
(6.2.13)

where νa probability(E) is the weight of a type “a” neutrino of energy E. This Creweight factor is then
applied to the intrinsic beam νe spectrum to modify its shape according to the νµ spectrum.
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Figure 6.12: Estimation of the re-weighting factor to be applied to intrinsic νe beam to match the νµ spectrum.

Average track width

Because of bremsstrahlung and pair production, electromagnetic showers have a transverse width
that is generally larger than muon tracks. The scattering of electrons on different materials makes
the average transverse width increase with the material density. Properties of an electromagnetic
shower in a material are defined by the Molière Radius, RM. This radius corresponds to the radius
of a cylinder containing 90% of the shower energy and is independent of the initial particle energy.
Moreover, 99% of shower energy is contained in the transverse width, 2RM. The Molière radius of iron
is RM = 1.719 cm which corresponds to a transverse width of 2RM = 3.4 cm. Therefore, 99% of the
shower energy is contained in a transverse width of 4RM = 6.8 cm. Because the INGRID scintillator
granularity is 5 cm, the average electromagnetic shower transverse width is expected to be incident on
more than one scintillator bar. Figure 6.13 shows the profile of an electromagnetic shower in INGRID
and confirms this trend, as in average, electron induced showers intercept more than 2 scintillator bars.

The track width in each plane might be biased due to the uncertainty on the electromagnetic shower
development. This uncertainty arises mainly from the simulation of the energy deposition in INGRID
scintillators. Because of electromagnetic shower processes, a lot of small hits deposit energy in the
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Figure 6.13: Average width of muon tracks and electron induced electromagnetic showers in the transverse
direction (given in number of 5 cm scintillators), as a function of the distance from the vertex (number of
tracking planes crossed).

scintillators, and an error on each deposition may cause the hit not to pass the 2.5 p.e threshold.
Therefore, the track transverse width, averaged over all the tracking planes, is used instead of the
information on individual planes. Figure 6.14 shows the corresponding average width distributions for
muon tracks and electron showers.
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Figure 6.14: Transverse width of the track averaged over all tracking planes. Muon tracks (blue) are generally
not spread over more than one scintillator, whereas electromagnetic showers are spread over several ones.

Track length

The average track length of an electromagnetic shower is generally smaller than muon tracks because
of electron scattering and transverse energy loss. The distribution of track length shown in Figure 6.15
shows an average 20 cm difference between the two.
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Figure 6.15: Track length comparison between electromagnetic showers (red) and muon tracks (blue).

Dispersion of the charge deposition: root mean square of dE
dx distribution

In the electromagnetic shower process, various particles (e−, e+ and γ) of various energies are produced.
The dE

dx is expected to change greatly among hits from the same electromagnetic shower. On the
contrary, most of the muons behave as minimum ionizing particles (except for the last hits of stopping
muon tracks, which are very rare), and so have a uniform dE

dx . The RMS of the dE
dx distribution was

selected for all hits in each track to exploit these differences. Distributions of the dE
dx RMS for muon

and electron tracks shown in Figure 6.16 confirm these expectations and exhibit a clear higher RMS
for electromagnetic showers. Because of cross-section model uncertainties, the error associated with
energy deposition near the vertex is high. For this reason, only hits separated from the vertex by 2 or
more planes are considered.
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Figure 6.16: Root mean square distributions for electromagnetic showers (red) and muon tracks (blue). The
region around the vertex, defined by ±2 planes around the reconstructed vertex, and a transverse distance of ±3
scintillators (±15 cm), is excluded from this RMS calculation.
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Hits near the vertex

The large amount of particles created during an electromagnetic shower is used to discriminate it from
the muon tracks. However, the number of hits might be highly correlated to the RMS of the dE

dx , which
is already used. Only hits located around the vertex, which have been left out of the RMS estimation,
are selected. This should provide a more independent variable than using the total number of hits of
the track. Unlike the dE

dx , the number of hits is far more robust to cross-section model variations. The
comparison between electromagnetic showers and muon tracks is shown in Figure 6.17, and confirms
the higher number of hits for EM showers.
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Figure 6.17: Distribution of the number of hits around the vertex for both electromagnetic showers (red) and
muon tracks (blue). The region around the vertex is defined as ±2 planes around the reconstructed vertex, and
a transverse distance of ±3 scintillators (±15 cm).

Optimisation of the νe rejection requirement

The muon likelihood is defined by converting muon distributions for track width (Figure 6.14), track
length (Figure6.15), hit charge dispersion (Figure 6.16) and number of hits near the vertex (Fig-
ure 6.17) into probability distributions. The νµ likelihood is built by multiplying the conditional
probability to be a muon considering the neutrino candidate different values for these four variables.
For a candidate having track width w, track length l, hit charge dispersion qRMS and number of hits
around the vertex nV , the νµ likelihood is defined as:

Lνµ = P(νµ|[w, l, qRMS , nV ])

=
P(w|νµ) · P(l|νµ) · P(qRMS |νµ) · P(nV |νµ)

P(w|νµ) · P(l|νµ) · P(qRMS |νµ) · P(nV |νµ) + P(w|νe) · P(l|νe) · P(qRMS |νe) · P(nV |νe)
(6.2.14)

where P(νµ|w), P(νµ|l), P(νµ|qRMS ), P(νµ|nV ) are the probability of a νµ event to have respectively,
a track width w (Figure 6.13), a track length l (Figure 6.15), a dispersion of charge disposition
(Figure 6.16), and a number of hit near the vertex nV (Figure 6.17). Figure 6.18 shows the distribution
of this likelihood, where the separation between muon and electron neutrinos is evident. The νµ
confidence level, defined as the νµ likelihood value that matches the criterion defined in Equation 6.2.12
and maximizes the νµ reconstruction efficiency, is µCL = 0.54. The corresponding νµ reconstruction
efficiency is 44.0% as shown in Table 6.3. The νe reconstruction efficiency is therefore 13%. Figure 6.19
also show that the the criterion defined in 6.2.12 is fulfilled, for the new νµ selection, for the whole
neutrino energy spectrum.
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Figure 6.18: νµ likelihood distributions for both νµ (blue) and νe (red). The confidence level (µCL) is based on
a likelihood ratio obtained from the 4 variables presented before: track length, average transverse width, RMS
of the dE

dx and number of hits near the vertex.

Table 6.3: Reconstruction efficiencies and their ratio for 2 different selections.
Standard INGRID selection νµ selection

εe√
εµ

0.91 0.20

εµ 53.6% 44.0%

6.2.3 Signal sample

The νµ sample is defined as the set of neutrino candidates reconstructed with the INGRID original
selection, and for which the νµ confidence level criterion µCL ≥ 0.54 is verified. Neutrino candidates
interacting in the fourteen standard INGRID modules are considered. The whole INGRID data taken
during the T2K runs 1 (March 2010-June 2010), 2 (November 2010-March 2011), 3c (April 2012 -
May 2012) and 4 (October 2012 - May 2013) were analysed. Table 6.4 shows the total number of
events passing the different selections, with the total number of νµ event candidates using the new
selection being 6.75 × 106. The number of events after the standard INGRID selection, normalised
to the number of POT, for data and MC simulation agree within 2%, which is compatible with the
1.94% systematic error estimated in [62]. It can be seen that the difference between MC and data is
relatively larger in the νµ sample used in this analysis. The systematic error for this new selection
was evaluated for this analysis, and it was found to increase to 5.3% for the νµ sample; therefore, the
number of νµ candidates in data and MC shown in Table 6.4 is in agreement within the systematic
error( [62]). Though it provides a cross check of the νµ selection, the systematic error study shown
in [62] does not depend on LSP, and therefore does not affect the present Lorentz violation study. The
number of νµ candidates in INGRID data corresponding to each LSP bin and T2K run period can be
seen in Table 6.5 and so does the number of POT. T2K Run 4 was split into two separate periods, to
account for differences in νµ event rate, that will be discussed in Section 6.3.3.

6.3 Corrections and systematic uncertainties

LV effects that are independent of sidereal time would change the overall normalisation of the νµ
rate versus LSP distributions. As shown in Chapter 2 and 5 (for absolute measurements), there are
important errors on the absolute number of neutrino arising from the flux (> 10%), the cross section

241



CHAPTER 6. SEARCH FOR LORENTZ INVARIANCE VIOLATION AT THE T2K NEAR DETECTOR

hCriteria
Entries  100
Mean    5.848
RMS     2.483

 (GeV)νE
0 1 2 3 4 5 6 7 8 9 10

µ
E

/ e
E

0

0.2

0.4

0.6

0.8

1

hCriteria
Entries  100
Mean    5.848
RMS     2.483

Criteria value with neutrino energy ENuMu_Final
Entries  17786
Mean    4.896
RMS     2.595

 (GeV)νE
0 1 2 3 4 5 6 7 8 9 10

R
ec

o
n

st
ru

ct
io

n
 e

ff
ic

ie
n

cy

0

0.1

0.2

0.3

0.4

0.5

ENuMu_Final
Entries  17786
Mean    4.896
RMS     2.595

µν

eν

hCriteria
Entries  52
Mean    4.627
RMS     2.756

 (GeV)νE
0 1 2 3 4 5 6 7 8 9 10

µ
E

/ e
E

0

0.05

0.1

0.15

0.2

hCriteria
Entries  52
Mean    4.627
RMS     2.756

Criteria value with neutrino energy

Figure 6.19: On the left, εe/
√
εµ for the standard INGRID selection. The requirement expressed in Equa-

tion 6.2.12 is fulfilled only for Eν . 1 GeV. On the right top: reconstruction efficiencies for νµ (blue) and
νe (red) for the new INGRID selection. Bottom: εe/

√
εµ for the new INGRID selection. The requirement

expressed in Equation 6.2.12 is fulfilled for the whole neutrino energy spectrum.

Table 6.4: Number of reconstructed events in the data and MC with the INGRID standard selection and the νµ
selection.

Data MC Data−MC
MC

Standard INGRID selection 8.07 × 106 events 7.92 × 106 events 1.9%
νµ selection 6.75 × 106 events 6.57 × 106 events 2.7%

models (> 5%) or the detector uncertainties (> 1%). Therefore, time independent νµ disappearance
is not studied in this analysis and, only time-dependent LV effects that introduce a distortion of
the νµ rate versus LSP distribution are. As a consequence, a careful evaluation of possible time
dependent variations that may mimic a Lorentz violation effect is necessary. We separate these effects
in two possible sources. Some of these variations affect the detector, such as gain and dark noise
variations with time, or changing temperatures between night and day (summer/winter). Other affect
the beamline, like the variation of the delivery of POT per spill, shown in Figure 6.21, the shift of the
beam center due to changes in accelerator tuning or tidal forces (Figure 6.34-6.36), or the variations
in the neutrino flux between T2K runs. The LSP dependence of these effects will generally exhibit
variations (see, for example, Figure 6.23). One notes that the impact of time-dependent effects depends
on the variation of their source with the sidereal time. For example, the dark noise rate varies with
temperature. One expects for example a higher dark noise during the day as compared to night. If
the T2K data taking is continuous over the whole year, one expects this effect to be almost washed
out since local sidereal phase corresponding to day in summer will correspond to the night in summer.
However, the T2K datasets we use only cover partially the LSP, due to the fact that a typical T2K run
only covers a small fraction of a year (see Section 6.2.3). Therefore, we will observe some remaining
effects of the dark noise due to this partial coverage. One notes that it is also due to an average
difference of temperature between winter and summer, which prevents from a total compensation of
this effect even with uniform LSP coverage.
In this section, we will study the time dependent effects possibly coming from the INGRID detector
and from the neutrino beam. We will deduce a correction factor to apply to the νµ rate per POT with
the local sidereal phase. We will also study the systematics on this correction factor.

6.3.1 INGRID detector effects

The following time-dependent detector effects will be considered in the following sections: Neutrino
event pile-up, MPPC dark noise, and MPPC gain variation.
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Figure 6.20: νµ rate versus LSP distribution using Run 1 to Run 4 data before corrections are applied.

Neutrino event pile-up

The standard INGRID reconstruction is tuned to reconstruct only one vertex in each INGRID elec-
tronic cycle (581 ns). In case of several events happening during one integration cycle, one event
is therefore often missed. One expects this effect to increase with the neutrino beam intensity and
cause distortions in the neutrino rate distribution which can mimic an LV signal. For this reason, the
intensity variation of the beam with the local sidereal phase has been studied. Figure 6.21 shows this
variation, using the beam spills used in this analysis. One observes a significant variation with respect
to the statistical error, which implies that the pile-up effect must be taken into account to deduce a
correction in the study. A maximal 5% variation of the intensity is observed. The pile-up correction
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Figure 6.21: POT per spill variation with LSP using T2K run 1 to run 4 data.

has been studied using the standard INGRID selection [62]. The event loss follows a linear decrease
with the beam intensity, as expected if the pile-up effect of three or more events is negligible. In this
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approximation, the event loss is given by:

NeventsPile-up corrected =
Nevents

1 − Clossnppb
(6.3.1)

where Closs is the event loss constant and nppb the number of POT per bunch (i.e. the beam intensity)
that is shown in Figure 6.21. In the case of 250 kA horn current, the event loss constant has been
determined for each INGRID module [62]. Figure 6.22 shows the INGRID module numbering. Their
value is summarised in Table 6.6.

Figure 6.22: INGRID modules numbering.

The correction is applied for each event depending on the associated number of pot per bunch.
The systematic error on this correction is obtained considering the statistical error associated to the
event loss constant estimation, namely 0.05 × 10−15. It represents an event loss variation of 3% to 7%
depending on the module (see Table 6.6). Figure 6.23 shows the correction that should be applied to
the νµ event rate versus LSP distributions along with the ±1σ variations in the case of the INGRID
central horizontal module. There is an overall correction of ∼ 1.3%, which has no impact in this
study since it only affects the total rate of νµ candidates versus LSP. As for any effect on the shape
of the distribution, it can be seen (black histogram) that the maximum difference between the ±1σ
variations is less than 0.1%. It is assumed here that the event loss constant does not change with
the νµ selection as compared to the standard INGRID selection, which is motivated by fact that the
vertex reconstruction efficiency is little affected by the νµ confidence level cut (efficiency is changed
from 53.6% to 44.0%).

Given the smallness of the event loss correction (. 0.1%), it seems that this error is negligible (this
is 0.1% of a 1% effect, which is < 0.01%) as compared to the statistical error of about 0.3%. Figure 6.23
shows its effect in the example of module 3. One observes that it affects the average correction factor
by ±0.05% which is small but does not affect the shape. As for the shape, one observes almost no
variations between the varied event loss constant within ±0.01%, which indeed leads to a negligible
systematic error as compared to the statistical uncertainty. Therefore, the systematic error associated
with the neutrino event pile-up in INGRID is neglected. Figure 6.24 shows a plot of the νµ rate versus
LSP after we applied the pile-up correction.

MPPC dark noise

The dark noise rate in the INGRID electronics varies with the external conditions, and therefore with
the T2K data taking time. This variation with time also affects the detection of neutrino candidates
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Figure 6.23: Correction of the number of events per POT as a function of the local sidereal phase in the INGRID
horizontal central module (module 3). The associated event loss constant is Closs = 1.22 × 10−15. The ±1σ
variations correspond to variations of the event loss constant within its statistical error of 0.05 × 10−15.

at INGRID, and may induce distortions in the distribution of the neutrino rate versus local sidereal
phase. The dark noise rate variation with the local sidereal phase is estimated in the data analysed in
this study. The rate is estimated using the off-beam INGRID Trip-T integration cycles and collecting
the number of hits, and is obtained as the mean of the fitted Poisson distribution (Figure 6.25). Its
variation with the local sidereal phase is shown in Figure 6.26 (top). Note that the dark noise hit rate
in the MC (before opening the data) was chosen to be 5.05 hits per cycle per module, whereas for
data, the dark noise rate is between 6.02 and 6.15 hits per cycle per module. However, this difference
only leads to a time independent correction factor. The impact on the νµ per POT shape variations
is estimated generating 21 MC toy experiments where the dark noise rate was varied from 0 to 10
hits per cycle per module, by steps of 0.5. Figure 6.27 shows the impact on the νµ efficiency (and so,
on νµ per POT). The variation of the efficiency with the dark noise rate is estimated by fitting this
distribution with a linear function, which is found as:

ενµ = a ×DN rate + b (6.3.2)

with:

a = −(5.59 ± 0.06) × 10−4 and b = 0.44290 ± 0.00003 (6.3.3)

The correction on the the number of νµ per POT versus LSP is deduced combining the top Fig-
ure 6.26 and Figure 6.27, and the bottom Figure 6.26 shows the result, together with variations
corresponding to ±1σ errors taken as the MC statistical errors on the fitted coefficients (shown in
Equation 6.3.3). One observes that the shape correction varies between 1.00138 and 1.00124, which
represents a relative variation of ∼ 0.01%. Therefore, the MC correction is expected to have a negligi-
ble impact on the shape of the νµ per POT distribution versus the local sidereal phase. No systematic
error is associated to this correction, given the negligible effect of the ±1σ variations of the fitted coef-
ficients shown in Figure 6.26. Considering that the correction is small, a module by module correction
has not been studied.

A plot of the νµ rate versus LSP after pile-up and MPPC dark noise corrections are applied is
shown in Figure 6.28.
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Figure 6.24: νµ rate versus LSP distribution after pile-up corrections have been taken into account.

MPPC gain variation

The average minimum ionizing peak (MIP) charge value changes with the T2K data taking time; this
will both impact the reconstruction, where only hits giving more than 2.5 p.e in a scintillator are used,
and the νµ selection since the root mean square of dE/dx is used. Considering that the temperature
conditions are not uniform between all the modules (some are closer to the climate control system),
a module by module study is performed. As an example, Figure 6.29 shows the MIP variation with
the T2K data taking period for the horizontal modules number zero (edge) to number three (central).
A similar trend between the modules is observed, with a larger MIP in the T2K run 2, and lower in
the end of run 4 and in run 1. It can also be seen that the edge module zero has a more stable MIP
than others. This systematic time-dependent variation can cause distortions in the distribution of the
number of neutrino candidates in INGRID and has therefore been investigated. Figure 6.30 shows
the MIP variation with the local sidereal phase in the specific case of the central horizontal module
three. A significant effect above the statistical error of the sand muon sample used to determine the
MIP variation is observed, with a magnitude of about 1%. In order to take into account correctly
these time variations, data are used to study this correction. From Figure 6.29, a correction factor is
defined for each module and each time period. The reference used for each module is the lowest MIP
value over the whole T2K running period. More precisely, the charge of each hit is scaled by a factor
that depends on the module and time period F(mod.,t):

Qcor
Hit = QHit/F(mod., t), (6.3.4)

where F(mod., t) is evaluated by dividing the MIP value for the module “mod” at time “t” by the
MIP lowest value for module “mod” (both shown in Figure 6.29). This naturally implies that F ≥ 1,
and one deduces from Equation 6.3.4 that Qcor

Hit ≤ QHit. We use the MIP lowest value as a reference
since it requires more than 2.5 p.e deposit to register a hit. It is therefore straitfoward to decrease the
charge of existing hits with a software cut, while this is not possible the other way since it may miss
some hits.
The data are then reconstructed and the νµ selection is applied. Figure 6.31 shows the comparison
with the nominal (no MIP/gain correction) data sample. We observe a higher νµ rate after the gain
correction, since a larger gain implies a larger noise and larger dE/dx dispersion that decreases both
the reconstruction and the νµ selection efficiencies. The bottom part of Figure 6.31 shows that the
impact on the shape is within the data sample statistical errors. No systematic uncertainty is therefore
associated, considering that the sand muon statistics used to generate Figure 6.30 is enough to show
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Figure 6.25: Distribution of the dark noise rate per INGRID module and per cycle for a given time interval. It
is fitted by a Poisson distribution.

that the MIP variation with LSP has no impact on the time variation of the number of events.

Figure 6.32 shows a plot of the νµ rate versus LSP after pile-up, MPPC dark noise and MPPC
gain corrections are applied.

