. Résumé-:-tuberculose and . Mtb,

H. Myllykallio, S. Skouloubris, H. Grosjean, U. Liebl, and H. Grosjean, Folate dependent thymidylate forming enzymes: parallels between DNA and RNA metabolic enzymes and evolutionary implications, DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution, 2009.

S. G. Gattis and B. A. Palfey, Direct observation of the participation of flavin in product formation by thyX-encoded thymidylate synthase, J. Am. Chem. Soc, vol.127, pp.832-833, 2004.

S. Graziani, Y. Xia, J. R. Gurnon, J. L. Van-etten, D. Leduc et al., Functional analysis of FAD-dependent thymidylate synthase ThyX from Paramecium bursaria Chlorella virus-1, J. Biol. Chem, vol.279, pp.54340-54347, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00831843

J. Griffin, C. Roshick, E. Iliffe-lee, and G. Mcclarty, Catalytic mechanism of Chlamydia trachomatis flavin-dependent thymidylate synthase, J. Biol. Chem, vol.280, pp.5456-5467, 2005.

E. M. Koehn, T. Fleischmann, J. A. Conrad, B. A. Palfey, S. A. Lesley et al., An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene, Nature, vol.458, pp.919-923, 2009.

A. Mattevi, To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes, Trends Biochem. Sci, vol.31, pp.276-283, 2006.

A. Chernyshev, T. Fleischmann, E. M. Koehn, S. A. Lesley, and A. Kohen, The relationships between oxidase and synthase activities of flavin dependent thymidylate synthase (FDTS), Chem. Comm, vol.27, pp.2861-2863, 2007.

Z. Wang, A. Chernyshev, E. M. Koehn, T. D. Manuel, S. A. Lesley et al., Oxidase activity of a flavin-dependent thymidylate synthase, FEBS J, vol.276, pp.2801-2810, 2009.

M. Giladi, G. Bitan-banin, M. Mevarech, and R. Ortenberg, Genetic evidence for a novel thymidylate synthase in the halophilic archaeon Halobacterium salinarum and in Campylobacter jejuni, FEMS Microbiol. Lett, vol.216, pp.105-109, 2002.

N. Agrawal, S. A. Lesley, P. Kuhn, and A. Kohen, Mechanistic studies of a flavin-dependent thymidylate synthase, Biochemistry, vol.43, pp.10295-10301, 2004.

S. Graziani, J. Bernauer, S. Skouloubris, M. Graille, C. Z. Zhou et al., Catalytic mechanism and structure of viral flavin-dependent thymidylate synthase ThyX, J. Biol. Chem, vol.281, pp.24048-24057, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00431698

T. V. Mishanina, E. M. Koehn, J. A. Conrad, B. A. Palfey, S. A. Lesley et al., Trapping of an intermediate in the reaction catalyzed by flavin-dependent thymidylate synthase, J. Am. Chem. Soc, vol.134, pp.4442-4448, 2012.

I. I. Mathews, Flavin-dependent thymidylate synthase as a drug target for deadly microbes: mutational study and a strategy for inhibitor design, J. Bioterr. Biodef, vol.12, p.4, 2013.

F. Escartin, S. Skouloubris, U. Liebl, and H. Myllykallio, Flavin dependent thymidylate synthase X limits chromosomal DNA replication, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.9948-9952, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00324239

V. Balland, C. Hureau, A. M. Cusano, Y. Liu, T. Tron et al., Oriented immobilization of a fully active monolayer of histidine-tagged recombinant laccase on modified gold electrodes, Chemistry, vol.14, pp.7186-7192, 2008.

I. I. Mathews, A. M. Deacon, J. M. Canaves, D. Mcmullan, S. A. Lesley et al., Functional analysis of substrate and cofactor complex structures of a thymidylate synthase-complementing protein, Structure, vol.11, pp.677-690, 2003.

S. P. Laptenok, L. Bouzhir-sima, J. Lambry, H. Myllykallio, U. Liebl et al., Ultrafast real time visualization of the active site flexibility of the flavoenzyme thymidylate synthase ThyX, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.8924-8929, 2013.