6.3.2 Neutrino beam effects

Though the number of POT is an indicator of the neutrino beam intensity, possible differences between
the number of POT and the neutrino flux can arise, and induce variations in the neutrino event rate
that mimic a LV signal. In particular, the proton beam alignment with the target can vary with
time and impact the neutrino flux for a given number of POT. For this reason, the number of νµ per
POT should be corrected in order to take into account the real neutrino flux impinging upon INGRID
without LV effect. Therefore, the change in beam alignment with INGRID is studied, assuming the
global shape distorsion is a second order effect. In order to study the beam position variations with
time, we analysed data in different ways according to data taking periods and time scales:

• For each T2K run 1 to 4, the beam position is determined using INGRID. This allows direct
determination of the beam position in the detector where Lorentz violation is studied, reducing
possible systematic errors.

• Within a given run, the statistics in INGRID is too low to determine the beam position with
a significant accuracy. Therefore, we use the MuMon instead to calculate rate variations. A
correction based on MuMon data will mitigate, among others, the tidal effect that can shift the
beam position and may mimic a Lorentz violation effect.

Run by run beam position

The νµ selection is applied in each of the fourteen INGRID modules, run by run. The beam position is
determined independently for the vertical and horizontal modules using a gaussian fit of the number
of neutrino interactions in the modules. Figure 6.33 shows the results of this procedure.

The beam position changes from -6.4 cm to 8.4 cm horizontally, and from 1.4 cm to 3.7 cm
vertically.
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Figure 6.26: Variation of the dark noise rate with the local sidereal phase (top). The associated correction on
the number of events is shown in the bottom figure. The rate average correction is not equal to 1, since a dark
noise rate of 5.05 hits per cycle per module is assumed in the MC used to determine the efficiency listed in
Table 6.3. In order to retrieve the correct time independent number of interacting events, an average correction
is therefore to be applied to the number of events (or efficiency) which is the correction averaged over LSP. Note
+1σ represents the largest dark noise effect, in which b is overestimated by 1σ and a underestimated by 1σ.
On the opposite, −1σ represents the flattest variations of the efficiency with dark noise, e.g b is underestimated
by 1σ and a overestimated by 1σ

Beam position variation within one run and tidal effect

Due to lack of statistics in INGRID, the Silicon Pixel detector part of the MuMon is used to correct
the beam position within one T2K run. It provides the highest accuracy on the beam position [102].
For each neutrino spill used in the Lorentz violation study, the muon beam position is measured in
the MuMon as a function of the local sidereal phase. For kinematic reasons, the muon beam center
is aligned with the neutrino beam center. The corresponding position of the neutrino beam center at
INGRID is extrapolated using the MuMon measurement by applying a geometrical scaling factor:

PosINGRID
X/Y = PosMuMon

X/Y ×
280
115

, (6.3.5)

which is the ratio of the INGRID and MuMon distance in meters from the target. Figure 6.34 and
6.35 show the extrapolated beam position variation in INGRID for the horizontal and vertical centers
respectively. We observe a pattern that depends on different effects, such as tidal variations coupled
with incomplete LSP coverage run by run, and changes in beam orbit after beam stops. A relatively
small variation (∼ 0.2 cm) within the run 4 compared to other runs is observed. Since this run provides
almost half of the statistics, important variations in other low statistic runs will be almost washed out
(for example, for run 1 the variation is ∼ 1 cm). This correction takes into account the tidal effect
which distorts the beam and deviates its direction. Figure 6.36 shows the beam position variation in
the MuMon with time which shows that the MuMon is sensitive enough to observe the tidal effects,
and therefore, to correct them.

Beam position correction

To study the impact of a variation of the beam center position on the number of νµ candidates at
INGRID, MC simulation was used. Several different toy experiments were generated changing the
beam horizontal position from 0 (nominal) to 0.2 cm, 0.8 cm, 1.5 cm, 1.9 cm, 3.0 cm, 6.0 cm, 6.4 cm,
9.0 cm. In this study, we assumed that:

248



6.3. CORRECTIONS AND SYSTEMATIC UNCERTAINTIES

Average number of MPPC accidental hits per cycle
0 2 4 6 8 10

E
ff

ic
ie

n
cy

0.437

0.438

0.439

0.44

0.441

0.442

0.443
 / ndf 2χ  2.041e+01 / 19

p0        3.324e-05± 4.429e-01 

p1        5.696e-06± -5.589e-04 

 / ndf 2χ  2.041e+01 / 19

p0        3.324e-05± 4.429e-01 

p1        5.696e-06± -5.589e-04 

 reconstruction efficiency with the dark noise rate variationµν

Figure 6.27: Variation of νµ selection efficiency with the dark noise rate. Because of mis-reconstruction, the
efficiency naturally decreases with the dark noise rate. This variation is fitted with a 1st degree polynomial and
the associated equation found is −5.6 × 10−4 × DN rate + 0.4429.

• The variation of the event rate in the vertical modules as a function of the vertical beam direction
is the same as for the horizontal component in horizontal modules, scaled by a factor S =
Horizontal beam width

Vertical beam width . One expects the relative variations to be higher in a narrower beam. Using
the high statistics Run 4 data, a constant factor S = 452

434 was taken.

• The event rate correction on the horizontal and vertical beam positions are independent and
only affect the horizontal and vertical modules respectively. Considering that the beam is almost
gaussian and have a width larger than 4 m, it is reasonable to assume that the flux is almost
uniform in the central module (1.2 m).

• The beam has a left/right symmetry around its center, as well as a top/bottom one.

Figure 6.37 shows the variation of the number of events in the INGRID horizontal modules. The
decrease in the number of events can be represented by a linear curve. The correction is applied event
by event using the following method:

• For each event, its T2K run, the module type (horizontal or vertical) and local sidereal phase
are determined.

• Within a T2K run, the relative variation in the event rate is deduced by reporting the beam
center position shown in Figures 6.33 on Figure 6.37, and the event variations ERun is calculated.
If the event is within a vertical module, the variation is multiplied by S . The correction is taken
as the inverse of ERun. These correction are summarised for each run in Table 6.7, separating
the horizontal and vertical modules.

• The correction due to the variation within a single run is estimated in the same way: the local
sidereal phase of the event is taken, and the corresponding variation around the run position is
taken from Figure 6.34 (if the horizontal module is hit) or Figure 6.35 (vertical). The correction
is then estimated as for the run by run correction.

Figure 6.37 (right) shows the systematics variation with the beam center. Figure 6.34 and 6.35
shows that the maximal variation within one run is 1.5 cm (run 1). Figure 6.37 shows the systematics
associated to the correction and is ∼ 0.02% for the horizontal module. If the systematic on the
correction in the vertical modules is summed in quadrature (maximal shift of 0.6 cm), the resulting
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Figure 6.28: νµ rate versus LSP distribution after pile-up and MPPC dark noise corrections have been taken
into account.

systematic uncertainty on the beam position variation within one run is . 0.03%, and therefore
negligible in comparison to the statistical error.

As for the correction between the different runs, the maximal difference on the correction applied
is for run 2 (minimal correction) and run 3 (maximal) given their beam center shown on Figure 6.33.
The total number of events in run 3 is corrected by a total factor which is approximatively the mean
of the vertical and horizontal corrections, since the number of events is almost the same in horizontal
and vertical modules (Figure 6.33). The approximate total correction factor is therefore 1.0055 for run
3 and 1.0005 for run 2. The difference between the corrections is therefore 0.005 which corresponds
to an effective beam center variation of 5.5 cm (using the left part of Figure 6.37). The systematics
uncertainty is therefore given by Figure 6.37 (right), and is equal to 0.08%. Considering the current
statistical uncertainty is ∼ 0.3%, this systematic error is neglected.

Figure 6.38 shows a plot of the νµ rate versus LSP after all corrections described so far have been
applied.

6.3.3 Residual rate correction

As a final correction, we study the possible remaining variations of the event rate with time. The
detector and beam sources are no more separated, and a global correction is applied. To evaluate
the possible corrections, the data taking period is divided into the four different runs used in this
analysis. On top of this, the T2K run 4 is divided into two periods: end of 2012 (October 2012 -
31 December 2012) and begining of 2013 (January 2013 - May 2013). The T2K run 4 lasted long
and was stopped for the new year, therefore, possible variations in the event rate (due, among other
things, to different beam tuning) are expected during this run. It is known that the total event rate
can change significantly between T2K runs, and even between Main Ring runs [103] mainly because
of the changes in the beam position between runs. Therefore, we decided to calculate a correction,
extracted from the average event rate of each of the five periods. However, one should not correct
possible differences due to the Lorentz violation effect. Ideally, it would be possible if the data taking
for each run covered the same sidereal phase space, but this is not the case. In order to remove any
correction with a potential Lorentz violation effect, the following method is applied:

1. For each of the five periods (that for simplicity will be called runs), the POT coverage in LSP
is estimated and shown in Figure 6.39.

2. The POT distributions for each run are fitted by a constant < POT >Run. For each LSP bin i
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charge distribution with a gaussian function around the muon mean charge deposition value [].

and run r, the ratio with the average run POT (averaged over LSP) is therefore di
r = POTi

r/ <

POT >r.

3. A flat POT coverage in LSP is simulated by producing the event rate distributions
νµ

POT but
reweighting each νµ and POT events by a factor wi

r = 1/di
r. The correction is applied event by

event, depending on the run and the sidereal phase of the event.

This method produces new event rates distributions for each run, but with a flat POT coverage.
This should wash out any event rate variation between runs due to different LSP coverage of the data
taking (if there is Lorentz violation). Figure 6.40 shows the five event rate distributions. Finally, the
correction is evaluated run by run as follow:

1. Each event rate distribution with sidereal time is fitted by a constant, which represents the
average rate of the run <

νµ
POT >Run.

2. For each run, a correction factor is estimated as the ratio between a reference event rate and the
run average event rate:

cRun =
<

νµ
POT >Run4,2013

<
νµ

POT >Run

. (6.3.6)

where the second part of run 4 was taken as reference. Corrections are summarised in Table 6.8.
One observes the difference between run 4 2012 and 2013, which is due to changes in running
conditions after the end of year shutdown.

3. Data are reprocessed, and the correction factor cRun is applied event by event on the number of
νµ depending on the run of the detected νµ.

Figure 6.41 (left) shows the relative correction with the LSP. One observes a 0.3% increase of the
event rate, since the run 4 2013 has a higher event rate compared to most of the other runs (except
run 4 2012). This correction has no impact on the Lorentz violation shape study. In addition, a 0.2%
correction that affects the shape is observed. This is because most of the spills populating the LSP
between 0.2 and 0.8 comes from the run 4 2013, while the remaining LSP (between 0 and 0.2, and 0.8
and 1) are more populated by other runs which have mostly a lower event rate. The systematic error
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located at the end of run 4 (see Figure 6.29).

on this correction is evaluated as the statistical uncertainty coming from the correction cRun. The +1σ
error estimation is defined as the highest possible correction factor. It is obtained by maximising each
corrections shown on Table 6.8 except the correction on run 4 2012, which should be minimised to
increase difference with run 4 2013 (run 4 2012 has a larger event rate than run 4 2013). Figure 6.41
(right) shows the ±1σ corrections. One observes the relative error on the shape correction varies
from 1.0002 to 1.0007 for the +1σ error. Therefore, a 0.05% systematic error is expected. Thus, the
systematic error is neglected.

6.3.4 Summary

Figure 6.42 shows the distribution of the νµ rate versus the local sidereal phase after having applied
the corrections. Only the statistical error is relevant, as the systematic error coming from all the
sources was found to be negligible, as we summarised in Table 6.9.

We will search for Lorentz invariance violation quantitatively using two different methods, the
Fourier transform shown in Section 6.4 and the likelihood method shown in Section 6.5.

6.4 The discrete Fourier transform

We perform the Lorentz violation search using two different methods to increase the discovery poten-
tial of this study. First, we use a Fourier transform to deduce the C, As, Ac, Bs, Bc coefficients from
Equation 6.1.25. In the case of a LV effect, the νµ disappearance probability should vary with fixed
frequencies. Namely, the expansion of Equation 6.1.25 shows that the expected variations occur for
fixed angular frequencies which are multiples of the sidereal (angular) frequency: ω⊕, 2ω⊕, 3ω⊕ and
4ω⊕. Since the angular frequencies are fixed, only the associated amplitudes should be fitted. A dis-
crete Fourier transform is therefore completely adapted, and the amplitudes are directly given in the
angular frequency space. Since we are searching for the multiples of the sidereal angular frequency,
the sampling size in the angular frequency space should be one sidereal angular frequency ω⊕. As for
the extension, the angular frequency phase space should at least spread from 0 to 4ω⊕ in the present
case. Note the case 0 ·ω⊕ represents the constant (non oscillating) term. Therefore, the sampling
should be done to contain at least five bins of width ω⊕ in the phase space of the angular frequency.
The discretisation is therefore done denoting the angular frequency bin with n ∈ [0,N] with N = 5
in this example. It implies each bin corresponds to n ·ω⊕. The probability of νµ disappearance at a
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Figure 6.31: (Top) Comparison between the nominal distribution of the νµ per POT with LSP and the same
distribution after applying the gain correction. A constant function is fitted to the (corrected/uncorrected)
ratio which is shown on the bottom. The small χ2/NDF = 0.07 � 1 value indicates that this ratio is time
independent.

given angular frequency bin n is denoted as P[n]. The probability of νµ disappearance in the local
sidereal phase space can therefore be deduced as a superposition of the five plane waves having the
angular frequencies n ·ω⊕ (n ≤ 4) and different amplitudes. In the most general case, the sidereal
phase (time) space is continuous, and one should use a Fourier transform that is continuous for side-
real phase and discrete for the angular frequency. In our case, we will also sample the local sidereal
phase space for computational reasons, and use a pure discrete Fourier transform. The same binning
N = 5 should therefore be used, and k ∈ [0,N] represents each bin in local sidereal phase (LS P = k/N).
The probability of νµ disappearance in the local sidereal phase can therefore be written as:

P[k] = PRe[k] + iPIm[k] =
1
N

N−1∑
n=0

P[n]e
ikn
N (6.4.1)

The inverse transformation is used to determine the spectral amplitudes associated to each angular
frequency P[n] (with ω = n ·ω⊕):

P[n] = PRe[n] + iPIm[n] =

N−1∑
k=0

P[k]e
−ikn

N (6.4.2)

One observes that the sampling used N ≥ 5 is determined by the prior knowledge on the sidereal
angular frequencies that are searched. It shows that the discrete Fourier transform method is only
adapted to signals which angular frequency is known. In the opposite case, a continuous spectrum
should be searched through a continuous Fourier transform. For computational reason, we avoided
this method in our case.
A fast Fourier transform method (FFT) is used to perform the discrete Fourier transform [104]. Such
a method allows to reduce the number of needed operations to Fourier transform the signal, from
roughly N2 to N × log2 N. In the case of N = 5 bins, this method does not have any significant interest.
However, N also corresponds to the sampling we use in the sidereal phase space. Therefore, one needs
to choose a larger binning than N = 5 in order not to reduce the sensitivity to the signal. Since the fast
Fourier transform method requires a binning choice of the form N = 2L, we have used L = 5 i.e N = 32
bins in this analysis. This is a compromise between the sample statistics in each bin and the goal not
to wash out the oscillations with too small a binning. Since the input signal data shown in Figure 6.42
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Figure 6.32: νµ rate versus LSP distribution after pile-up, MPPC dark noise, and MPPC gain corrections have
been taken into account.

is real, one shows that the FFT method provides the symmetric result in spectral amplitudes [104]:

P[N − n] = P[n]∗ (6.4.3)

The fast Fourier transform method provides both the real part, imaginary part and module of the
amplitude corresponding to each of the 32 Fourier modes. For the latter, since it is a real quantity,
we derive from Equation 6.4.3 that the module of the amplitude is symmetric for bins N ∈ [1,N/2]
and N ∈ [N/2 + 1,N].
In this analysis, we will only study the module of the amplitude corresponding to each Fourier mode.
Though these amplitudes are complex, it is not the purpose of this Fourier analysis to provide a fit
of the phase for each parameters. We will only probe the potential sidereal time variations, whose
impact is directly a function of the module of the amplitude. Since the Fourier transform separate the
impact of each mode on the distribution, the relative phase between the amplitudes has no impact on
the discovery potential since no destructive interferences occur. This is an advantage of the Fourier
transform, and one of the main reason we have used it. We will therefore only study the module of
each amplitudes of the fifth first Fourier modes, that we will denote as “magnitude”, naturally defined
as:

MAG = |F[n]| =
√

(FRe[n])2 + (FIm[n])2 (6.4.4)

Figure 6.43(left) shows an example of a Fourier transform on a flat distribution with the sidereal
phase. One observes that the first (flat) mode is enhanced, while the other modes are negligibly small.
Since we do not expect any impact of Lorentz invariance violation on the Fourier modes from the
sixth to the fifteenth one, their value can be used as an evaluation of the pure statistical fluctuations.
Therefore, one expects a Lorentz violation signal to appear if one of the second to the fifth Fourier
mode is enhanced comparatively to the higher Fourier modes.

6.4.1 Sidereal time variation thresholds

We will search for an evidence of Lorentz violation i.e a 3σ deviation with the Standard Model, which
is defined as a 3σ deviation of the νµ survival probability with local sidereal phase as compared to
a flat (P=1) survival probability. It provides a model independent constraint on sidereal variations,
since only the compatibility with no sidereal variation is tested (in the modes of ω⊕, 2ω⊕, 3ω⊕ and
4ω⊕ angular frequencies only). Figure 6.42 shows the signal analysed is the number of selected νµ per
POT. We will determine the 3σ detection threshold as follow:
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Figure 6.33: The νµ horizontal and vertical beam profiles for the different T2K runs.

1. Using the data signal shown in Figure 6.42, 10,000 toy experiments are generated by randomly
shuffling the time of each event. We expect therefore the potential sidereal variations to be
removed, which provides a set of 10,000 flat toy experiments. Figure 6.44 shows an example of
these flat toy experiment.

2. We apply the FFT method on each toy experiment and determine the magnitude of each of the
relevant five Fourier modes : constant, ω⊕, 2ω⊕, 3ω⊕ and 4ω⊕.

3. We therefore construct the distribution of each Fourier mode for the 10,000 flat toy experiments.

4. A 3σ threshold pn (n ≤ 4) is then determined for each Fourier mode. This threshold is defined
at the FFT magnitude value for which only 0.27% of the toy experiments provide higher Fourier
mode magnitude. In other terms, it corresponds to the upper value for which 99.73% of the flat
toy magnitude are located at lower values, which corresponds to a 3σ threshold. In the present
case, it represents the value for which only 27 events are located above:∫ Mag=pn

Mag=0
(MAG FFT)n = 0.9973 (6.4.5)

where n denotes the Fourier mode.

5. We will claim we observe a 3σ deviation from no sidereal variation if data crosses at least one
of the four non flat thresholds.

Figure 6.45 shows the distribution of the different Fourier mode magnitudes. One observes that the
distributions are very similar between the different modes, which is expected since the pure statistical
variations should impact the different mode in the same proportions. Consequently, the 3σ threshold
is the same for all the Fourier mode, and has been found equal to pn = 0.026, 0 < n < 5. The data will
therefore present a 3σ deviation from the no sidereal variation hypothesis if one of its Fourier mode
amplitude is higher than 0.026. We will show the result on data in Section 6.4.4.
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Figure 6.34: νµ beam horizontal beam positions in the Silicon pixel part of the MuMon for the different T2K
runs.