, Biochemical Society Substrate interaction dynamics and O 2 control in the active site of ThyX 9, The Authors Journal compilation c, 2014.

S. G. Mayhew, The effects of pH and semiquinone formation on the oxidation-reduction potentials of flavin mononucleotide, Eur. J. Biochem, vol.265, pp.698-702, 1999.

B. E. Maden, Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism, Biochem. J, vol.350, pp.609-629, 2000.

P. Sampathkumar, S. Turley, J. E. Ulmer, H. G. Rhie, C. H. Sibley et al., Structure of the Mycobacterium tuberculosis flavin dependent thymidylate synthase (MtbThyX) at 2.0 A resolution, J. Mol. Biol, vol.352, pp.1091-1104, 2005.

X. Zhang, J. Zhang, G. Guo, X. Mao, Y. Hu et al., Crystal structure of a flavin-dependent thymidylate synthase from Helicobacter pylori strain 26695, Protein Pept. Lett, vol.19, pp.1225-1130, 2012.

R. G. Rosenthal, M. Ebert, P. Kiefer, D. M. Peter, J. A. Vorholt et al., Direct evidence for a covalent ene adduct intermediate in NAD(P)H-dependent enzymes, Nat. Chem. Biol, vol.10, pp.50-55, 2014.

A. D. Vogt, D. Cera, and E. , Conformational selection is a dominant mechanism of ligand binding, Biochemistry, vol.52, pp.5723-5729, 2013.

U. Kaukinen, H. Lonnberg, and M. Perakyla, Stabilisation of the transition state of phosphodiester bond cleavage within linear single-stranded oligoribonucleotides, Org. Biomol. Chem, vol.2, pp.66-73, 2004.

I. Pecsi, I. Leveles, V. Harmat, B. G. Vertessy, and J. Toth, Aromatic stacking between nucleobase and enzyme promotes phosphate ester hydrolysis in dUTPase, Nucleic Acids Res, vol.38, pp.7179-7186, 2010.

V. Massey, Activation of molecular oxygen by flavins and flavoproteins, J. Biol. Chem, vol.269, pp.22459-22462, 1994.

V. Massey, G. Palmer, and D. P. Ballou, Oxidases and Related Systems, pp.25-43, 1973.

D. Leduc, F. Escartin, H. F. Nijhout, M. C. Reed, U. Liebl et al., Flavin-dependent thymidylate synthase ThyX activity: implications for the folate cycle in bacteria, J. Bacteriol, vol.189, pp.8537-8545, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00195200

C. A. Sheppard, E. E. Trimmer, and R. G. Matthews, Purification and properties of NADH-dependent 5,10-methylenetetrahydrofolate reductase (MetF) from Escherichia coli, J. Bacteriol, vol.181, pp.718-725, 1999.

E. E. Trimmer, D. P. Ballou, and R. G. Matthews, Methylenetetrahydrofolate reductase from Escherichia coli: elucidation of the kinetic mechanism by steady-state and rapid-reaction Studies, Biochemistry, vol.40, pp.6205-6215, 2001.

T. Basta, Y. Boum, J. Briffotaux, H. Becker, I. Lamarre-jouenne et al., Mechanistic and structural basis for inhibition of thymidylate synthase ThyX, Open Biol, vol.2, pp.2046-2441, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00817165

H. Myllykallio, G. Lipowski, D. Leduc, J. Filee, P. Forterre et al., An alternative flavin-dependent mechanism for thymidylate synthesis, Science, vol.297, pp.105-107, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00836930

M. Kögler, B. Vanderhoydonck, S. De-jonghe, J. Rozenski, K. Van-belle et al., Synthesis and evaluation of 5-substituted 2-deoxyuridine monophosphate analogues as inhibitors of flavin-dependent thymidylate synthase in Mycobacterium tuberculosis, J. Med. Chem, vol.54, pp.4847-4862, 2011.

F. E. O-¨-nen, Y. Boum, C. Jacquement, M. V. Spanedda, N. Jaber et al., ) Design, synthesis and evaluation of potent thymidylate synthase X inhibitors, Bioorg. Med. Chem. Lett, vol.18, pp.3628-3631, 2008.