6.4.2 Sensitivity on the SME parameters

We have shown in Section 6.1.3 that the Lorentz violation impacts on short baseline oscillations through
twenty parameters, namely aαµµ 4-vector and cαβµµ 4 × 4 matrix. One shows [105] that the cαβµµ matrix is
symmetric, which involves the reduction from twenty to fourteen parameters. These coefficients are
complex, which implies that there are twenty eight real degrees of freedom. Considering the Lorentz
violation only impacts on the five Fourier modes n ·ω⊕ (n ≤ 4), the constraints that will be extracted on
the twenty eight parameters will be very highly correlated. We will develop in Section 6.5 a likelihood
method to reduce these correlations by increasing the number of fitted parameters.
In this situation, we have adopted the same strategy used in the Lorentz violation search of the MINOS
experiment [106]. In this approach, the correlations between the SME parameters are neglected.
Though we do not expect this method to give the appropriate constraints, we have used it in this
study in order to present this T2K result in the same way as MINOS. Moreover, it provides first hints
of the sensitivity of this analysis. This approach follows the following strategy for each of the aαµµ and

cαβµµ coefficients. For clarity, let’s take the example of the aX
µµ coefficient:

1. aαµµ and cαβµµ coefficients are set to zero.

2. aX
µµ is increased by a given small step compared to the expected sensitivity (namely, 10−23 GeV

step). The coresponding νµ variation with local sidereal phase distribution is generated.

3. The FFT is applied on the distribution and the magnitude of the modes n=1 to 5 is tested. If
one of the 3σ thresholds is crossed in these bins, one stops and the current aX

µµ value represents
the sensitivity we have on this parameter. If none of the thresholds is crossed (which should be
the case for the first iteration, if not, change the step), aX

µµ is increased again by the 10−23 and
the same procedure is applied.

4. This procedure ends when one of the 3σ threshold is crossed, and the current aX
µµ value is therefore

the 3σ sensitivity of this analysis to the aX
µµ coefficient. Figure 6.46 shows the νµ variation with
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Figure 6.35: νµ beam vertical beam positions in the Silicon pixel part of the MuMon for the different T2K runs.

local sidereal phase and the associated FFT in the example of the aX
µµ value introducing a 3σ

deviation from the flat hypothesis (namely aX
µµ = 4.0 GeV). One observes the threshold crossing

in the Fourier mode n=2.

As we explained, this totally neglects the correlations between the coefficients since all others coef-
ficients are set to zero except the one which is studied. Moreover, it removes possible sensitivity to
some coefficients. Namely, in the example of the aT

µµ coefficient, one observes in Equation 6.1.22 that
this coefficient only impacts the shape of the sidereal time variation by coupling to other coefficients.
If all the others are set to zero, this term only contributes to the rate, and therefore, we have no
sensitivity on it in this analysis. It shows the limit of this approach that neglects the correlations.
In a similar way, we show that the coefficients aT

µµ, aZ
µµ, cTT

µµ , cTZ
µµ and cZZ

µµ only impact the rate if all
other coefficients are set to zero. It therefore reduces the number of parameters from twenty eight to
eighteen real degrees of freedom. Finally, this assumption that all other parameters are null except
the one tested implies that the phase of the coefficient has absolutely no impact on the νµ survival
probability, as one observes in Equation 6.1.25 which becomes for example for aX

µµ:

Pνµ→νµ = (
L
hc

)2|N̂Y (aL)X
ab sin(ω⊕T⊕) − N̂X(aL)X

ab cos(ω⊕T⊕)|2 = (
L
hc

)2|(aL)X
ab|

2|N̂Y sin(ω⊕T⊕) − N̂X cos(ω⊕T⊕)|2

(6.4.6)
Therefore, the real degrees of freedom corresponding to the phase have no impact in this approach.
This reduces the number of constraints on real coefficients from eighteen to nine. We will therefore
summarise the 3σ sensitivity for these nine parameters. Using the method we described above, we
provide the 3σ sensitivity Table 6.10. It first confirms that the short baseline oscillation in INGRID
are sensitive to a ∼ 10−20 GeV effect, which shows the sensitivity of this study to Planck scale effects.
Second, the sensitivity is higher for the cαβµµ coefficients since their effect is enhanced by the neutrino
energy as we explained in Section 6.1.
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Figure 6.36: νµ beam horizontal beam position variation in the MuMon with time during a given time period of
the T2K data taking. The tidal effect every ∼ 6 hours can be seen.
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Figure 6.37: Left: number of νµ events with different beam horizontal center positions. A linear decrease with
the beam center position difference with the INGRID center is assumed. The fitting result shows the relative
variation on the number of events in the horizontal module to be 9.1 × 10−4 · Beam center (cm) + 1. Right: the
associated systematic error on the correction with the center beam position (comes from the fitting error).

6.4.3 Day and night LSP distributions

Whether a Lorentz violation effect exists or not, one does not expect any difference between the day
and night distributions of events with local sidereal phase. However, one expects different beam and
detector conditions between the two samples, since, for example, beam tuning mainly occurs in the
morning, or temperature is lower at night. Therefore, the comparison between day and night provides
a control sample that tests if the corrections that are applied (Section 6.3) are effective and provide a
signal sample where LSP variations from detector and beam effects are washed out. The day and night
samples are constructed using the very same data sample used for the analysis, separating the day
as events occuring from 6 a.m. to 6 p.m. JST, and night as the complement. Figure 6.47 shows the
day and night event rate distribution with the sidereal phase. The straight line fit shows that the day
and night event rate distributions are the same within the statistical error. This agreement is further
checked by applying the FFT method to both the day and night distributions. To be conservative, the
detector and beam effects correction will be considered effective if both the day and night magnitude
of each Fourier mode are below the 3σ detection threshold determined in Section 6.4.1. This is
conservative because the thresholds were determined analyzing the full data sample, but the statistics
pertaining to day and night samples are about one half of the full data sample. The magnitude of
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Figure 6.38: νµ rate versus LSP distribution after pile-up, MPPC dark noise, MPPC gain, and beam position
corrections have been taken into account.

each Fourier mode are shown in Figure 6.48 for both day and night. It confirms the quality of the
corrections that were applied, and the readiness of the sample for data unblinding. It is important
to point out that a variation was originally seen before the corrections were applied, as shown in
Figure 6.49. This variation was mostly washed out by the corrections presented in Section 6.3.3. By
confirming the efficiency of the corrections we applied, this control sample leads us to apply the FFT
on the data in Section 6.4.4.

6.4.4 Results

We first measure the data compatibility with the no sidereal variation hypothesis. For this purpose, we
apply the FFT on the data distribution shown in Figure 6.42 and we display the result in Figure 6.50.
One observes that none of the magnitude for the Fourier modes ω⊕, 2ω⊕, 3ω⊕ and 4ω⊕ overcomes
the 3σ threshold. It implies the INGRID number of νµ per POT is compatible with no sidereal time
variation hypothesis. We summarise the value of each Fourier mode of data in Table 6.11, along with
the associated p-value to be a statistical fluctuation of a flat LSP distribution. One observes no effect
even above 1σ.

Therefore, this measurement provides the 3σ constraints on the SME parameters listed in Ta-
ble 6.10. For comparison purpose, we have shown the latest constraints from the MINOS, MiniBooNE
and Double Chooz studies in Table 6.1 using both their neutrino and antineutrino modes. It shows the
MINOS experiment is more sensitive to the Lorentz violation effect at the near detector under the
assumption of uncorrelated effects on the sidereal time variation of the different SME
parameters. This can be understood since the MINOS near detector has a longer baseline L ∼ 1 km
(which impacts on all the coefficients), and a flux average larger energy which impacts on the cαβµµ
coefficients. However, the MINOS study assumes no correlations between the coefficients. We will
show in the next paragraph that these correlations are crucial to take into account.

Correlations Here, we have studied only two parameter correlations for clarity purpose. We will show
the impact of the correlations on the detection threshold. To do so, we apply the same procedure as
we defined in Section 6.4.2, but keeping two coefficients different from 0 instead of only the varied
coefficient. In the example of the correlations between the aX

µµ and aY
µµ coefficients, we select a value

of aY
µµ and determine the aX

µµ value for which the 3σ detection threshold is overcome. Changing aY
µµ

to other values, one studies the impact of the correlations on the sensitivity to the aX
µµ parameter.

Figure 6.51 shows the variation of the sensitivity on the aX
µµ parameter for different values of aY

µµ and
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Figure 6.39: POT distributions versus LSP for the different runs.

cT X
µµ . One observes an anticorrelation with the aY

µµ parameter, which reflects that lower aX value are
needed to explain a 3σ deviation from the flat hypothesis for larger aY . Therefore, the sensitivity
on aX increases with with larger aY

µµ value. This trend is a function of the neutrino beam direction
as shown in Equation 6.1.22, and can be inverted in the case of MINOS for example. We conclude
that the study assuming no correlations underestimates the sensitivity on the aX parameter since we
assumed aY = 0. One observes that the impact is large, and a 2× 10−20 GeV aY (which is not rejected
by MINOS) can change the sensitivity of this study to aX from 4.0 × 10−20 GeV to 3.5 × 10−20 GeV
in the simple case of only two parameter correlations. One notes that the two point correlations does
not represent the complexity of the whole correlations, and that higher effects can be even expected.
Since this effect is different in MINOS, the sensitivity shown in Table 6.10 does not represent the real
sensitivity of this analysis, a,d does not show that the sensitivity is better in MINOS (Table 6.1).
Finally, a more problematic issue is oberved studying the impact of cT X

µµ on the sensitivity to the aX
µµ

parameter. One observes in Figure 6.51 that a higher cT X
µµ value implies a lower sensitivity to aX

µµ

(larger value to cross the threshold). It shows our sensitivity provided in Table 6.10 can potentially
be overestimated. Therefore, neglecting the correlations can lead to reject the Lorentz violation for
energies at which the violation occurs, and miss the effect.

In a nutshell, the FFT provides the most sensitive method to sidereal variations, but is not adapted
to extract the associated limits on the SME parameters. In order to solve this issue, we developed a
likelihood method we will show in the next Section 6.5.
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Figure 6.40: Number of νµ per POT distributions versus LSP for the different runs.

6.5 The likelihood method

6.5.1 Motivations

As we have seen, there is a large number of SME coefficients and we only use one data set in this
analysis. It implies that important correlations exist between the coefficients. For this reason, the
parameters should not be treated as independent. To extract the best limits on the SME coefficients,
we develop a 5 parameter fit to fit the C, As, Ac, Bs and Bc amplitudes (Equation 6.1.25) which are
linear combinations of the SME coefficients. A full 20 SME coefficient fit was initially desired, but
because of the high degeneracy of the fitter in the SME coefficients, this method was discarded.

The fit is based on a binned likelihood method. Though using bins may slightly underestimate our
sensitivity due to loss of information from binning, the high statistics of the INGRID sample tends to
reduce differences between unbinned and binned likelihood methods. Moreover, a binned likelihood
method easily allows determination of the goodness of fit, that we will test in 6.5.2.

The binning used in the FFT method is used for the likelihood method, namely 32 bins in LSP. As
shown in Section 6.3, only statistical errors are meaningful in this analysis. The statistical errors are
Poisson distributions in each local sidereal phase bin. Considering the very high statistics of each bins,
we will work in the gaussian approximation for simplicity. In each data LSP bin, the probability that
a given MC simulation corresponds to data in the i-th local sidereal phase bin is:

Pi = e
−

(di−mi)
2

2σ2
i (6.5.1)

where di and mi are the
νµ

POT respectively in data and MC, and
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Figure 6.41: The relative correction coming from run per run event rate correction (left) and the associated
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Figure 6.42: Corrected νµ event rate versus LSP.

σi =
νµ

POT

√
δν2

µ

ν2
µ

+
δPOT2

POT2 (6.5.2)

Based on this probability, the binned likelihood fit is constructed as:

L =

32∏
i=1

Pi =

32∏
i=1

e
−

(di−mi)
2

2σ2
i (6.5.3)

Real coefficients: As we explained, we will only fit the five coefficients C, As, Ac, Bs and Bc. More-
over, we will only fit the shape of the distribution. Finally, we will assume in this fit that these
five coefficients are real, and therefore, that no relative phase effect impacts the result (apart from
phase shift 0→ π for negative coefficients). Though a complex coefficient fit was attempted, we have
shown it does not provide any constraint on the phase of each coefficient due to the limited amount
of information of the νµ distribution. Using an energy dependent study as shown in Section 6.6, this
complex coefficient fit may be used in the future with a larger statistics.
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Figure 6.43: Magnitude of each Fourier modes in the case of no sidereal variation of the νµ per POT rate
(left) and in the case of an example where the variation is significant (right). In red, we have shown the
magnitude value above which a 3σ deviation with the flat hypothesis is observed. This threshold is detailed
in Section 6.4.1. One observes this enhancement of the Fourier mode n=2 (2ω⊕) in the case of significant
sidereal variation. Note that the highest Fourier modes (13 and 16) do cross this threshold by pure statistical
fluctuations. The coincidence of this effect on the two Figures and in Figure 6.46 is only due to the fact we
generated exactly the same fluctuations in these examples.

Minimisation method We have used the MINUIT [107] package as the minimisation method to pro-
vide the likelihood best fit values. One understands the errors associated will be asymmetric in this
analysis, since the values are close to zero which is not favoured by the fitter. For this reason, we
have used the “MIGRAD” MINUIT minimisation method, and then, the“MINOS” method to provide
the correct asymmetric errors for each parameter and the correlations between them. The fitter perfo-
mances are first checked. They are described in Appendix G. We verify that the fitter converges and
is unbiased, and that the errors are correctly estimated in Appendix G.1 and G.2. We will test the
performance of the algorithm on the fit of only one parameter to study whether the fitter is unbiased.
It is necessary since it removes the possible correlations between parameters that can affect the fitter
central value, and mimic a bias where there is actually none. We will then apply the fitter on the data
in Section 6.5.2 and provide the latest constraints on the Lorentz violation search in INGRID.

6.5.2 Results

We finally apply the fitting method to the data. We have summarised the best fit value for each
parameter in Table 6.12. The large correlations between the coefficients are shown in Figure 6.55.
Figures 6.52 to 6.54 show three projections of the five-dimensional coefficient space, with the best fit,
1σ and 2σ contours.

One observes that the sensitivity of this analysis reaches ∼ 10−20 GeV, which shows we are able
to measure possible suppressed Lorentz invariance violation effects occurring at the Planck scale. It
confirms the result obtained with the FFT, but taking into account the correlations. Moreover, we
confirm that none of the parameter shows a deviation from the Standard Model above 1σ in this
energy range of parameters. Therefore, we conclude that we do not measure any hint of Lorentz
invariance violation using the INGRID near detector in the energy phase space region corresponding
to & 10−20 GeV.

6.6 Energy dependent study

6.6.1 INGRID module energy

As described in Equation 6.1.22, the 5 SME parameters C, As, Ac, Bs and Bc depend on the neutrino
energy, E. Particularly, the C, As, and Ac coefficients are composed of an energy-independent part and
an energy-dependent part which is linear in E. Using different neutrino energies, it may be possible to
decorrelate the effect of the energy-independent and energy-dependent part of these coefficients. The
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Figure 6.44: An example of a flat toy experiment, randomly chosen among the 10,000 experiments.

energy dependence is studied within INGRID itself because of its high statistics and high neutrino
energy that enhance LV effects. The INGRID cross geometry covers off-axis angles from 0◦ to 1.0◦ and
so, different neutrino energies. Figure 6.56 shows the neutrino energy spectrum variations for these
different off-axis angles, whose mean energies are summarised in Table 6.13. Figure 6.22 summarises
the module numbers.

As shown in Equation 6.1.25 and 6.1.22, the oscillation probability does not depend linearly on the
neutrino energy, but rather on E2. Therefore, the mean neutrino energy in a module cannot be
substituted to the actual neutrino flux. While the main energy peak position differs greatly between
modules (covering from 1.2 GeV to 1.6 GeV), the mean neutrino energy is roughly the same. This is
the consequence of high energy neutrino for which the parent mesons are not focused by the magnetic
horns which are tuned for lower energies. Therefore, these events are isotropic in space and affect the
mean neutrino energy in the same proportion for all the modules. For these two reasons, we study
the LV energy dependency by implementing the true neutrino flux for each module instead of a mean
neutrino energy.

6.6.2 LV energy dependent study

Various LV signals are implemented in toy MC experiments. Differences between the most extreme
modules (namely, central module 3 and edge module 0) are checked. An example of the LSP distri-
bution for these 2 modules can be seen in Figure 6.57 in the particular case of relatively large LV
effect. The coefficient values are listed in Figure 6.57. We chose their value according to the order
of magnitude of current sensitivity of other experiments. The differences between modules is still
negligible with the current INGRID statistics. The statistical error has been added to the histogram
for comparison purpose. One concludes that for a measurable given LV effect, current statistics is too
low to detect a possible difference between INGRID modules at the present time.

6.7 Future sensitivity at T2K near detectors

We study the future sentivity to the Lorentz violation in the INGRID and future near detectors in the
context of the Tokai-to-HyperKamiokande experiment. It assumes a 7.5 MW beam which provides
1.56 × 1022 POT [108]. The T2HK experiment will use these POT with a proportion of 1:3 for the
neutrino and antineutrino modes. It leads to 3.9×1021 POT in the neutrino mode and 11.7×1021 POT
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Figure 6.45: Distribution of the magnitudes of the different Fourier modes for the 10,000 flat toy experiments.
The 3σ threshold are the equal to 0.026 for the different Fourier modes. The distributions are fitted with
Rayleigh functions.

for the antineutrino mode. The corresponding neutrino and antineutrino rate depends on the detector
target and reconstruction. Considering the high neutrino contamination in the antineutrino mode,
we only focuses on the neutrino mode. Therefore, we do not use the full statistics in this study, nor
the possible combination between neutrino and antineutrino results. Considering the νµ selection we
developed in Section 6.2, we expect to detect a number of neutrino candidates equal to 5.57×107. This
estimate neglects the pile-up effect. As we have seen, the advantage of INGRID compared to off-axis
detector is its very high statistics and energy. As for the latter, it provides a higher sensitivity to the cαβµµ
coefficients. This result can be combined with other near detectors. In particular, a water Cherenkov
detector located off-axis at 1 km from the neutrino target is under study. This aims to reduce both
the beam and the cross section uncertainty. Two different designs are studied, and called TITUS and
νPRISM. Considering the Lorentz violation effect increases as the baseline squared, we consider that
these future detector sensitivity may highly improve the sensitivity to the Lorentz violation effect.
Therefore, we have studied them on top of INGRID. Using only the neutrino mode component, the
total number of expected candidate events is 3.9× 106 in the νPRISM detector [108]. We have applied
the fast Fourier transform method shown in Section 6.4 to determine the sensitivity of INGRID and
νPRISM to the Lorentz violation. It assumes no correlation between the SME parameters, in order to
show the raw sensitivity of the future T2HK experiment. We have summarised the parameter values
in Table 6.14 for both the detectors. It corresponds to the parameter value at which the no sidereal
variation hypothesis is rejected with 3σ confidence level. One observes first the highest sensitivity
on the cαβµµ parameters is clearly deduced from INGRID, as we forecast. As for the aαµµ parameters,
one observes that the highest sensitivity is given by νPRISM. It is expected since these coefficients
are not enhanced by the energy, and therefore, only statistics and baseline increase the sensitivity.
In particular, one observes that the sensitivity on the aαµµ parameters overcomes MINOS one (see
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Figure 6.46: The νµ variation with local sidereal phase in the example of the aX
µµ = 4.0 GeV (left), which

correspond to this analysis 3σ sensitivity to this parameter. On the right, the associated FFT is shown. The red
line correspond to the threshold =0.026 studied in the previous Section.
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Figure 6.47: νµ event rate versus LSP for day (left) and night (right) data samples.

Table 6.1), and will correspond to the world leading constraints. The constraint on cαβµµ may be finally
increased in the future using an energy dependent study as we presented in previous section.
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Figure 6.48: Fourier magnitudes for the data corresponding to day (left) and night (right) time period. The red
line indicates the value corresponding to the 3σ detection threshold.
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Figure 6.49: Fourier magnitudes for the data corresponding to day (left) and night (right) time period before any
corrections were applied to INGRID data. The red line indicates the value corresponding to the 3σ detection
threshold.
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Horizontal modules 0 1 2 3 4 5 6
Closs × 1015 0.87 1.06 1.13 1.22 1.32 1.22 0.92

Vertical modules 7 8 9 10 11 12 13
Closs × 1015 0.81 1.00 1.05 1.22 1.19 1.09 0.71

Table 6.6: Event loss constant estimated in [62] for a 250 kA horn current, using the standard INGRID selection
for Run 1 to 3. The statistical error on each constant is 0.05 × 10−15.

T2K run Run 1 Run 2 Run 3 Run 4
Correction (horizontal) 1.006 1.000 1.008 1.002

Correction (vertical) 1.002 1.001 1.003 1.002

Table 6.7: Correction factor to apply to each event according to its run number and module (vertical or hori-
zontal).

T2K run Run 1 Run 2 Run 3 Run 4 2012 Run 4 2013
Correction 1.033 ± 0.003 1.006 ± 0.003 1.007 ± 0.003 0.995 ± 0.004 1.

Table 6.8: Correction factor to apply to each event according to its run number, due to event rate variations
between runs. The ±1σ error is shown, taking into account error on Run 4 2013 event rate.

Source Systematic uncertainty (%)
Pile-up 0.01

MPPC dark noise 0.01
MPPC gain variation 0.06

Beam position 0.03
Rate correction 0.05
Total systematic 0.08

Table 6.9: Summary of systematic uncertainties coming from time-dependent effects, to be compared with a
statistical uncertainty of 0.3%.

Table 6.10: SME 3σ sensitivity to each coefficients using the FFT method.
×10−20 ×10−20

aX
L 4.8 GeV aY

L 4.8 GeV
cT X

L 0.9 cTY
L 0.9

cXX
L 3.8 cXY

L 1.6
cXZ

L 3.1 cYY
L 3.8

cYZ
L 3.1

Table 6.11: FFT results.
Fourier Mode Threshold Magnitude p-value

1 0.026 0.01076 0.35
2 0.026 0.00930 0.48
3 0.026 0.00620 0.69
4 0.026 0.00893 0.51

Table 6.12: Best fit values and 1σ errors on the different SME parameters using the likelihood method.
C Ac As Bc Bs

Best fit (GeV) (2.4 ± 3.8) × 10−20 (1.4+1.8
−2.4) × 10−20 (−0.4+1.1

−3.2) × 10−20 (2.7+5.1
−9.8)) × 10−21 (0.7+5.3

−4.8)) × 10−21
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Figure 6.52: Projection of the 5-coefficient fit results in the Ac, As coefficient space. The best fit point is marked
in black, with 1σ and 2σ contours shown in red and blue.
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Figure 6.53: Projection of the 5-coefficient fit results in the C, Ac coefficient space. The best fit point is marked
in black, with 1σ and 2σ contours shown in red and blue.

Table 6.13: Energy spectrum properties for INGRID different modules. Module’s number is shown in Fig-
ure 6.22.

Modules 0/6/7/13 Modules 1/5/8/12 Modules 2/4/9/11 Modules 3/10
Mean (GeV) 2.7 GeV 2.6 GeV 2.6 GeV 2.6 GeV

Main peak position (GeV) 1.2 GeV 1.3 GeV 1.5 GeV 1.6 GeV
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Figure 6.54: Projection of the 5-coefficient fit results in the C, As coefficient space. The best fit point is marked
in black, with 1σ and 2σ contours shown in red and blue.
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Figure 6.55: Correlations matrix between the fitted coefficients.

Table 6.14: SME 3σ sensitivity to each coefficients using the FFT method for the T2HK near detectors. IN-
GRID is shown in red (along to the current value) and νPRISM in blue.

×10−20 ×10−20

aX
L 4.0 GeV→ 2.1 GeV 1.0 GeV aY

L 4.0 GeV→ 2.1 GeV 1.0 GeV
cT X

L 0.8→ 0.5 0.8 cTY
L 0.8→ 0.5 0.8

cXX
L 3.1→ 2.0 3.5 cXY

L 1.6→ 1.0 1.7
cXZ

L 2.3→ 1.6 2.8 cYY
L 3.1→ 2.0 3.5

cYZ
L 2.6→ 1.6 2.8
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Conclusion

D
uring the first half of the twentieth century, the model of particle physics has been highly
improved until the Standard Model was born in the sixties. The second half of this century
has seen a multitude of experimental confirmations of this model, though it is known to

be incomplete. In particular, this model cannot describe the gravitational interaction. At the end
of the twentieth century, it was experimentally proved that neutrino oscillates, which contradicts the
Standard Model predictions. The singular neutrino particle has been therefore intensively studied as a
potential entrance to physics beyond the Standard Model. In the last fifteen years, the mixing angles
and squared mass differences that rule the neutrino oscillations have therefore been measured in vari-
ous sectors as solar, atmospheric, reactor and accelerator neutrino experiments. The T2K experiment
was built in order to measure the very last mixing angle, θ13. The CHOOZ experiment having shown
this angle is very small as compared to others, it was investigated if θ13 has a non zero value which
is necessary for any CP violation to occur in the lepton sector. In 2012, the Daya Bay and Reno
experiments have provided the first observation of a non zero value of this angle. This result was
confirmed by the T2K measurement in 2013. Moreover, the tension between these results has open
the possibility of a large CP violation effect. Since the CP violation effect only arises through neutrino
appearance channel, it cannot be observed in the high precision reactor experiments. In the current
generation of experiments, only T2K and Noνa have therefore the sensitivity to significantly constrain
the CP violation effect. Though next generation experiments are under preparation, none of them
will be installed in a short term period.
In this context, the reduction of the uncertainties on the existing experiment is absolutely crucial. As
for T2K, the cross section uncertainties dominate and limit the sensitivity not only to CP violation,
but also to the accurate measurements of the atmospheric parameters θ23 and ∆m2

32. This thesis work
is therefore focused on the measurement of muon neutrino cross section to reduce the model uncer-
tainties. This measurement has been performed with the on-axis proton module of the T2K INGRID
detector, whose target is the same as the off-axis ND280 detector.
As a first step, we calibrated the on-axis detector. In particular, our studies and the future ones require
particle identification based on the charge deposition. In this thesis, we have provided a full charge
deposition calibration in the INGRID and proton module detectors. Moreover, we have measured an
optical cross-talk between the scintillators which has been removed in these analyses.
In addition, we have finalised the study of a setup, called the “cone generator”, that was initially
constructed prior to this thesis to study the π0 background in νe appearance in Super-Kamiokande.
We have corrected and evaluated the main limitations of this setup. It allowed to perform a calibration
study of the Super-Kamiokande detector, and to identify the simulation deficit of the light reflection
on Super-Kamiokande wall. It has also shown an imperfect tuning of the dark noise charge, as a check
of Super-Kamiokande uniformity with direction and height. However, the remaining uncertainties pre-
vent this device from being used in the π0 background study, and a simpler device should be designed
if one want to perform this study in Super-Kamiokande or future Hyper-Kamiokande detectors.
Using the INGRID and proton module calibration, we have measured the first double differential cross
section in the on-axis detector, according to the outgoing muon variables. It leads both to reduce the
cross section model uncertainties, and to maximise the constraints on models compared to non differen-
tial studies. We confirmed the latest results on neutrino cross section measurements, as in MiniBooNE
or MINOS experiments. In particular, we have shown that this result is in tension with the former
measurements on light targets, and predicts a higher axial mass value MA = 1.33 ± 0.17 GeV.c−2. We
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have shown the tension is removed when nuclear collective effects are taken into account, which leads
to an axial mass MA = 1.11± 0.17 GeV.c−2 in agreement with the former experiments. It confirms the
MiniBooNE predictions and indicates the nuclear effects should be taken into account from now on.
In the medium term, these results can be used directly as an additional constraint to ND280 neutrino
cross section to reduce the systematic error on the neutrino flux prediction in the Super-Kamiokande
experiment. Moreover, this study can be used for the incoming WAGASCI detector, to drastically
reduce these systematic errors.
Finally, in this thesis we propose the first Lorentz invariance violation search in T2K. We focus on the
impact of Planck scale Lorentz violation effects on the near detector INGRID, which was chosen for
its very high statistics. The neutrino oscillation is used as a very sensitive probe for beyond Standard
Model effects that are predicted in most of the theories. We have developed the first selection to
discriminate between νµ and oscillated νe in the on-axis detector. Using two different methods, we
observed no discrepancy between the INGRID data and the standard neutrino oscillation scenario. We
have finally shown the sensitivity improvement in the near detectors of the Tokai-to-Hyper-Kamiokande
project, which will allow to probe potential Lorentz invariance violation that has occured earlier in
the cooling process of the Universe (& 1020 GeV).

274



Appendix A

Cone generator systematic errors and tables

A.1 Systematic error estimation

I
n this appendix, we give an overview of systematic errors coming both from SK data and
MC. Since the MC is based on Photon Flux (PF) data, errors associated to PF data taking
should be taken into account. Errors from SK data set and coming from PF measurement

are detailed in the followings subsections. They are evaluated for a typical run (vertex at z=0 m, +y
direction) in this section, but errors for additionnal runs are summarized in Tables A.1 and A.2.

A.1.1 Evaluation of systematic errors for SK data set

Reconstructed position and direction of the CG

As previously explained, this error is evaluated from the locator data. Moreover, since errors on posi-
tion and direction are deduced from the locator vertex reconstruction, there are 100% correlated. To
take this effect into account, we changed the vertex position within the 1σ error and the reconstructed
position is deduced as the direction between this vertex and the locator spot (in CG direction). The
impact on charge profile is shown in Figure A.1 and is within 3% in most of the bins, confirming that
vertex resolution of locator is sufficient. This error has a large impact only on directions far from the
CG main direction (at 180◦). The reason is the impact of a PMT migration from one bin to another is
high at 180◦, since these bins contain very few PMTs due to the small solid angle. In first order, this
error shows the geometrical impact of the SK detector on the charge profile, particularly its discrete
PMTs distribution.

Shift between Locator and CG direction

As shown in the Chapter 3, there is probably a mechanical shift between Locator and CG vessel of
around 0.7◦, together with a foward cone shift which creates a small direction shift. We decided that the
best way to estimate this error was as a constant shift between Locator and CG directions. Though it
doesn’t represent the complexity of a foward cone shift (charge asymmetry, width differences, direction
shift), it remains a good estimator to evaluate the impact on the direction shift it creates. Moreover,
this error is uncorrelated to the previous one and so, can be added quadratically. The impact on
charge profile is shown in Figure A.2 and is within 3% in most of the bins. For the same reason as
errors on vertex and direction, the impact of the shift between locator and CG direction is high at
small and high angles because of important impact on PMTs migration from one bin to another.

Stability of the data

We will use data sets measured in similar nominal conditions (altitude and direction) to check the
evaluation of systematic errors, and the goodness of our systematic error list. However, these data do
not allow to check a possible bending of the optical fiber between runs at different directions, since
we didn’t rotate the CG vessel differently in these different runs. Moreover, we haven’t taken into
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Figure A.1: 1σ error on Vertex position and Locator direction on charge profile
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Figure A.2: Effect of a 0.7◦ shift between CG and Locator direction on charge profile
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A.1. SYSTEMATIC ERROR ESTIMATION

account the laser intensity stability, which we associated to the MC. As can be seen on Figure A.3,
the two data sets agree within the systematic error bars, despite 2 σ fluctuations around the peak (at
25◦ for example). This confirms the laser intensity stability, and also, the reliability of the estimated
errors.
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Figure A.3: Charge profiles comparison between 2 runs at the same nominal conditions (height, direction) but
at different time. Both statistic and systematic errors are shown.

Since the laser is always shutdown before the data taking at different heights, and realigned after,
the use of the 8 meters data should give relevant information. At this altitude, we took another data
set (run 68739) before finishing the data taking at SK, after runs at +16 m and 0 m. A comparison
between these 3 runs could provide also a good check of the laser stability after a shutdown. The
comparison between these 3 runs displayed on Figure A.4, shows a very good agreement between these
different directions, and confirms both the stability of our laser diode and the reproducibility of our
measurement.
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Figure A.4: Data stability check: Charge Profile Comparison of two data sets at the same nominal conditions
(height, direction) but after having shutdown the laser in between.

A.1.2 Evaluation of systematic errors coming from photon flux measurement

All the detailed effects of each error estimation are summarized in Table A.2.
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Statistical Error from the pedestal measurement

As described in Chapter 3, the pedestal measured without photon in sequential data is in good
agreement with the special “pedestal data”. Moreover, no time variation were observed during the
data taking, as shown on Figure 3.12. We decided to use the sequential data (high statistics) to
estimate the pedestal value and its error (statistical error). The effects on the charge profile can be
seen on Figure A.5 and is within 1% in almost all the angular region.
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Figure A.5: Pedestal error effect on charge profile for a 1σ change in the pedestal value. The effect on the peak
region is less than 1%

Laser intensity stability

The laser intensity has been found to be stable in time (see Chapter 3). To estimate the error associated
to this stability, we decided to use the total charge emitted with time. We remind that a special data
set, “stability data”, is used for this purpose. Using this data set, we fit the charge time dependence
with a degree one polynomial and implement this variation in the photon flux generation. This is
a maximization of the laser intensity error (which can be alternatively evaluated with errors on the
order 0 polyomial fit). The impact on charge profile of this light intensity variation (Figure A.6) is
very small, which reflects the laser intensity stability (below 1% in the peak region).

CG Vessel shift

The error on the CG vessel horizontal shift is estimated as the fitting error on the “CGV offset data”,
as described on Figure 3.15. Given the poor χ2 value, we decided to take it into account by multiplying
the fitting error by

√
χ2, which is correct for a linear fit and remains a good estimation for a gaussian

fit. The impact on charge profile is shown on Figure A.7. The effect is small in the main peak and
the backward region (< 2%) but high on the peak edge (angle from CG direction ∼ 15◦ or ∼ 60◦) due
to peak shift.

PMTV motor offset

The systematic error on the PMTV motor offset was estimated using January 2011 photon flux data
by applying the same procedure shown here for CGV=22◦ (Figure 3.14) for other different CGV angle
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Figure A.6: Linear variation of laser intensity effect on charge profile for a degree one polynomial
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Figure A.7: CG vessel shift error effect on charge profile. We changed the CG Vessel shift value by ± 1σ in
the error. The impact on the charge profile is under 1% in the main peak region, though about 4% an 6% in the
inner and outer peak regions respectively
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values and evaluating the standard deviation of these measurements from the average PMTV offset
measured, shown in Figure A.9. It is not possible to reproduce this systematic error study done with
January 2011 photon flux data using the May 2011 photon flux data because there is not enough ADC
counts at other values of CGV to reasonably fit (3.3.1). Indeed, the probability that light reflects at
the wall of the cone shaped channel of the CG vessel is smaller when the CG vessel is under water than
in the air, because refraction index of Delrin plastic is closer to water than air one1. This estimation
method is probably conservative, given we used reflected light which statistical error is higher than
for direct light. However, we have still not tried to further reduce this uncertainty given the need to
improve the fitting function which is put in evidence by the poor reduced χ2 value. The impact on
charge profile is shown on Figure A.8. We can clearly distinguish a shift in direction, which represents
a 3% impact on the peak region, and a smaller one on the backward region.
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Figure A.8: Effect of the PMTV motor offset error on charge profile. We changed the PMTV offset value for
± 1σ. The impact on the charge profile is around 3% in the peak region

Statistical fluctuation of the PMT light collection

The PMT light collection has statistical fluctuations for each angle set (CGV, PMTV, PMTH). Since
the number of ADC counts is low in the backward and front regions, we expect the associated statistical
error to be larger in those regions. To estimate the impact of such an uncertainty, we decided to
generate a random number with a gaussian distribution with (µ, σ) = (< ADC >, <ADC>√

ADC
) for each

angle set, and to generate several MC. To estimate number of MC needed, we estimated how likely
it is that for all angles, there is never a random number deviated more than 1 σ from the mean. We
decided to generate enough MC so that this probability is lower than 1 %. The required number of
MCs needed should be higher than 22. We decided to generate 22 MC and to use the wrapping of the
differences with the default MC as an estimation of this error. The impact of one of this MC is shown
on Figure A.10, while the effect of all MCs is described in Tables A.1 and A.2. The quantitative impact
can rise to ∼ 7% for some bins in the edge of the light peak, showing that statistical fluctuations of
the PMT light collection is one of the main systematic error.

1This is explained by the Fresnel equations.
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Table A.1: Systematic Error estimated for each bin for the Run 68718 (16 m, +Y direction). We represented
the lower and upper values of 1σ error (lower error bound, upper error bound) in percent.

Angle Pedestal Laser
Inten-
sity

CG
Vessel
shift

PMTV
offset

PMT
light
col.

Total
MC

2.5 (0, 3) (0, 4) (0, 5) (0, 3) (3, 6) (3, 9)
7.5 (0, 0) (2, 0) (3, 0) (3, 0) (6, 0) (8, 0)
12.5 (0, 0) (1, 0) (0, 0) (3, 2) (7, 1) (8, 3)
17.5 (0, 0) (1, 0) (0, 1) (2, 2) (3, 2) (3, 3)
22.5 (0, 0) (0, 0) (0, 1) (2, 2) (1, 1) (2, 3)
27.5 (0, 0) (0, 1) (0, 0) (1, 2) (0, 1) (1, 3)
32.5 (0, 0) (0, 0) (0, 0) (1, 0) (1, 1) (1, 1)
37.5 (0, 0) (0, 0) (0, 1) (1, 2) (0, 2) (1, 3)
42.5 (1, 0) (0, 0) (1, 0) (2, 2) (1, 1) (3, 2)
47.5 (0, 0) (0, 0) (2, 1) (2, 1) (2, 1) (3, 2)
52.5 (0, 0) (0, 0) (0, 4) (2, 2) (3, 3) (4, 5)
57.5 (0, 1) (0, 0) (5, 6) (2, 2) (4, 2) (7, 7)
62.5 (0, 2) (1, 0) (3, 2) (2, 2) (5, 5) (6, 6)
67.5 (0, 1) (0, 1) (2, 0) (1, 2) (0, 4) (2, 5)
72.5 (0, 0) (1, 0) (3, 0) (0, 0) (1, 3) (3, 3)
77.5 (0, 1) (0, 0) (3, 0) (0, 1) (0, 2) (3, 3)
82.5 (0, 1) (0, 0) (3, 0) (0, 1) (0, 2) (3, 2)
87.5 (0, 0) (0, 0) (5, 0) (0, 1) (1, 1) (5, 2)
92.5 (0, 1) (1, 0) (6, 0) (0, 2) (1, 1) (6, 3)
97.5 (0, 0) (0, 0) (7, 0) (0, 2) (1, 1) (7, 2)
102.5 (0, 0) (0, 0) (9, 0) (1, 1) (1, 1) (9, 2)
107.5 (0, 0) (1, 0) (14, 0) (1, 0) (1, 1) (14, 1)
112.5 (0, 0) (0, 1) (14, 0) (0, 2) (0, 2) (14, 2)
117.5 (1, 0) (0, 0) (18, 0) (3, 0) (2, 1) (19, 1)
122.5 (0, 0) (1, 0) (12, 0) (1, 1) (1, 0) (12, 1)
127.5 (0, 0) (0, 0) (6, 0) (1, 1) (1, 1) (7, 1)
132.5 (0, 1) (0, 1) (4, 0) (0, 1) (0, 3) (4, 3)
137.5 (1, 0) (0, 0) (6, 0) (0, 0) (3, 0) (7, 0)
142.5 (0, 0) (0, 1) (3, 0) (0, 1) (1, 2) (3, 3)
147.5 (3, 0) (0, 0) (5, 0) (1, 0) (3, 1) (7, 1)
152.5 (0, 1) (0, 0) (3, 0) (0, 2) (3, 5) (4, 5)
157.5 (3, 0) (0, 0) (3, 0) (0, 0) (1, 4) (5, 4)
162.5 (4, 0) (0, 1) (7, 0) (3, 0) (2, 3) (9, 3)
167.5 (1, 0) (0, 2) (5, 0) (0, 4) (2, 6) (6, 7)
172.5 (0, 0) (0, 0) (6, 0) (0, 4) (1, 5) (6, 6)
177.5 (11, 0) (8, 0) (8, 0) (5, 0) (11, 0) (20, 0)

Shift of direc-
tion

Rec. CG ver-
tex/direction

Total
Data
Error

(0, 0) (1, 1) (1, 1)
(0, 0) (1, 0) (1, 0)
(0, 0) (1, 3) (1, 3)
(1, 0) (1, 3) (2, 3)
(4, 0) (2, 1) (4, 1)
(0, 3) (1, 2) (1, 3)
(3, 0) (3, 7) (5, 7)
(0, 15) (8, 7) (8, 17)
(6, 0) (14, 3) (15, 3)
(8, 0) (5, 0) (9, 0)
(1, 0) (10, 15) (10, 15)
(0, 1) (1, 2) (1, 2)
(2, 0) (1, 0) (2, 0)
(1, 0) (3, 0) (3, 0)
(0, 2) (2, 4) (2, 4)
(1, 0) (0, 2) (1, 2)
(0, 1) (1, 1) (1, 1)
(0, 1) (4, 2) (4, 2)
(2, 0) (2, 4) (3, 4)
(0, 1) (0, 2) (0, 2)
(1, 0) (2, 2) (2, 2)
(0, 0) (1, 1) (1, 1)
(0, 2) (1, 1) (1, 2)
(0, 0) (2, 1) (2, 1)
(0, 0) (3, 1) (3, 1)
(2, 0) (2, 3) (3, 3)
(5, 0) (3, 0) (5, 0)
(0, 2) (1, 3) (1, 4)
(0, 1) (4, 1) (4, 2)
(0, 3) (0, 4) (0, 5)
(5, 0) (5, 2) (7, 2)
(0, 5) (2, 2) (2, 6)
(1, 0) (0, 4) (1, 4)
(0, 1) (2, 1) (2, 1)
(0, 0) (4, 2) (4, 2)
(1, 0) (6, 6) (6, 6)
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Table A.2: Systematic Error estimated for each bin for the Run 68696 (0 m, +Y direction). We represented the
lower and upper values of 1σ error (lower error bound, upper error bound) in percent.