A. Parchina, M. Froeyen, L. Margamuljana, J. Rozenski, S. De-jonghe et al., Discovery of an acyclic nucleoside phosphonate that inhibits Mycobacterium tuberculosis ThyX based on the binding mode of a 5-alkynyl substrate analogue, ChemMedChem, vol.8, pp.1373-1383, 2013.

R. Copeland, Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists, 2005.

R. Copeland and K. Lonnroth, Towards tuberculosis elimination: an action framework for lowincidence countries, Eur Respir J, vol.45, pp.928-952, 2004.

Z. Jakab, C. D. Acosta, and H. H. Kluge,

M. Dara, Consolidated Action Plan to Prevent and Combat Multidrug-and Extensively Drugresistant Tuberculosis in the WHO European Region 2011-2015: Cost-effectiveness analysis, Tuberculosis, 2015.

Y. Zhang, The magic bullets and tuberculosis drug targets, Annu Rev Pharmacol Toxicol, vol.45, pp.529-564, 2005.

J. Arpa, Triple therapy with darbepoetin alfa, idebenone, and riboflavin in Friedreich's ataxia: an open-label trial, Cerebellum, vol.12, pp.713-720, 2013.

S. Iyer, Novel therapeutic approaches for Leber's hereditary optic neuropathy, Discov Med, vol.15, pp.141-149, 2013.

S. Karkare, F. Yousafzai, L. A. Mitchenall, and A. Maxwell, The role of Ca(2)(+) in the activity of Mycobacterium tuberculosis DNA gyrase, Nucleic Acids Res, vol.40, pp.9774-9787, 2012.

J. C. Palomino, Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis, Antimicrob Agents Chemother, vol.46, pp.2720-2722, 2002.

L. Collins and S. G. Franzblau, Antimicrob Agents Chemother, vol.41, pp.1004-1009, 1997.

A. M. Clark, Open source bayesian models: 1. Application to ADME/Tox and drug discovery datasets, J Chem Inf Model, vol.55, pp.1231-1245, 2015.

, World Health Organization, Global tuberculosis report, vol.154, 2014.

C. Lienhardt, Global tuberculosis control: lessons learnt and future prospects, Nat Rev Microbiol, vol.10, issue.6, pp.407-423, 2012.

M. C. Gutierrez, Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis, PLoS Pathog, vol.1, issue.1, p.5, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00080315

I. Comas, Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans, Nat Genet, vol.45, issue.10, pp.1176-82, 2013.

M. Merker, Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage, Nat Genet, vol.47, issue.3, pp.242-251, 2015.
DOI : 10.1038/ng.3195

URL : https://hal.archives-ouvertes.fr/pasteur-01153552

D. Brites and S. Gagneux, Co-evolution of Mycobacterium tuberculosis and Homo sapiens, Immunol Rev, vol.264, issue.1, pp.6-24, 2015.

T. Wirth, Origin, spread and demography of the Mycobacterium tuberculosis complex, PLoS Pathog, vol.4, issue.9, p.1000160, 2008.

Z. Djelouadji, A single-step sequencing method for the identification of Mycobacterium tuberculosis complex species, PLoS Negl Trop Dis, vol.2, issue.6, p.253, 2008.

K. J. Kieser and E. J. Rubin, How sisters grow apart: mycobacterial growth and division, Nat Rev Microbiol, vol.12, issue.8, pp.550-62, 2014.
DOI : 10.1038/nrmicro3299

V. Dartois, The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells, Nat Rev Microbiol, vol.12, issue.3, pp.159-67, 2014.

S. T. Cole, Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, vol.393, issue.6685, pp.537-581, 1998.

A. Koul, The challenge of new drug discovery for tuberculosis, Nature, vol.469, issue.7331, pp.483-90, 2011.

M. Gengenbacher and S. H. Kaufmann, Mycobacterium tuberculosis: success through dormancy, FEMS Microbiol Rev, vol.36, issue.3, pp.514-546, 2012.
DOI : 10.1111/j.1574-6976.2012.00331.x

URL : https://academic.oup.com/femsre/article-pdf/36/3/514/18128985/36-3-514.pdf

S. Sturgill-koszycki, Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular protonATPase, Science, vol.263, issue.5147, pp.678-81, 1994.