Angle Pedestal Laser
Inten-
sity

CG
Vessel
shift

PMTV
offset

PMT
light
col.

Total
MC

2.5 (0, 8) (0, 8) (0, 8) (0, 3) (13, 52) (13, 54)
7.5 (2, 0) (2, 0) (3, 0) (4, 0) (7, 1) (9, 1)
12.5 (0, 0) (2, 0) (1, 0) (4, 1) (9, 5) (10, 5)
17.5 (0, 1) (1, 0) (1, 0) (2, 2) (3, 4) (4, 5)
22.5 (0, 0) (0, 0) (0, 1) (2, 3) (1, 1) (2, 3)
27.5 (0, 0) (0, 0) (1, 0) (2, 2) (2, 1) (3, 3)
32.5 (0, 0) (0, 1) (0, 0) (0, 0) (0, 1) (0, 2)
37.5 (1, 0) (0, 0) (0, 0) (2, 1) (1, 1) (2, 2)
42.5 (1, 0) (0, 0) (2, 0) (2, 1) (1, 0) (3, 1)
47.5 (1, 0) (0, 0) (2, 0) (2, 2) (3, 1) (4, 2)
52.5 (0, 0) (0, 0) (0, 4) (3, 2) (3, 4) (4, 6)
57.5 (0, 1) (0, 1) (5, 7) (1, 2) (4, 4) (6, 8)
62.5 (0, 2) (0, 1) (3, 2) (1, 2) (4, 7) (5, 8)
67.5 (1, 1) (0, 0) (0, 1) (1, 1) (1, 3) (2, 4)
72.5 (1, 1) (1, 0) (0, 0) (0, 1) (0, 2) (1, 3)
77.5 (0, 0) (0, 0) (0, 1) (0, 1) (1, 1) (1, 2)
82.5 (0, 0) (0, 1) (0, 1) (1, 1) (1, 1) (2, 2)
87.5 (0, 2) (0, 1) (0, 2) (0, 2) (0, 2) (0, 4)
92.5 (0, 1) (0, 0) (1, 0) (0, 0) (1, 1) (1, 1)
97.5 (0, 1) (0, 0) (0, 2) (0, 1) (0, 2) (0, 3)
102.5 (0, 2) (0, 1) (0, 2) (0, 1) (0, 3) (0, 4)
107.5 (0, 0) (0, 0) (1, 0) (0, 0) (2, 1) (2, 1)
112.5 (1, 1) (0, 0) (0, 0) (0, 1) (2, 2) (2, 2)
117.5 (0, 1) (0, 0) (0, 2) (0, 1) (0, 2) (0, 3)
122.5 (1, 0) (1, 0) (1, 0) (1, 0) (3, 1) (4, 1)
127.5 (0, 0) (0, 1) (1, 0) (1, 0) (2, 1) (2, 1)
132.5 (0, 0) (0, 1) (0, 0) (1, 1) (1, 2) (2, 2)
137.5 (0, 1) (0, 0) (0, 2) (1, 1) (0, 1) (1, 2)
142.5 (0, 1) (0, 0) (0, 1) (0, 2) (2, 2) (2, 4)
147.5 (0, 2) (0, 1) (0, 1) (0, 2) (0, 3) (0, 4)
152.5 (0, 0) (1, 0) (1, 0) (0, 1) (2, 1) (3, 2)
157.5 (0, 1) (0, 0) (1, 1) (0, 2) (2, 3) (2, 3)
162.5 (0, 3) (0, 1) (0, 3) (0, 2) (0, 4) (0, 6)
167.5 (0, 0) (3, 0) (0, 1) (0, 0) (6, 2) (7, 2)
172.5 (0, 4) (0, 0) (2, 1) (1, 0) (6, 4) (6, 5)
177.5 (10, 0) (10, 0) (5, 0) (8, 0) (25, 0) (30, 0)

Shift of di-
rection

Rec.
CG ver-
tex/direction

Total
Data
Error

(0, 81) (0, 0) (0, 81)
(0, 1) (0, 2) (0, 2)
(0, 1) (2, 0) (2, 1)
(0, 2) (1, 1) (1, 2)
(1, 0) (1, 1) (1, 1)
(3, 0) (0, 1) (3, 1)
(0, 1) (0, 1) (0, 1)
(2, 0) (1, 0) (2, 0)
(1, 0) (0, 1) (1, 1)
(3, 0) (1, 0) (3, 0)
(1, 0) (0, 2) (1, 2)
(2, 0) (1, 0) (3, 0)
(0, 2) (0, 2) (0, 3)
(2, 0) (1, 0) (2, 0)
(0, 0) (0, 1) (0, 1)
(1, 0) (0, 1) (1, 1)
(2, 0) (1, 1) (2, 1)
(0, 0) (1, 1) (1, 1)
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A.1. SYSTEMATIC ERROR ESTIMATION
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Figure A.9: Value of λoffset (see equation (3.3.1)) fitted using the PMTV distribution of ADC with pedestal
subtracted for different values of CGV, with PMTH=0◦ always. Error bars show the fit uncertainty calculated
by ROOT. These fits used photon flux data taken at January 2011, therefore the measured value of λoffset is not
exactly the same as the one measured with the usual (May 2011) data set. The standard deviation of the fitted
value of λoffset of the above fits is of 0.113◦±0.021◦.
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Figure A.10: Effect of a fluctuation of the PMT light collection. For each angle configuration, we randomly
choose the ADC value according to a gaussian distribution whose mean is the mean ADC value and σ is the
statistical uncertainty of the mean value. We decided to draw here the comparison with only one of these
configurations. The effect of all the 22 configurations we used is around −2% in the peak region
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Appendix B

Timing calibration of the INGRID detector

I
n order to discriminate between the various hypotheses, we have checked if the anomaly
in the low charge region was correlated with signal. To do so, we have performed a time
calibration of the INGRID detector. Three different effects have been considered:

1. Mean tdc difference between the different TFB electronics boards: all the channels in one tracking
plane are connected to the same TFB.

2. Time walk correction. The timing of the hit registered by the detector is the tdc at which
the integrated charge in a channel overcomes a given threshold. In the case of a high charge
deposition, this threshold is overcome more quickly than for low charge deposition hit. The latter
may require additional noise to effectively cross the threshold. The tdc value for low charge hits
is therefore expected to be lower in average than for high charge hits.

3. Propagation of light in fiber.

We haven’t taken into account the fiber attenuation in this calibration. Considering the speed
of light in polystyrene (∼ c

1.55), the time difference that occurs for the propagation in ±0.6 m is
∆t = ±3 ns. Considering the TFB (up to 12 ns) and time walk (can reach 20 ns) leading corrections
shown on Figure B.1, we have neglected the time propagation in the optical fiber.

B.1 TFB mean time difference:

We have first evaluated the time difference between the TFB. In order to measure these differences,
we used a sand muon sub-sample which is only composed of sand muons passing through the front
plane of the PM and escaping from the last PM plane. This sample is then named as “through-going
sand muon” sample. This allows to correct both the different calibration between TFB but also to
correct the time difference due to particle propagation from the front to the most downstream plane
of the PM. For each track, we chose the average tdc value of the front plane as the reference time to
compare different tracks. The result is shown on Figure B.1 for the 18 TFB (gathering two tracking
planes) of the PM. At first order, one can observe a nearly 12 ns shift between all tracking planes
and the third and the eighteenth planes. This shift corresponds to a difference in TFB relative tdc
calibration. This effect can be also observed in the first plane compared to the others showing a 2 ns
shift. On top of this, one notices a glogal 1 ns shift from the second to the seventeenth plane which is
due to the particle propagation. In the time calibration we used, we correct each average hit measured
in each plane by the average TFB tdc value shown on Figure B.1.

B.2 Time walk:

The time walk effect has been evaluated using the hits belonging to the tracks of through going sand
muon sub-sample defined above. TFB relative mean tdc difference has been first corrected. The time
reference used was the average time over all hits of the front plane of the PM. The tdc value as a
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APPENDIX B. TIMING CALIBRATION OF THE INGRID DETECTOR
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Figure B.1: TFB timing and time walk corrections in the PM. The time walk effect shown here has been studied
using SciBar scintillator types.

Time  TRef (ns)
100 50 0 50 100

C
h

a
rg

e
/H

it
 (

p
.e

)

0

10

20

30

40

50

60

70

80

90

100

TimeXPEOV_Sci_Track

Entries  173507
Mean x    3.6
Mean y   37.31
RMS x   9.275
RMS y   19.25

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

TimeXPEOV_Sci_Track

Entries  173507
Mean x    3.6
Mean y   37.31
RMS x   9.275
RMS y   19.25

(a) Without time calibration

Time  TRef (ns)
100 50 0 50 100

C
h

a
rg

e
 /

 H
it

 (
p

.e
)

0

10

20

30

40

50

60

70

80

90

100
TimeXPEOV_Sci_Track

Entries  173507
Mean x  0.1807
Mean y   37.31
RMS x    6.79
RMS y   19.24

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

TimeXPEOV_Sci_Track

Entries  173507
Mean x  0.1807
Mean y   37.31
RMS x    6.79
RMS y   19.24

(b) With time calibration

Figure B.2: Comparison between the hits charge and time distributions after having applied the time calibration.

function of the charge deposition in a hit is shown on Figure B.1. This effect is clearly the dominant
source that should be calibrated, since one can observe a nearly 27 ns difference between timing of
low charge (∼ 5 p.e) and high charge (> 80 p.e) hits. We added to the TFB time correction this time
walk correction by subtracting the time shift shown on Figure B.1 depending on the charge of the hit.

We show the time calibration effect on hit timing on Figure B.2 for the sand muon sample only.
Most of the bias is corrected using the time calibration since the mean tdc value is changed from
−3.6 ns before the calibration is applied to 0.2 ns after. Moreover, one observes that the time shift
for the different hit charges seems to have a similar average which validates the time walk correction.
Finally, the relative calibration between the different hits is improved by observing that the timing
spread (root mean square value) is changed from 9.3 ns to 6.8 ns applying the time calibration. This
validates the effectiveness of the calibration and we will then use it for the neutrino event sample.
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Appendix C

Calculation of the neutrino cross section on a
free quark

C.1 Basics of the cross section

T
he cross section of an interaction has the dimension of a surface. This is analogous to the
image of an incoming particle (1) having a radius r1 impacting a surface S of a target made
of particles (2) of radius r2 and containing n2 particles per unit of volume. One can see that

2 particles may interact only if the distance between their centres is lower than r1 + r2. The interaction
between these two particles can be treated equivalently using an incoming point particle (1) and an
equivalent target made of particles (2) of radius r1 + r2, whose area is called σ = π(r1 + r2)2. The
interaction of an incoming particle (1) with the whole target can be described with the probability of
an interaction to occur. The probability of interaction is given by the number of particles (2) seen by
(1) times the fraction of the total surface S represented by a particle (2), namely σ

S . If the particle
(1) travels at speed |~v1|, it will go through a region with n2S |~v1|dt particles (2) of the target. The
probability of interaction dP is then:

dP = n2S |~v1|dt
σ

S
= n2|~v1|dtσ. (C.1.1)

Therefore, the interaction rate is:

Σ =
dP
dt

= n2|~v1|σ. (C.1.2)

In particle physics, one may like to study not only the case of a single incoming particle (1) but a
beam hitting a target. Let n1 be the particle density of the incoming beam. The rate estimated in
Eq C.1.2 is therefore multiplied by the number of possible interacting particles of the beam in the
volume V intersecting the target. One obtains:

σ =
Σ

N2φ
=

number of interactions per unit time per nucleon

flux of incident particles
(C.1.3)

where φ = n1|~v1| is the flux of the incoming particles and N2 = n2V the number of particles in the
effective target. Note that this calculation has been done assuming a fixed target. The flux may be
re-defined as φ = 1

V |~v1| using n1 = 1
V . In the most general case of a non-fixed target, one only has to

replace φ = 1
V |~v1| by φ = 1

V |~v1 − ~v2|. The cross section is then defined as:

Σ = n2|~v1 − ~v2|σn1V = σN2φ. (C.1.4)

The interaction rate per unit time from an initial state |i〉 made of ni particles to a final state | f 〉
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APPENDIX C. CALCULATION OF THE NEUTRINO CROSS SECTION ON A FREE QUARK

made of n f particles may be defined using the transition rate as shown in [109] as:

dΣi→ f = V1−ni(2π)4δ(4)(
n f∑
j=1

p′j −
ni∑

i=1

pi)|M f i|
2

ni∏
i=1

1
2Ei

n f∏
j=1

d3 ~p′j
(2π)32E′j

(C.1.5)

dΣ2→2 = V−1(2π)4δ(4)(p′1 + p′2 − p1 − p2)|M f i|
2 1

4E1E2

d3 ~p′1d3 ~p′2
(2π)64E′1E′2

in case of ni = 2 = n f (C.1.6)

with V the volume of 3-space and M f i the Lorentz invariant scattering amplitude that we will compute
using Feynman diagram and rules. With our notation, p’,E’ correspond to the momentum and energy
of outgoing particles, while p,E correspond to the momentum and energy of incoming particles. In
the case of a CCQE interaction defined in Figure C.1 where n f = 2 = ni, one can use in Eq C.1.6 the
interaction rate Σ estimated in Eq C.1.3 :

dσ =
dΣ2→2

N2φ
=

1
4E1E2| ~v1 − v2|

(2π)4δ(4)(p′1 + p′2 − p1 − p2)|M f i|
2 d3 ~p′1d3 ~p′2

(2π)64E′1E′2
. (C.1.7)

One observes that neither the flux factor F = E1E2|~v1 − ~v2| and therefore, nor the differential cross
section are Lorentz invariants. Nevertheless, one shows by expressing ~vi

c2 as ~piEi that this factor is
Lorentz invariant in the case of 2 collinear beams (1) and target(2). In the particular case of a fixed
target, the cross section is therefore Lorentz invariant. In fact:

F = E1E2|
~p1

E1
−
~p2

E2
|

colin&opposed
= E1E2(

| ~p1|

E1
+
| ~p2|

E2
) = | ~p1|E2 + | ~p2|E1 (C.1.8)

in the case ~p1 and ~p2 are colinear and in opposite directions. It follows that:

F2 = | ~p1|
2E2

2 + | ~p2|
2E3

1 + 2| ~p1|E2| ~p2|E1. (C.1.9)

Moreover:
p1 p2

colin
= E1E2 + | ~p1|| ~p2| => (p1 p2)2 = E2

1E2
2 + | ~p1|

2| ~p2|
2 + 2E1E2| ~p1|| ~p2| (C.1.10)

We deduce: F2 − (p1 p2)2 = | ~p1|
2(E2

2 − | ~p2|
2) + E2

1(| ~p2|
2 − E2

2) = | ~p1|
2m2

2 − E2
1m2

2 = −m2
1m2

2.
Therefore, one obtains:

F =

√
(p1 p2)2 − (m1m2)2 (C.1.11)

and deduce the cross section formula in case of colinear particles (1) and (2):

dσ =
dΣ2→2

N2φ
=

1

4
√

(p1 p2)2 − (m1m2)2
(2π)4δ(4)(p′1 + p′2 − p1 − p2)|M f i|

2 d3 ~p′1d3 ~p′2
(2π)64E′1E′2

(C.1.12)

The Center of mass frame is defined by
∑ni

i=1
~p∗i = 0 =

∑n f

i=1
~p′i
∗, which leads in the case of 2 incoming

particles to ~p∗1 = − ~p∗2 => | ~p∗1| = |
~p∗2| = | ~p

∗| and for 2 outgoing particles | ~p′1
∗| = | ~p′2

∗| = | ~p′∗|. Therefore,

in the Center of mass frame, we have pi = (E∗i =

√
| ~p′∗|2 + m2

i , |
~p′∗|) for each incoming particle. It

follows from Eq C.1.11 that F = (E∗1 + E∗2)| ~p′∗| =
√

s| ~p′∗|. In the center of mass frame, one also deduces

δ(4)(p′1 + p′2 − p1 − p2) = δ(E′1
∗ + E′2

∗ −
√

s)δ3( ~p′1
∗ + ~p′2

∗) which turns Eq C.1.12 into:

dσ =
dΣ2→2

N2φ
=

1

4
√

s| ~p∗|(2π)2
δ(E′1

∗ + E′2
∗ −
√

s)δ3( ~p′1
∗ + ~p′2

∗)|M f i|
2 d3 ~p′1

∗d3 ~p′2
∗

4E′1
∗E′2

∗
. (C.1.13)

This Eq C.1.13 describes the cross section for a given initial state (p1, p2) to find outgoing particles

in a final state d3 ~p′1, d
3 ~p′2. In this chapter, we are interested in the cross section to find the outgoing

lepton in a given state, and don’t use information of the proton final state. Therefore, we decided to
integrate Eq C.1.13 over the kinematical space of the proton, and to express the final cross section
according to the lepton solid angle dΩ∗ = sin θ∗dθ∗dφ∗:
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dσ =
dΣ2→2

N2φ
=

1

4
√

s| ~p∗|(2π)2
δ(E′1

∗ + E′2
∗ −
√

s)|M f i|
2 d3 ~p′1

∗

2E′1
∗

∫ ∫ ∫
δ3( ~p′1

∗ + ~p′2
∗)

d3 ~p′2
∗

2E′2
∗

(C.1.14)

=
dΣ2→2

N2φ
=

1

4
√

s| ~p∗|(2π)2
δ(E′1

∗ + E′2
∗ −
√

s)|M f i|
2 d3 ~p′1

∗

2E′1
∗

1
2E′2

∗
(C.1.15)

=
dΣ2→2

N2φ
=

1

4
√

s| ~p∗|(2π)2
δ(E′1

∗ + E′2
∗ −
√

s)|M f i|
2 |
~p′∗|2d| ~p′∗|dΩ∗

2E′1
∗

1
2E′2

∗
in spherical coordinates.

(C.1.16)

One needs to integrate over the radius | ~p′∗| to obtain the cross section for a given solid angle:

dσ
dΣ2→2

N2φ
=

1

4
√

s| ~p∗|(2π)2

∫ +∞

| ~p′∗ |2=0
δ(

√
| ~p′∗|2 + m2

1 +

√
| ~p′∗|2 + m2

2 −
√

s)|M f i|
2 | ~p′∗|2d| ~p′∗|dΩ∗

4
√
| ~p′∗|2 + m2

1

√
| ~p′∗|2 + m2

2

.

(C.1.17)
We have integrated over the proton three-momentum, and would like not to integrate over the solid

angle, namely contained in ~e′1 =
~p′∗

| ~p′∗ |
. One can see that the total energy E′∗ = E′∗1 + E′∗2 is then

independent from the muon solid angle and we decided to change variables as:

E′∗ = E′∗1 + E′∗2 =

√
| ~p′∗|2 + m2

1 +

√
| ~p′∗|2 + m2

2 (C.1.18)

dE′∗ = | ~p′∗|2d| ~p′∗|

√
| ~p′∗|2 + m2

1 +

√
| ~p′∗|2 + m2

2√
| ~p′∗|2 + m2

1

√
| ~p′∗|2 + m2

2

(C.1.19)

which turns Equation C.1.17 into:

dσ
dΩ∗

=
dΣ2→2

N2φ
=

1

16
√

s| ~p∗|(2π)2

∫ +∞

E′∗=m′1+m′2

δ(E′∗ −
√

s)|M f i|
2 dE′∗

E′∗
| ~p′∗| (C.1.20)

which finally gives:
dσ
dΩ∗

=
dΣ2→2

N2φ
=

1
64(π)2s

|M f i|
2 |
~p′∗|

| ~p∗|
(C.1.21)

On the amplitude part, we just need to calculate |M|2.

C.2 Calculation of the amplitude

Using the Feynman rules (see [109] for example), the scattering amplitude M is simply:

M =
4
√

2
GF(uuγ

µ I − γ5

2
ud)(ulγµ

I − γ5

2
uνl) (C.2.1)

|M|2 =
1
2

∑
s1

1
2

∑
s2

∑
s′1

∑
s′2

|M|2 (C.2.2)

|M|2 =
1
2

∑
s1

1
2

∑
s2

∑
s′1

∑
s′2

16
2

G2
F(uuγ

µ I − γ5

2
ud)(ulγµ

I − γ5

2
uνl)(uuγ

ν I − γ5

2
ud)∗(ulγν

I − γ5

2
uνl)

∗ (C.2.3)

We can re-write the previous equation adding their component in spin state and noting Gµ = γµ
(I−γ5)

2 :

|M|2 =
1
2

∑
s1

1
2

∑
s2

∑
s′1

∑
s′2

16
2

G2
F((uu)a(Gµ)a

b(ud)b)((ul)c(Gµ)c
d(uνl)

d)((uu)e(Gν)e
f (ud) f )∗((ul)g(Gν)

g
h(uνl)

h)∗

(C.2.4)
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We used this notation because (uα)a and (Gα)a
b are scalar in both spinor space and spacetime. For this

reason, we can re-arrange the previous equation as:

|M|2 =
16
2

G2
F

1
2

∑
s2

∑
s′2

((uu)a(Gµ)a
b(ud)b)((uu)e(Gν)e

f (ud) f )∗
1
2

∑
s1

∑
s′1

((ul)c(Gµ)c
d(uνl)

d)((ul)g(Gν)
g
h(uνl)

h)∗

(C.2.5)

|M|2 =
16
2

G2
F Lµν(quark)Lµν(lepton) (C.2.6)

with:

Lµν(lepton) =
1
2

∑
s1

∑
s′1

((ul)c(Gµ)c
d(uνl)

d)((ul)g(Gν)
g
h(uνl)

h)∗ (C.2.7)

Lµν(quark) =
1
2

∑
s2

∑
s′2

((uu)a(Gµ)a
b(ud)b)((uu)e(Gν)e

f (ud) f )∗ (C.2.8)

Using these notation, we may like to contract spinors using the completeness relation:∑
s

usus = p + m ,
∑

s′
vs′vs′ = p − m (C.2.9)

For doing so, we will transform ((ul)g(Gν)
g
h(uνl)

h)∗ scal.
= ((ul)g(Gν)

g
h(uνl)

h)† = (((uνl)
h)†((Gν)

g
h)†(γ0)i

g(ul)i)
since it is a scalar in spinor space. Using the gamma matrices commutation properties ( [109] for

example), we deduce ((Gν)
g
h)†(γ0)i

g = (G†nuγ
0)i

h
commut.

= (γ0G†nu)i
h

Ghermit.
= (γ0Gnu)i

h = (γ0)g
h(Gnu)i

g.

We therefore obtain: ((ul)g(Gν)
g
h(uνl)

h)∗ = (((uνl)
h)†(γ0)g

h(Gnu)i
g(ul)i) = ((u†νlγ

0)g(Gnu)i
g(ul)i) = (uνl

g(Gnu)i
g(ul)i).

Using this relation, the leptonic part defined in Eq C.2.8 becomes:

Lµν(lepton) =
1
2

∑
s1

∑
s′1

((ul)c(Gµ)c
d(uνl)

d)(uνl
g(Gnu)i

g(ul)i) (C.2.10)

= (
∑

s′1

((ul)iul)c)(Gµ)c
d

1
2

∑
s1

(uνl
g(uνl)

d)(Gnu)i
g) (C.2.11)

since s′1 only affects ul and s1 uνl . Note we could not decompose the sum if it weren’t the case. The
leptonic component therefore can be transformed as:

Lµν(lepton) = (
∑
c,i

((ul)iul)c)(Gµ)c
d

1
2

∑
g,d

(uνl
g(uνl)

d)(Gnu)i
g) since s′1 only affects ul and s1 uνl (C.2.12)

= (p′ + ml)ic(Gµ)c
d

1
2

(p + mνl)
dg(Gν)i

g (C.2.13)

Using the contraction over spinor index, it leads to:

Lµν(lepton) =
1
2

Tr((p′ + ml)Gµ(p + mνl)Gν). (C.2.14)

The trace of a matrix being linear, it follows that:

Lµν(lepton) =
1
2

[Tr(p′GµpGν) + mνlTr(p′GµGν) + mlTr(GµpGν) + mlmνlTr(GµGν)] (C.2.15)

At this point, we will not neglect the neutrino mass mνl since we will use the same calculation for the
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quark sector. Using the Clifford algebra properties (summarised in [109] for example), we deduce:

mlmνlTr(GµGν) = mlmνlTr(γµ(I − γ5)γν(I − γ5)) (C.2.16)

= mlmνlTr(γµ(I − γ5)(I + γ5)γν) = 0 since PLPR = 0 (projectors defined in Chapter 1)
(C.2.17)

mνlTr(p′GµGν) = mlTr(GµpGν) = 0 since it is an odd product of gamma matrices (C.2.18)

Tr(p′GµpGν) = p′αpβTr(γαGµγβGν) (C.2.19)

=
1
2

p′αpβ[Tr(γαγµγβγν) − Tr(γαγµγ5γβγν) − Tr(γαγµγβγνγ5) + Tr(γαγµγ5γβγνγ
5)].

(C.2.20)

(C.2.21)

Using the γ5 anti-commutation with other gamma matrices:

Tr(γαγµγ5γβγνγ
5) = Tr(γαγµγβγν(γ5)2) = Tr(γαγµγβγν) (C.2.22)

On top of this, we use cyclicity trace property to change:

Tr(γαγµγ5γβγν) = Tr(γ5γβγνγαγµ) (C.2.23)

and to change:
Tr(γαγµγβγνγ5) = Tr(γ5γαγµγβγν) (C.2.24)

which leads to express Tr(p′GµpGν) as:

Tr(p′GµpGν) =
1
2

p′αpβ[2Tr(γαγµγβγν) − Tr(γαγµγ5γβγν) − Tr(γαγµγβγνγ5)] (C.2.25)

=
1
2

p′αpβ[2Tr(γαγµγβγν) − Tr(γαγµγ5γβγν) − Tr(γαγµγβγνγ5)] (C.2.26)

=
1
2

p′αpβ[2.4(gαµgβν − gαβgµν + gανgµβ) + 4iεβναµ + 4iεαµβν] (C.2.27)

using the gamma matrices relations on the trace (see [109] for example) (C.2.28)

=
1
2

p′αpβ[2.4(gαµgβν − gαβgµν + gανgµβ) + 2 · 4iεαµβν] (C.2.29)

using anti-symmetric properties of the ε tensor (C.2.30)

= 4p′αpβ[gαµgβν − gαβgµν + gανgµβ + iεαµβν] (C.2.31)

= 4[p′µpν − p′αpαgµν + p′νpµ + ip′αpβεαµβν] (C.2.32)

We therefore deduce:

Lµν(lepton) =
1
2

4[p′1µp1ν − p′α1 p1αgµν + p′1νp1µ + ip′α1 pβ1εαµβν] (C.2.33)

and:

Lµν(quark) =
1
2

4[p′2
µpν2 − p′γ2 p2γgµν + p′1

νpµ2 + ip′2αp2βε
γµδν] (C.2.34)

using the very same calculation on the quark term. We therefore obtain:

Lµν(lepton)Lµν(quark) = 4[p′1µp1ν − p′α1 p1αgµν + p′1νp1µ + ip′α1 pβ1εαµβν]

× [p′2
µpν2 − p′γ2 p2γgµν + p′1

νpµ2 + ip′2αp2βε
γµδν]

(C.2.35)

Lµν(lepton)Lµν(quark) = 4[2p1 · p2 p′1 · p′2 + 2p1 · p′2 p′1 · p2 + ip1αp′1βp2µp′2νε
αµβν + ip1αp′1βp2νp′2µε

αµβν+

ip1µp′1νp2αp′2βεαµβν + ip1νp′1µp2αp′2βεαµβν − ip1αp′1βp2γp′2δεαµβνε
γµδν]

(C.2.36)
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APPENDIX C. CALCULATION OF THE NEUTRINO CROSS SECTION ON A FREE QUARK

using εαµβνgµν = 0 since gµν , 0 when µ = ν, for which εαµβν = 0. In Equation C.2.36, the third and
fourth terms will cancel using εαµβν = −εανβµ antisymmetry in the third term. By doing the same for the
fifth and sixth terms, they cancel each other. Finally, using furthermore the antisymmetric property
of ε, one shows: εαµβνε

γµδν = εµναβε
µνγδ = −2(δαγδ

β
δ − δ

α
δδ

β
γ). Using this final property in Equation C.2.36,

we deduce:

Lµν(lepton)Lµν(quark) = 4(2p1 · p2 p′1 · p′2 + 2p1 · p′2 p′1 · p2 + 2p1αp′2βpγ2 p′2
δ(δαγδ

β
δ − δ

α
δδ

β
γ)) (C.2.37)

= 16p1·2 p′1·
′
2 (C.2.38)

Because of four-momentum conservation, we deduce the form of p1·2 p′1·
′
2:

p1 + p2 = p′1 + p′2 =⇒ (p1 + p2)2 = (p′1 + p′2)2 (C.2.39)

=⇒ m2
1 + m2

2 + 2p1 p2 = m′1
2 + m′2

2 + 2p′1 p′2 (C.2.40)

=⇒ p1 p2 = p′1 p′2 in the case where all masses are neglected. (C.2.41)

(C.2.42)

The square of the center of mass energy available is s = (p1 + p2)2 � 2p1 · p2 in the small mass
hypothesis. We finally deduce the module squared amplitude inserting the quark and leptonic current
effects (Equation C.2.38) in Equation C.2.6 which leads to:

|M|2 =
16
2

G2
F16p1·2 p′1·

′
2 (C.2.43)

=
1
2

G2
F

s2

4
=

1
8

G2
F s2. (C.2.44)

(C.2.45)

In the hypothesis of small masses, Eq C.2.42 becomes in the center of mass frame: p∗ = p′∗ and
implies that | ~p∗| = | ~p′∗|. We deduce the final cross section:

dσ
dΩ∗

=
1

64π2s
|M|2
|~p′
∗
|

|~p∗|
=

1
64π2s

1
2

G2
F

s2

4
=

1
512π2 G2

F s, (C.2.46)

=⇒ σ =
G2

F s
π
. (C.2.47)

C.3 |M|2 energy dependency

One naturally expect that the kinematical term of the cross section depends on the neutrino energy:
the higher the energy is, the more likely it is to produce the outgoing lepton.
As for the squared module amplitude part |M|2, one observes that |M|2 ∝ s2 ∝ E2

ν in the lab frame,
and so not only the kinematical part of the cross section depends on neutrino energy. We have
investigated the source of this E2 dependency in the amplitude part. A priori, we observed that the
q2 value increases with neutrino energy, which would be the source of an increasing amplitude with
neutrino energy, since the virtual W boson will be closer to on-shell value. Figure C.1 shows that
the W boson exchanged has a four-momentum q2 = (p1 − p′1)2 (t-channel diagram). Since M ∝ ∆W

with ∆W the electroweak propagator, it implies M ∝ ∆W ∝
1

q2−M2
W

. Therefore, the higher q2, the

higher the amplitude: this represents the fact that the W boson is more and more on-shell since
q2 = E2

W − | ~pW | = Mvirtual
W represents the squared mass of the virtual W boson. However, this naive

explanation is wrong, since the calculation assumes no q2-dependency since we use the point-like Fermi
approximation (q2 � MW) to describe the interaction. It is interesting to note that introducing the
propagator, does not increase necessarily with neutrino energy. This naive assumption is based on s-
channel diagrams whose propagator four-momentum is directly function of the incoming total particle
energy in the center of mass frame. In a t-channel, we will show that this needs to be refined. The
four-momentum of the exchanged boson can be written:

q2 = (p1 − p′1)2 = p2
1 + p′1

2 − 2p1 · p′1 (in the lab frame) (C.3.1)

= m′1
2 − 2(E1E′1 − ~p1 · ~p′1) = m′1

2 − 2(| ~p1|E′1 − | ~p1|| ~p′1| cos(θ11′)) (C.3.2)
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C.4. CROSS SECTION DEPENDENCY ON Q2

if the neutrino mass is neglected and with θ11′ the angle of the outgoing lepton with the neutrino in
the lab frame. This finally leads to the q2-value:

q2 = m′1
2 − 2| ~p1|E′1(1 −

| ~p′1|

E′1
) cos(θ11′) (C.3.3)

Since | ~p′1| < E′1, it follows that
| ~p′1 |
E′1

cos(θ11′) < 1 which implies that (1 −
| ~p′1 |
E′1

cos(θ11′)) is always positive.

Adding this constraint in Equation C.3.3, we observe that an increasing neutrino energy E1 = | ~p1|

necessarily decreases the q2 value for a given outgoing lepton energy |E′1|. Moreover, one shows
analytically that q2 < 0 whatever the value of the four-momenta of the neutrino and of the lepton,
and whatever their angle θ11′ . The same calculation shows that lower and upper bound differences on
q2 increase with neutrino energy, which can be expressed by “neutrino energy increasing implies that
q2 has more capacity to be negative, while remaining always bound to 0 upper limit”. We have shown
the behaviour of q2 with the neutrino and muon momentum in Figure C.2.

This shows that the naive assumption “W boson vector should be closer to on-shell particle with
increasing neutrino energy” is wrong for a t-channel diagram since M ∝ 1

q2−M2
W

with average increase

of the negative q2 with neutrino energy.
To understand the |M|2 quadratic dependency with s, we observe that s-dependency comes from the
completeness relations shown earlier where we have shown that [u]2 ∝ m => [u] ∝

√
E. This implies

that the spinors u and v have the dimension of the square of an energy. This dimension study can be
improved using Dirac equation solutions, from which are derived the completeness relations ([109] for
details). It leads to u†u = 2E with E the energy of the fermion. We will use an analogy with Dirac sea
of fermionic states to finally explain the |M|2 quadratic dependency with s:

1. Since fermions obey the Pauli exclusion principle, each state can be maximally populated by 2
fermionic state of the same energy but opposite spin.

2. The fundamental dynamic principle involves that each system tends to minimise its total energy:
the lower energy Fermionic states will be populated in priority.

3. To create one particle and antiparticle of energy E, an available 2E energy is required.

It follows that the available energy s (in the center of mass frame) to create final state particles (lepton
and up quark here) increases with neutrino energy. This is the analogous to the 2E energy available
in the Dirac sea representation. With this energy, we can create a lepton having an energy from mµ

(case where most of the energy is transfered to the quark) to E − (mu −md) (in the opposite case). For
the lepton, it means that the possible different energy states available are higher than for a low energy
neutrino. For a given neutrino energy, we can imagine different cases of outgoing particle momentum
which can be represented by different diagrams. The number of these diagrams then increases with the
neutrino energy for the reason we just discussed. Since the total amplitude is obtained by summing
all possible diagrams amplitudes, the total amplitude will increase with neutrino energy has we have
shown earlier. This naturally explains the |M|2 dependency in neutrino energy by the outgoing particle
phase space expansion. Finally, one observes that this information was contained in Figure C.2 in a
different way: for a higher neutrino energy, the phase space for q2 values increases with the neutrino
energy.

C.4 Cross section dependency on q2

Though |M|2 is always Lorentz invariant, we have seen earlier that the differential dσ is also in the
case of colinear incident particles, as in the present case. Therefore, we can directly deduce the cross
section in the lab frame from C.1.16. On top of this, we’d like to express the cross section with the
four-momentum exchange q since it is easier to link with the variables we will use to discuss the
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Figure C.1: Definition of the four momenta for the quarks and leptons interacting through the exchange of a W
boson.
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Figure C.2: Value of the q2 four-momentum exchanged (Z axis) with the neutrino and muon momenta. One
observes that the space phase increases at large pν.
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C.4. CROSS SECTION DEPENDENCY ON Q2

results, namely Eν, µ and cos θµ. Equation C.1.16 then becomes (in the limit of small neutrino masses
compared to the lepton):

dσ
dq2 =

1
16π

|M|2

(s − m2
µ)2

. (C.4.1)

Using the amplitude estimated in Eq C.2.45, the cross section can be re-written as:

dσ
dq2 =

1
8 · 16π

G2
F s2

(s − m2
µ)2

. (C.4.2)

In the case the energy available in the center of mass frame is large compared to the outgoing lepton
mass (s � m2

µ), we finally obtain:
dσ
dq2 =

1
128π

G2
F (C.4.3)

which implies that the cross section varies linearly with the exchange momentum squared q2:

σ =
1

128π
G2

Fq2. (C.4.4)
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Appendix D

Calculation of the neutrino cross section on a
nucleon

T
he cross section of a neutrino on a nucleon can be estimated similarly to the case of a free
quark. The hadronic “quark” sector current will be only replaced by a “nucleon” current
to take into account quark interactions, valence and sea quarks. In the case of a free quark,

the amplitude of the process is given in Appendix C. In the case of a nucleon, let’s note 〈n(pp)|
and |n(pn)〉 the final outgoing proton and intial incoming neutron states. To keep the V-A nature of

the weak interactions as observed in data, we should replace uuγ
µ I−γ5

2 ud by 〈p(pp)| hµW |n(pn)〉 with hµW
the hadronic transition matrix that should satisfy the V-A structure of weak interactions [22]. The
hadronic transition matrix can be therefore re-written:

hµW = vµW − aµW with:

v
µ
Wthe vector part so ∝ γµ

a
µ
Wthe axial part so ∝ γµγ5

(D.0.1)

The vector and axial terms should be constructed with the available kinematic quantities. The
only two independent quantities are the four-momenta of the proton and neutron pp and pn. Note
that q = (pp− pn) is not independent from the two kinematical quantities mentioned above. Therefore,
the most general vector we can construct is of the type:

〈p(pp)| vµW |n(pn)〉 = up(pp)[α(q2)γµ + β(q2)pµp + γ(q2)pµn]un(pn) (D.0.2)

where the q2-dependency is proven below. By construction, the above coefficients α, β and γ depend
on all possible Lorentz scalars. However, the only available independent scalars we can construct from
pp and pn are:

1. p2
p = m2

p and p2
n = m2

n

2. pp · pn = 1
2 (m2

p + m2
n − (pp − pn)2) = 1

2 (m2
p + m2

n − q2)

Since the nucleon masses are constant, the coefficients in equation only vary with q2.
We can re-organize the terms in Eq D.0.2 as:

〈p(pp)| vµW |n(pn)〉 = up(pp)[ f1(q2)γµ + f2(q2)(pµn + pµp) + f3(q2)(pµn − pµp)]un(pn) (D.0.3)

with f1 = α, f2 = β − γ and f3 = β − γ. The proton and neutron u fermionic spinors obey the Dirac
equation which implies:

upiσµνqνun(pn) = up[pµp + pµn − (mp + mn)γµ]un(pn) (D.0.4)

with σ the Pauli matrices. We use this previous equation to remove the [pµp + pµn] part in Eq D.0.3.
Assuming finally that: mn ' mp ' mN , we can transform Eq D.0.3 in:

〈p(pp)| vµW |n(pn)〉 = up(pp)[F1(q2)γµ +
iσµνqν
2mN

F2(q2) +
qµ

mN
F3(q2)]un(pn) (D.0.5)
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The axial part of the hadronic matrix may also be written as Eq D.0.5 with an additional γ5 factor.
Simply using q2 definition, one deduces the most general form of the axial part:

〈p(pp)| aµW |n(pn)〉 = up(pp)[GA(q2)γµγ5 +
qµ

mN
γ5GP(q2) +

pµp + pµn
mN

γ5G3(q2)]un(pn) (D.0.6)

We can re-write Eq D.0.5 and Eq D.0.6 in a more standard way defining Q2 ≡ −q2 that is a positive
quantity for CC inclusive cross section calculation.