D. G. Russell, Mycobacterium tuberculosis: here today, and here tomorrow, Nat Rev Mol Cell Biol, vol.2, issue.8, pp.569-77, 2001.
DOI : 10.1038/35085034

V. Deretic, Autophagy in immunity against mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy, Curr Top Microbiol Immunol, vol.335, pp.169-88, 2009.

V. H. Ng, Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst, Mol Microbiol, vol.52, issue.5, pp.1291-302, 2004.

S. Ehrt and D. Schnappinger, Mycobacterial survival strategies in the phagosome: defence against host stresses, Cell Microbiol, vol.11, issue.8, pp.1170-1178, 2009.
DOI : 10.1111/j.1462-5822.2009.01335.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2009.01335.x/pdf

H. Getahun, Latent Mycobacterium tuberculosis infection, N Engl J Med, vol.372, issue.22, pp.2127-2162, 2015.

G. Theron, The diagnostic accuracy of the GenoType((R)) MTBDRsl assay for the detection of resistance to second-line antituberculosis drugs, Cochrane Database Syst Rev, vol.10, p.10705, 2014.

M. Bonnet, New diagnostic tests for tuberculosis in southern countries: from theory to practice in southern countries, Rev Mal Respir, vol.28, issue.10, pp.1310-1331, 2011.

C. Habeenzu, D. Lubasi, and A. F. Fleming, Improved sensitivity of direct microscopy for detection of acid-fast bacilli in sputum in developing countries, Trans R Soc Trop Med Hyg, vol.92, issue.4, pp.415-421, 1998.

N. Zaib-un, Comparison of fluorescence microscopy and Ziehl-Neelsen technique in diagnosis of tuberculosis in paediatric patients, J Pak Med Assoc, vol.65, issue.8, pp.879-81, 2015.

P. P. Munot, Detection of Acid Fast Bacilli in Saliva using Papanicolaou Stain Induced Fluorescence Method Versus Fluorochrome Staining: An Evaluative Study, J Int Oral Health, vol.7, issue.7, pp.115-135, 2015.

D. A. Moore, Microscopic-observation drug-susceptibility assay for the diagnosis of TB, N Engl J Med, vol.355, issue.15, pp.1539-50, 2006.

K. R. Steingart, Xpert(R) MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults, Cochrane Database Syst Rev, vol.1, p.9593, 2014.
DOI : 10.1002/14651858.cd009593.pub3

URL : http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD009593.pub3/pdf

F. A. Drobniewski and S. M. Wilson, The rapid diagnosis of isoniazid and rifampicin resistance in Mycobacterium tuberculosisa molecular story, J Med Microbiol, vol.47, issue.3, pp.189-96, 1998.

C. F. Hanrahan and M. Shah, Economic challenges associated with tuberculosis diagnostic development, Expert Rev Pharmacoecon Outcomes Res, vol.14, issue.4, pp.499-510, 2014.
DOI : 10.1586/14737167.2014.914438

URL : http://europepmc.org/articles/pmc4605384?pdf=render

L. Munoz and M. Santin, Interferon-gamma release assays versus tuberculin skin test for targeting people for tuberculosis preventive treatment: an evidence-based review, J Infect, vol.66, issue.4, pp.381-388, 2013.

R. T. Horvat, Gamma Interferon Assays Used in the Diagnosis of Tuberculosis, Clin Vaccine Immunol, vol.22, issue.8, pp.845-854, 2015.