The next calculation has been skipped in this work in order not to lose clarity. Unlike the whole
cross section calculation on free quark, the following simplifications will not bring much in the un-
derstanding and are quite lengthy. One may find a very detailed explanation of this calculation in
Ref [22]. We will directly extract the main results:

• QCD is invariant under CPT and CP in the standard model. The subsequent T invariance may
be used to show that the form factors in Eq D.0.5 and D.0.6 are real (Ref [110]).

• Assuming the strong isospin symmetry (neglecting quark u and d masses differences), one shows
(Ref [22]) that u → d and d → −u, which implies: |n(pn)〉 → |p(pn)〉 and |p(pp)〉 → − |n(pp)〉.
Vector and axial currents may be naturally expressed with the strong isospin creation operator
since they turn a d quark into a u quark (In particular, we can write vµW = vµ+, the strong isospin
creation operator). It follows that: 〈p(pp)| vµW |n(pn)〉 = 〈p(pp)| aµW |n(pn)〉∗ and 〈p(pp)| vµW |n(pn)〉 =

〈p(pp)| aµW |n(pn)〉∗, which leads respectively to F3(q2) = 0 and G3(q2) = 0. These 2 form factors
are called second class currents.

• The strong isospin symmetry implies that the vector current defined in Eq D.0.1 is conserved
(∂µvµa, ∀a). This hypothesis is often referred to as “conserved vector current hypothesis (CVC)”,
that is a direct consequence of the strong isospin symmetry hypothesis. The v0

a are then the
strong isospin charges along the 3 isospin directions, while v1,2,3

a are the strong isospin vec-
tors using Noether theorem in analogy with U(1)QED. This implies that 〈p(pp)| vµW |n(pn)〉 =

〈p(pp)| vµ3 |p(pn)〉 − 〈n(pp)| vµ3 |n(pn)〉, with vµ3 the vector current of the third isospin component.
One notices in the last expression that “vµ3 does not change the nucleon type, unlike vµW”, and
can therefore be expressed as an electromagnetic current (having the same γµ structure). It
finally implies that the F1 and F2 form factors in Eq D.0.5 can be expressed with the elec-
tromagnetic form factors of the nucleons FNucleon

1 (Dirac form factor) and FNucleon
2 (Pauli form

factor):

F1(Q2) = F p
1 (Q2) − Fn

1(Q2) (D.0.7)

F2(Q2) = F p
2 (Q2) − Fn

2(Q2) (D.0.8)

The advantage of such a change is that we can express [22] these Pauli and Dirac form factors
at Q2 = 0 using respectively the electric charges of the nucleon and their anomalous magnetic
moments:

F p
1 (0) = 1 (D.0.9)

Fn
1(0) = 0 (D.0.10)

F p
2 (0) =

µp

µn
− 1 with µp/n the proton/neutron magnetic moments. (D.0.11)

Fn
2(0) =

µn

µN
with µN the nuclear magneton. (D.0.12)

It implies that the F1(Q2) and F2(Q2) form factors can be measured directly in electron scattering
experiments, as long as the strong isospin hypothesis holds. This has been widely used to simplify
measurements in neutrino experiments.
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• Unlike the vector part, the axial current is not conserved because quark mass terms are not
invariant under chiral strong isospin transformations. It can be shown (Ref [22]) that charged
pions would not decay if the axial current were conserved. This hypothesis is often referred to as
“partially conserved axial charged current” hypothesis (PCAC). This led Gell-Mann and Levy
(Ref [111]) to express the axial current derivative according to the pion decay constant fπ:

∂aµW = fπm2
ππ
− (D.0.13)

with π− the negative pion field which satisfies the Klein-Gordon equation of a spin-0 particle:

(� + m2
π)π− = jπ− (D.0.14)

with jπ− the source of the pion field that would decay in µ− and νµ. It becomes:

(−q2 + m2
π) 〈p(pp)| π− |n(pn)〉 = 〈p(pp)| jπ− |n(pn)〉 (D.0.15)

We selected the pion four-momentum as q2 (decay in s-channel) which is the four-momentum
exchanged in our charged current interaction (t-channel). The four-momentum conservation at
pion decay vertex implies that the W boson exchanged in the pion decay has a four-momentum
q2. This is natural since we’d like to describe the axial current involving a W boson with the q2

four-momentum.
Finally, 〈p(pp)| jπ− |n(pn)〉 may be expressed in the most general case as (since jπ− is the pion
source that decays only through an axial current):

〈p(pp)| jπ− |n(pn)〉 = i
√

2gπ N(Q2)up(pp)γ5un(pn)eix · q (D.0.16)

with gπ N(Q2) the so-called “pion-nucleon” form factor that can be mesured through pion-nucleon
experiments (Ref [68]). Deriving Eq D.0.6 and using Eq D.0.13 with Eq D.0.15 and Eq D.0.16
as inputs, one deduces

(−q2 + m2
π)[2mNGA(Q2) +

q2

mN
GP(Q2)] =

√
2gπ N(Q2) fπm2

π (D.0.17)

This allows ultimately to express the pseudoscalar weak charged-current form factor GP(Q2) with
the axial one GA(Q2).

In a nutshell, we observed that the second class current form factors disappear (F3 and G3) under
strong isospin symmetry hypothesis. Moreover, we have shown that the F1 and F2 form factors can
be expressed with electromagnetic nucleon form factors under CVC hypothesis. Therefore, these
factors are the same as those directly measured in electron scattering experiments. Finally, we have
expressed the pseudoscalar form factor GP as a function of gπ N(Q2) that can be measured in pion-
nucleon experiments and GA the axial form factor. As a consequence of CVC and PCAC, neutrino
experiments have then historically only focused on measuring the axial form factor GA.

Under these hypotheses, we finally obtain for a quasi-elastic charged current cross section:

M = −i
GF
√

2
Vudul(p′1)γµ(1 − γ5)uνl(p1)

× up(pp)[F1(q2)γµ +
iσµνqν
2mN

F2(q2) −GA(q2)γµγ5 −
qµ

mN
γ5GP(q2)]un(pn)

(D.0.18)

The differential cross section with Q2 in the laboratory frame can then calculated using Eq D.0.18
instead of the free quark M amplitude in the previous section. This calculation has been derived in
Ref [85]:

dσ
dQ2 =

G2
F |Vud |

2M2
N

8π(pν · p2
Ni

)
[A(Q2) ±

s − u
M2

N

B(Q2) +
(s − u)2

M4
N

C(Q2)] (D.0.19)
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with

A =
(m2 + Q2)

M2
N

[(1 + η)G2
A − (1 − η)F2

1 + η(1 − η)F2
2 + 4ηF1F2 −

m2

4M2
N

((F1 + F2)2 + (GA + 2GP)2

− (
Q2

M2
N

+ 4)G2
P)]

(D.0.20)

B =
Q2

M2
N

GA(F1 + F2) (D.0.21)

C =
1
4

(G2
A + F2

1 + ηF2
2) (D.0.22)

η =
Q2

4M2
N

The form factors F1(Q2), F2(Q2), GA(Q2) and GP(Q2) are respectively called Dirac, Pauli,

axial and pseudo-scalar weak charged current form factors of the nucleon[22].
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Appendix E

Charge corrections and hit matching

T
he measurement of the energy deposition distribution of a particle in a scintillator is smeared
by different effects: the Landau fluctuations, attenuation in the scintillator, reflection on
the scintillator painting, attenuation in the fiber, distance crossed in a scintillator, etc...

Therefore, we have applied several corrections to the measured charge in the scintillator to “un-smear”
these effects. 2 effects were corrected:

1. Particle angle which changes the energy deposition in a scintillator due to variable path length
(dx).

2. Light attenuation in the fiber.

E.1 dx correction

The charge measured is corrected with the angle of the track from the longitudinal z direction. As
shown in Figure E.1, for a particle with an angle θ from the z direction, the correction applied to a
charge Q is Q′ =

Q
dx with:

cos(θ) =
Scintillator Thickness

dx
=⇒ dx =

Scintillator Thickness

cos(θ)
(E.1.1)

The scintillator thickness is 1 cm for the INGRID type scintillator, and 1.3 cm for the SciBar type
scintillators. Note that this correction is only exact in the case of trough-going particles (Figure E.1),
while it is not correct in the case of scintillator side escaping particles. We can evaluate roughly the
effect expected in SciBar and INGRID type scintillators. In this cross section measurement, we will
only observe muons with a maximal angle of 60◦ but most of the reconstructed events have θµ < 40◦.
As shown in Figure E.1, the larger the angle is, the higher is the probability of a particle side escaping
the scintillator. For a given angle, we have estimated the proportion of cases where the dx correction
would not be exact. As shown in Figure E.1, this area corresponds to X

Scintillator Width , which represents

in fact tan(θ) ·Scintillator Thickness
Scintillator Width . Assuming a maximal angle of 40◦, this proportion of scintillator side

escaping track is 44% for a SciBar type and 17% for an INGRID type. For an angle of 60◦, these
proportions increase to 90% and 34% respectively. This indicates that a dedicated correction, using
the charge deposition between neighbour hits can help to improve the PID in the case of large track
angles. In this study, we have not considered this correction since θµ < 40◦ in most of the tracks, even
for the bin corresponding to the larger angle ∈ [30◦, 60◦] we use in this analysis.

E.2 Correction of the attenuation in the optical fiber

The light attenuation in the optical fiber follows an exponential decreasing law:

IMeas = ICol · e−
x

L0 (E.2.1)
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Side escaping particle

Through going particle

dx
θ

z direction

Scintillator width

θ

X

Z direction

θ

Y

Particle direction

Particle direction

INGRID type scintillator

SciBar type scintillator

Figure E.1: Scintillator 3D (left) and 2D (right) views. The X and Y regions correspond to the area where, if
a track for a given angle θ goes through, it will leave the scintillator by its side (repectively for INGRID and
SciBar type scintillators).

with IMeas and ICol the light measured and collected by the fiber respectively, and L0 the attenuation
length. The attenuation length in the scintillator is measured using 3 GeV electron beam data for
different distances to the MPPC. The attenuation length was found to be equal to L0 = 238 cm as
shown in Figure E.2. To apply the correction, one needs to know the position of the particle in the

Figure E.2: Measure of the INGRID and PM fiber attenuation using a 3 GeV electron beam for different
distances from the MPPC.

scintillator. For horizontal scintillators (X), one needs the information of the X position to measure
the attenuation length. This position could only be given by vertical scintillators. For each tracking
plane, we have then matched hits in horizontal and vertical planes to create “3D hits” and correct
the attenuation length. Two hits in the same tracking planes are matched if the hits are in the same
track and same tracking plane.

When the position P in the scintillator is determined with the hit matching, the collected charge
is deduced from the measured charge and the distance to the MPPC:

ICol = IMeas · e
P

L0 (E.2.2)
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H1

H3

V1

V3

Particle path

Vertical plane (XZ)

Horizontal plane (YZ)

H2

V2

Figure E.3: 3D matching of hits using the X and Y scintillator consecutive planes.

Note that the 3D hit matching algorithm we developed may be refined in the case of several hits of
the same track in one plane, we have not considered this issue yet. This is likely to happen in the case
of large angle tracks, but also for highly energetic neutrino events where the tracks are almost colinear
with the neutrino direction. This can be improved in the future using the particle charge deposition
regularity along the track, starting from the downstream hit of a track where superimposition is
unlikely.
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Appendix F

PM unfolding method validation

I
n this appendix, we have studied the convergence, but also the limitations of the Bayesian
unfolding method. The convergence tests will be done with the momentum unfolding and
using the pµ binning defined in Table 5.7. We will test the Bayesian unfolding method

robustness with different tests:

1. Convergence as a function of the number of iteration steps.

2. Convergence dependency on the prior.

In parallel, we will show that the crucial part of the unfolding method is the correct choice of
the binning in the unfolded variables, namely pµ here. Therefore, the same convergence tests will be
performed with a higher number of momentum bins (10). This binning is summarised in Table F.1. We
will keep the same binning in the reconstructed variable dµ. The associated likelihood matrix is shown
in Figure F.1 and shows higher correlations between the momentum bins, as expected considering the
detector resolution.
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Figure F.1: The likelihood matrix for ten momentum bins. The Y axis represents these momentum bins, and
the X axis represents the bins in distance crossed in iron by the muon.

pµ (GeV) [0, 0.4] [0.4, 0.5] [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1.0] [1.0, 1.5] [1.5, 5.0] [5.0, 30.0]

Table F.1: An example of a ten-momentum binning for CC0π events selected by CC0π selection in the MC.
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The convergence will be studied showing the reduced χ2 value of the difference between the unfolded
simulation and the true content of each bin. We have used a MC production in order to perform the
following test. Unless the opposite is specified, we will choose a flat prior to avoid any bias. Note that
we will use the statistical error definition:

δpi
µ =

√√√ N∑
j=1

U i
jd

j
µ. (F.0.1)

We insisted in Chapter 5 that this definition is true only if the unfolding matrix is independent of the
statistical error. We chose this convention in order to study this dependency, that should affect the
pull distribution width.

Convergence with iteration steps

General convergence: The convergence of the iterative unfolding method will be first checked. For
this purpose, we have generated a toy MC signal with the CC0π selection and statistics defined in
Section 5.3. We have selected two different indicators based on the agreement between the unfolded
distribution, the true distribution, and the previous iteration distribution. We have estimated the
χ2 per degrees of freedom combining all the bins in these two cases as a function of the number of
iterations. In the first convergence criterion, we only estimate:

χ2/NDF =
1

N = 5

N∑
i=0

(
pi − ti

σi )2 (F.0.2)

with N the number of bins, and p, t respectively the posterior distribution (in momenta or angle) and
the true event distribution. Here, σi is the statistical error in each bin i defined in Equation 5.5.10.
As for the criterion based on the difference with the previous iterations, the criterion at the nth step
of iterations is given by:

χ2
Relative/NDF =

1
N = 5

N∑
i=0

(
pi

n − pi
n−1

σi )2 (F.0.3)

We will say the algorithm converges under the condition:

χ2/NDF ≤ 1 (F.0.4)
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Unfolded and true distributions agreement with iteration steps

Figure F.2: General convergence of the unfolded distribution to the true distribution. Both the reduced χ2 (blue)
and χ2

Relative (red) are shown and have the same convergence speed with the iteration step.
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The results are shown in Figure F.2 for the two convergence criteria applied on the MC CC0π
sample without any statistical fluctuation. It indicates first that the algorithm converges after 10
iterations assuming a flat prior. This relatively small amount of iterations required is due to the
appropriate choice of the binning given the detector resolution, as we will see. It confirms the algorithm
ability to retrieve the true distribution shape given the observed one and assuming the flat prior. Note
that there is nothing surprising that the convergence criteria keeps decreasing after χ2/NDF = 1 since
we assumed a signal without any statistical fluctuations. Moreover, one observes that the χ2

Relative/NDF
value based on the difference between iteration steps is lower but varies similarly to the absolute
χ2/NDF value. It indicates that the χ2

Relative/NDF is an indicator that determines the algorithm
convergence. Though such a criterion could be the only one that may directly be applied on data, one
must be careful using it. Figure F.3 shows a similar convergence with the iteration steps, but for an MC
containing a statistical fluctuation in the dµ signal. We observe that the convergence criterion is reached
for the relative χ2

Relative/NDF value after only 3 iterations steps, though the absolute χ2/NDF = 9.3.
This latter value indicates that the compatibility between the unfolded and true distributions is only
0.98% likely to due to statistical fluctuations, and that the algorithm has not converged after only 3
iteration steps. In fact, the statistical distorsions in the signal affect the algorithm convergence, and

Number of iterations
0 10 20 30 40 50 60 70 80 90 100

/N
D

F
2 χ

-110

1

10

With true distribution

With previous posterior

Unfolded and true distributions agreement with iteration steps

Figure F.3: General convergence of the unfolded distribution to the true distribution, for an MC dµ distribution
with statistical fluctuations.

may cause the unfolding value to oscillate around the true value as shown in Figure F.3. For this
reason, we will rather determine convergence using the pull average and error values on pure MC, and
not attempt to use a similar relative criteria based on χ2

Relative/NDF to determine convergence of the
data.

Bin by bin convergence: We have also studied the bin by bin convergence since it is absolutely not
guaranteed by the general convergence. Moreover, the study of bin by bin allows a better under-
standing of the unfolding convergence in using the dµ signal to distort the momentum prior and find
the posterior. The unfolding convergence is in fact ruled by the likelihood matrix diagonality. A bin
converges quicker if:

1. The unfolded momentum bin is almost diagonal, i.e is populated by events in dµ bins that are
not shared with other momentum bins.

2. The unfolded bin has higher statistics than the bins it is correlated to. If the likelihood matrix
is not diagonal, dµ bins impact different pµ bins. The bin migration will therefore induce relative
correlated variations between the bins. As for bins with large statistics, they quickly converge
since the modification of their neighbour momentum bins with low statistics has small impact
on them. On the contrary, any momentum bin that shares dµ events in important proportion
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with a larger statistics bin will be heavily affected by any modification of the large momentum
bin distribution. Therefore, it will only converge after the large statistics bin has converged.

Therefore, the bins with large diagonal coefficients in the prior are drastically modified after each
iteration, and the impact of this change in the other bins is important if their statistics is much
higher. We have shown the convergence speed in Figure F.4 for the five momentum bins using the
criterion based on the difference between posterior and true distribution. We will define the posterior
convergence when the reduced χ2 value reaches 1. The information on bin statistics is shown in
Table 5.7 and the likelihood matrix is shown in Figure 5.34.

First, one observes that the fifth bin corresponding to pµ ∈ [5.0 GeV, 30.0 GeV] is the last bin that
converges. As one observes in Table 5.7, the reason is that this bin has a very small statistics, and
is highly correlated to the neighbouring fourth bin (Figure 5.34). This relatively slow convergence
will impact its neighbour bin, coresponding to pµ ∈ [1.0 GeV, 5.0 GeV], since these bins are highly
correlated. Since the fourth bin has also high correlations with the third bin (which has the highest
statistics of all bins), the fourth bin will also converge more slowly than the other bins. On the
opposite, the second bin corresponding to pµ ∈ [0.5 GeV, 0.7 GeV] is the first bin that converges. This
bin has not the highest statistics but is the most diagonal which implies the prior modifications in
this bin are almost not driven by other bin constraints. It means that there is almost a bijectivity
between this momentum bin and the dµ bins that populate it. Though having the highest statistics,
the third bin converges more slowly due to its high correlation with the fourth bin which has high
statistics too and converges slowly. When the second bin has converged, it will be used as a pivot for
the bins which are correlated to it. One observes in Figure F.4 that the first bin corresponding to
pµ ∈ [0.5 GeV, 0.7 GeV] therefore converges quickly after the second bin convergence, as the third bin
corresponding to pµ ∈ [0.7 GeV, 1.0 GeV]. One observes that it is only after these bins have converged
that the fourth and then the fifth bins can finally converge.

Number of iterations
0 10 20 30 40 50 60 70 80 90 100

/N
D

F
2 χ

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

410 Bin #1

Bin #2

Bin #3

Bin #4

Bin #5
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Figure F.4: Bin by bin reduced χ2 distribution of the unfolded distribution to the true distribution, for an MC
dµ distribution without statistical fluctuations.

Binning of the unfolded variable The binning of the unfolded variable has to be chosen carefully in
agreement with the detector resolution. A larger number of bins than the detector resolution implies
higher sharing in signal dµ events, i.e larger bin migrations (correlations) as shown in Figure F.1
compared to Figure 5.34. As we have seen, this should impact the convergence speed which is not
an important issue if the processing time is reasonable. However, we will show that an inappropriate
binning can prevent the convergence of the bins that share lots of events with others. To study this
effect, we have generated a toy MC with statistical fluctuations in the signal event distribution in
dµ. We have shown the reduced χ2 value for each of the bins in Figure F.5. One observes that
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the momentum bins corresponding to pµ ∈ [1.5 GeV, 5.0 GeV] and pµ ∈ [5.0 GeV, 30.0 GeV] do
not converge in the case of ten bins in momentum, while the bins pµ ∈ [1.0 GeV, 5.0 GeV] and
pµ ∈ [5.0 GeV, 30.0 GeV] does converge in the case of five momentum bins. The reason is that the
statistical fluctuations can be amplified by the unfolding. Due to the statistical fluctuations, even
the high statistics momentum bins do not reach the true bin values since the signal in dµ does not
constrain the prior into the true momentum distribution. The consequence is that these high statistics
bins convergence towards inappropriate values will highly impact on the low statistics bin which are
correlated with the high statistics bins. Therefore, these latter bins will not converge. The signal
statistical fluctuations lead the unfolding to distort the prior after each iteration, which can even
lead to non-physical solutions if the fluctuations are large. One understands that this effect increases
with the number of iterations. In the case of five momentum bins, both lower correlations and more
similar statistics in the momentum bins involve lower impact of the high statistics bin, which explains
that the low statistics bin converges. We observe in Figure F.5 that the fluctuations appear after 4
to 5 iterations in the five momentum bin choice, which indicates that the unfolded distribution has
unsmeared most of the detector effects and started to try to unfold some statistical fluctuations. One
observes that in the case of ten bins in momentum, the large bins correlations and low statistics lead
the unfolding algorithm to unfold the fluctuations even in the first iteration step, showing that the
fluctuations are at least as large as the physics content (cross section constraint) of each bin. The
choice in the binning of the unfolded variable is therefore crucial to maximise the information in the
CC0π measurement. While the choice of a larger binning is more robust, it decreases the amount of
information provided by the cross section measurement. In the case of two unfolding variables pµ and
θµ, the choice is more complicated, since relative statistics in pµ bins can vary depending on the θµ
bin. The binning summarised in Table 5.7 has been optimised and is the most appropriate for the
double differential cross section study given the current PM accumulated statistics. An appropriate
limit in the number of iterations should be also estimated for the binning, not to start to unfold the
statistical fluctuations which artificially decrease the predictive power.
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(b) 10 pµ bins

Figure F.5: Bin by bin reduced χ2 distribution of the unfolded distribution to the true distribution, for an MC
dµ distribution with statistical fluctuations in the case of five (left) and ten (right) momentum bins (Table F.1).

Error on the unfolded distributions

We have seen that an inappropriate binning choice in unfolded quantities impacts the convergence
in low statistics bins. We will show here that it also impacts the error in the other bins. To study
this effect, we have generated 1,000 toy experiments with varied statistics for the ten momentum bin
choice, using the same procedure we have done previously in the case of five momentum bins. We
have shown the results of the pull distributions for three selected momentum bins in Figure F.6. The
pull distributions allow to compare directly with the result in the case of five momentum bins in
Figure 5.35, since the different statistics in reconstructed dµ bin are corrected. One observes that the
convergence is lost also in the low statistics bin pµ ∈ [0 GeV, 0.4 GeV]. As for the relatively high
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statistics bins pµ ∈ [0.5 GeV, 0.6 GeV] and pµ ∈ [0.6 GeV, 0.7 GeV], one observes the statistical error
to be higher than the error predicted by Equation 5.5.10. We recall that the actual statistical error is
lower than the latter for the five momentum bin, and shows that the correlations are mainly positive
in the case of ten bins. Therefore, the choice of a thinner binning does not necessarily provide a
higher constraint than for larger binning. This effect appears as the result of a binning which is too
thin compared to the detector resolution, and does not only impact on the momentum bins with low
statistics. We have seen it both biases the result in low statistics bins and artificially increases the
statistical error in high momentum bins through the unfolding matrix. A similar result is expected
for the systematic error, and especially the detector systematics that affect the likelihood matrix.
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Figure F.6: The pull distributions of the statistical error for selected momentum bins assuming an error σi as
defined in Equation 5.5.10 in the case of ten momentum bins defined in Table F.1. The left, center and right
distributions correspond to pµ ∈ [0 GeV, 0.4 GeV], pµ ∈ [0.5 GeV, 0.6 GeV] and pµ ∈ [0.6 GeV, 0.7 GeV]
respectively.

Dependency on the prior

Finally, we will test the dependency of the result with the prior. The unfolding result should be ideally
totally independent from the prior, and only driven by the data constraints. It is practically impossible
since this situation only occurs for an infinite number of iterations. A residual prior dependency is
then contained in this study. In the previous section, we have shown that the higher the number of
iterations, the lower is the prior dependency due to the repeating constraints from the signal on the
unfolding matrix. We have shown in Figure F.7 the general reduced χ2 variations as a function of
the number of iterations for different priors in the case of no statistical fluctuation in the signal. As
expected, the convergence occurs for a smaller number of iteration steps for a prior closer to the true
momentum distribution. In the case of statistical fluctuations, one understands that the closer the
prior is from the true momentum distribution, the better will be the agreement between the true and
unfolded distributions but the higher will be the dependency to the MC cross section model. As the
number of iteration increases, the original dependency will be washed out by the signal constraints,
and the statistical fluctuations will re-appear. For this reason, we chose an adequate prior choice that
allows both to minimise the model dependency, and allows the quick convergence of the unfolding,
even with a relatively small statistics (see Chapter 5).
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Figure F.7: Reduced χ2 value as a function of the number of iteration step. The different priors correspond
to distorsion of the true momentum distribution, assuming a gaussian with σ = 0.05 (black), σ = 0.1 (red),
σ = 0.2 (green) and σ = 0.5 (blue). We represented the case of 5 bins in momentum.
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Appendix G

Likelihood tests for the search of Lorentz
invariance violation

G.1 The tests of the one parameter fit

D
ifferent points in the parameter space were selected to test if the fit is un-biased and the
error estimation was correct. The origin of the 5 parameter space (0,0,0,0,0) was chosen
because the LV effect is likely to be around this value and there is no physical boundary at

this origin. Finally, two other points described in Table G.1 were selected to check the fit results for
a possible LV effect of a 1σ current statistical error.

Toy MC were generated by setting the 5 SME coefficients to a fixed true value. The probability of νµ
disappearance is then scaled by the average number of POT: events

POT = 1.43 × 10−13. Finally, from each
toy MC, the pull distribution is estimated by:

1. For each LSP bin, the associated events
POT is varied within the gaussian statistical error (according

to data).

2. Sequentially for each coefficient, the associated distribution is fitted, fixing all but one coefficient
to their true value.

This procedure is performed 10,000 times to generate the pull distribution showing the Fit-True
Error dis-

tributions. Results for 3 coefficient configurations are shown in Figure G.1, G.2 and G.3. The results
are also summarised in Table G.1 and confirm that the fitter is unbiased and the error is correctly
estimated for a LV signal.

The case of no LV signal shown in Figure G.1 is special because it is peaked at 0. This is expected and
the 1 parameter fit with no LV signal is only shown for example purposes. The reason the distributions
are peaked at 0 only reveals the fitter inability to fit some sine or cosine distribution with opposite
phase. In the case of only one parameter fit with all others equal to 0, the probability distribution is
reduced to:

Pνµ→νx = 1 − (
L
hc

)2|Aµ x
c cos(ω⊕T⊕)|2 (G.1.1)

In the case of a statistical fluctuation that mimics a signal of the form 1 + ( L
hc )2|Aµ x

c cos(ω⊕T⊕)|2, the
fitter is unable to find a negative |Aµx

c |
2 value. In this case, the fitter naturally converges to parameter

values as close to 0 as possible, which explain the peak in the distributions. On top of this, though there
are two possible solutions (positive or negative) for Aµx

c , these two solutions are totally symmetric in
this case where all coefficient true values is 0 (Equation G.1.1). Since the fitter initial value is positive,
the fitter will therefore always remain in the positive region, which explains the asymmetry between
positive and negative values in Figure G.1. One notes that for parameter true values different from 0,
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the signs of the coefficients take part in the interferences between the terms, and the fitter is therefore
sensitive to it.
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Figure G.1: Pull distributions for no LV signal (C = 0, Ac = 0, As = 0, Bc = 0, Bs = 0.

Table G.1: Pull distributions bias of the mean and error estimations by the fitter.
(C, Ac, As, Bc, Bs) value Pull mean compatibility with 0 (in σ) Pull 1σ error compatibility with 1 (in σ)
(10, 1, 10, 10, 10) × 10−20 (0.4, 0.9, 0.2, 0.1, 0.6) (0.1, 2.0, 0.8, 0.1, 0.1)

(5, 6, 7, 8, 9) × 10−21 (0.5, 1.2, 0.2, 0.7, 0.7) (1.4, 2.5, 0.8, 1.0, 0.4)

G.2 The five parameter fit

The 5-coefficient fit was tested on toy experiments, to determine its robustness and error estimation.
The toy experiments were built using 2 different methods:

1. 10,000 flat toy experiments based on data. The spill time of each event is reshuffled to erase any
possible LV effect, as described in Section 6.4.

2. 10,000 signal toy experiments based on a LV signal.

G.2.1 Flat toy experiments

The consistency of the mean values with no signal within the 1σ error was tested first. The results
are shown in the form of pull distributions in Figure G.5. Firstly, a shift in the mean value is observed
due to coefficient correlations. However, the fitter converges correctly since each mean of the C, As,
Ac, Bs or Bc parameters is compatible with their true value within 1σ.
Secondly, the pull distributions 1σ errors are systematically and significantly larger than 1. This might
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indicate the fitting error is slightly underestimated. In the present case, this discrepancy between
the pull distributions 1σ errors and 1 seems to be due only to the non Gaussian shape of the pull
distributions. Assuming 68% of the toy experiments are contained within a Gaussian 1σ error tends
to be wrong since the distributions are peaked at 0.

G.2.2 Signal toy experiments

To test the robustness of the 5 parameter fit, various toy experiments with different LV signals are
generated. On top of them, a statistical error fluctuation according to the data set is added. A
particular case is shown in Figure G.6, confirming the convergence of the fitting method in this case.

As for the 10,000 equivalent toys, the results are shown in Figure G.7 directly comparing fitting
results and true coefficients value. The general agreement between fitted and true value confirms
the robustness of the fit. Moreover, this agreement is independent of the true value of the various
coefficients. It confirms robustness of the fit and its ability to fit a random signal, which is absolutely
mandatory before applying the fit to data.

XLI



APPENDIX G. LIKELIHOOD TESTS FOR THE SEARCH OF LORENTZ INVARIANCE VIOLATION

C
σ

True
C

Fit
C

4 2 0 2 4

N
u

m
b

e
r 

o
f 

to
y
 e

x
p

e
ri

m
e
n

ts

0

100

200

300

400

500

600

700

800

 / ndf 2χ  35.917 / 33

Constant  9.75± 794.74 

Mean      0.0100657± 0.0043566 

Sigma     0.0071± 1.0007 

(a)

Ac
σ

True
Ac

Fit
Ac

4 2 0 2 4

N
u

m
b

e
r 

o
f 

to
y
 e

x
p

e
ri

m
e
n

ts

0

100

200

300

400

500

600

700

800

 / ndf 2χ  43.441 / 35

Constant  9.92± 806.11 

Mean      0.0098931± 0.0088931 

Sigma     0.0071± 0.9856 

(b)

As
σ

True
As

Fit
As

4 2 0 2 4

N
u

m
b

e
r 

o
f 

to
y
 e

x
p

e
ri

m
e
n

ts

0

100

200

300

400

500

600

700

800

 / ndf 2χ  32.852 / 36

Constant  9.83± 790.95 

Mean      0.0100934± 0.0018625 

Sigma     0.0074± 1.0057 

(c)

Bc
σ

True
Bc

Fit
Bc

4 2 0 2 4

N
u

m
b

e
r 

o
f 

to
y
 e

x
p

e
ri

m
e
n

ts

0

100

200

300

400

500

600

700

800

 / ndf 2χ  60.72 / 37

Constant  9.82± 792.42 

Mean      0.01017366± 0.00029133 

Sigma     0.0073± 1.0009 

(d)

sB
σ

True
sB

Fit
sB

4 2 0 2 4

N
u

m
b

e
r 

o
f 

to
y
 e

x
p

e
ri

m
e
n

ts

0

100

200

300

400

500

600

700

800

 / ndf 2χ  56.269 / 37

Constant  9.67± 793.11 

Mean      0.0101073± 0.0059155 

Sigma     0.0069± 1.0005 

(e)

Figure G.2: Pull distributions for C = 10−20, Ac = 10−21, As = 10−20, Bc = 10−20, Bs = 10−20.
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Figure G.3: Pull distributions for C = 5.10−21, Ac = 6.10−21, As = 7.10−21, Bc = 8.10−21, Bs = 9.10−21.
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Figure G.4: Example of a flat toy MC fitted by the 5 parameter fit.
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Figure G.5: Pull distributions for C, Ac, As, Bc, and Bs coefficients, for the 5 parameter fit in case of a flat LV
signal.
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Figure G.6: Example of an LSP histogram for a toy experiment with an LV signal. The signal corresponds to
coefficients C, As, Ac, Bs and Bc all equals to 5 × 10−20. The fit is shown as a red line.
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Figure G.7: Correlations between the true and fitted values obtained with the 5 parameter fit for various LV
signals.
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Résumé
L’expérience T2K, située au Japon, est une expérience étudiant l’oscillation des neutrinos à longue distance.
Elle vise à mesurer les paramètres décrivant ce phénomène d’oscillations quantiques, et plus particulièrement,
l’angle de mélange θ13. Ce dernier est mesuré par la production de neutrinos muons à J-PARC et la détection
de neutrinos électroniques 295 km plus loin, dans le détecteur Super-Kamiokande. Etant donné que T2K a
mesuré un angle de mélange θ13 , 0 à plus de 7σ de confiance, cela ouvre la possibilité de mesurer la phase de
violation CP dans les expériences d’oscillation de neutrino. Par la mesure précise des paramètres d’oscillations,
T2K a pour but d’apporter les premières contraintes sur l’existence possible d’une phase de violation CP dans
le secteur leptonique.
Après avoir introduit la théorie d’oscillation des neutrinos ainsi que l’expérience, nous présentons le Générateur
de Cone, un dispositif que nous avons développé afin de calibrer le détecteur lointain Super-Kamiokande. Nous
étudions ensuite l’uniformité et l’isotropie de ce dernier, avant de mettre en évidence les différentes sources de
désaccord entre les données et la simulation du détecteur. Nous montrons en particulier une imperfection dans
la simulation de la réflexion de la lumière sur le mur du détecteur.
Par la suite, nous présentons la calibration du dépôt de charge que nous avons effectuée pour les détecteurs
proches et sur axe, INGRID et le Module Proton. En particulier, nous observons un phénomène de diaphonie
optique entre des scintillateurs d’un certain type, que nous avons corrigé. Cette calibration est ensuite utilisée
pour effectuer la première mesure de section efficace double différentielle des interactions (CC0π) des neutrinos
avec le Module Proton. L’incertitude provenant des sections efficaces est l’une des sources principales d’erreurs
sur la mesure des oscillations de neutrinos, et le canal CC0π est le canal principal d’interaction des neutrinos
dans l’expérience T2K. Nous montrons que notre mesure est en accord avec les mesures récentes de l’expérience
MiniBooNE.
Enfin, nous présentons la première recherche de signaux de violation de l’invariance de Lorentz dans l’expérience
T2K. Nous montrons que les oscillations de neutrinos constituent l’une des sondes les plus sensibles pour ce
phénomène. Nous dévoilerons d’abord les raisons de la recherche d’un tel effet, avant de présenter notre résultat
de recherche de violation d’invariance de Lorentz qui utilise le détecteur INGRID nouvellement calibré. Nous
montrons qu’aucun effet de cette violation n’est observé dans ce détecteur proche de T2K.

Mots-clés : T2K, oscillations de neutrino, angle de mélange θ13, Super-Kamiokande, Générateur de Cone,
INGRID, section efficace, CCQE, CC0π, violation de l’invariance de Lorentz

Abstract
The T2K experiment is a long baseline neutrino oscillation experiment located in Japan. It aims to measure the
parameters describing this quantum phenomenon, and particularly, the mixing angle θ13. The latter is measured
through the production of a muon neutrino at J-PARC and detection of an electron neutrino 295 km away, at
Super-Kamiokande. Since T2K has measured that θ13 , 0 with more than 7σ CL, it leads to the possibility to
observe CP violation phase through neutrino oscillation. Through the accurate measurement of the oscillation
parameters, T2K aims to determine the first constraints on the CP violation in the leptonic sector.
After presenting the theory of neutrino oscillations and the T2K experiment, this thesis first presents the cal-
ibration setup, the Cone Generator, that we developed for the Super-Kamiokande far detector. We study the
detector uniformity and isotropy, and disentangle the different sources of discrepancies with the detector simu-
lation. We particularly highlight a discrepancy in the simulation of the light reflection on the detector wall.
Second, we present the calibration of the charge deposit in the on-axis near detectors, INGRID and the Proton
Module. We show that an optical cross-talk between the scintillators of one type is observed, and we correct it.
This calibration is used for the first measurement of the CC0π double differential cross section in the Proton
Module. The cross section uncertainty is one of the dominant error on neutrino oscillations, and the CC0π
channel is dominant in T2K interactions. We show that this measurement is in agreement with the recent
results of MiniBooNE.
Finally, we present the first Lorentz invariance violation search in the T2K experiment. We show that the
neutrino oscillations are one of the most sensitive probes for this effect. We first review the motivations of this
search and then present the result using the calibrated INGRID detector. We show that no Lorentz invariance
violation is observed in the T2K near detector.

Keywords : T2K, neutrino oscillations, θ13 mixing angle, Super-Kamiokande, Cone Generator, INGRID,
cross section, CCQE, CC0π, Lorentz violation
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