P. Salgame, Latent tuberculosis infection-Revisiting and revising concepts, Tuberculosis, vol.95, issue.4, pp.373-84, 2015.
DOI : 10.1016/j.tube.2015.04.003

G. R. Davies, Early clinical development of anti-tuberculosis drugs: science, statistics and sterilizing activity, Tuberculosis (Edinb), vol.90, issue.3, pp.171-177, 2010.
DOI : 10.1016/j.tube.2010.03.007

O. T. Schubert, Absolute Proteome Composition and Dynamics during Dormancy and Resuscitation of Mycobacterium tuberculosis, Cell Host Microbe, vol.18, issue.1, pp.96-108, 2015.
DOI : 10.1016/j.chom.2015.06.001

URL : https://doi.org/10.1016/j.chom.2015.06.001

J. Millard, C. Ugarte-gil, and D. A. Moore, Multidrug resistant tuberculosis, BMJ, vol.350, p.882, 2015.

Y. Zhang and W. W. Yew, Mechanisms of drug resistance in Mycobacterium tuberculosis, Int J Tuberc Lung Dis, vol.13, issue.11, pp.1320-1350, 2009.

A. Banerjee, inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis, Science, vol.263, issue.5144, pp.227-257, 1994.
DOI : 10.1126/science.8284673

A. Argyrou, Proteome-wide profiling of isoniazid targets in Mycobacterium tuberculosis, Biochemistry, vol.45, issue.47, pp.13947-53, 2006.
DOI : 10.1021/bi061874m

URL : http://europepmc.org/articles/pmc2519606?pdf=render

P. Miotto, D. M. Cirillo, and G. B. Migliori, Drug resistance in Mycobacterium tuberculosis: molecular mechanisms challenging fluoroquinolones and pyrazinamide effectiveness, Chest, vol.147, issue.4, pp.1135-1178, 2015.

W. Shi, Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis, Science, vol.333, issue.6049, pp.1630-1632, 2011.
DOI : 10.1126/science.1208813

URL : http://europepmc.org/articles/pmc3502614?pdf=render

S. Zhang, Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis, Emerg Microbes Infect, issue.2, p.34, 2013.
DOI : 10.1038/emi.2013.38

URL : http://www.nature.com/emi/journal/v2/n6/pdf/emi201338a.pdf

A. E. Belanger, The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol, Proc Natl Acad Sci, vol.93, issue.21, pp.11919-11943, 1996.

Y. Minato, Mycobacterium tuberculosis Folate Metabolism and the Mechanistic Basis for para-Aminosalicylic Acid Susceptibility and Resistance, Antimicrob Agents Chemother, vol.59, issue.9, pp.5097-106, 2015.
DOI : 10.1128/aac.00647-15

URL : http://aac.asm.org/content/59/9/5097.full.pdf

J. Zheng, para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis, J Biol Chem, vol.288, issue.32, pp.23447-56, 2013.

A. S. Fivian-hughes, J. Houghton, and E. O. Davis, Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to paminosalicylic acid, Microbiology, vol.158, issue.2, pp.308-326, 2012.

H. N. Jnawali, Molecular genetics of Mycobacterium tuberculosis resistant to aminoglycosides and cyclic peptide capreomycin antibiotics in Korea, World J Microbiol Biotechnol, vol.29, issue.6, pp.975-82, 2013.

D. H. Kim, Treatment outcomes and long-term survival in patients with extensively drug-resistant tuberculosis, Am J Respir Crit Care Med, vol.178, issue.10, pp.1075-82, 2008.

K. Andries, A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis, Science, vol.307, issue.5707, pp.223-230, 2005.

E. Leibert, M. Danckers, and W. N. Rom, New drugs to treat multidrug-resistant tuberculosis: the case for bedaquiline, Ther Clin Risk Manag, vol.10, pp.597-602, 2014.

J. D. Szumowski and J. B. Lynch, Profile of delamanid for the treatment of multidrug-resistant tuberculosis, Drug Des Devel Ther, vol.9, pp.677-82, 2015.

S. K. Field, Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? Ther Adv Chronic Dis, vol.6, pp.170-84, 2015.

M. Gurumurthy, A novel F(420)-dependent anti-oxidant mechanism protects Mycobacterium tuberculosis against oxidative stress and bactericidal agents, Mol Microbiol, vol.87, issue.4, pp.744-55, 2013.

G. Sotgiu, Delamanid (OPC-67683) for treatment of multidrug-resistant tuberculosis, Expert Rev Anti Infect Ther, vol.13, issue.3, pp.305-320, 2015.

K. Mdluli, T. Kaneko, and A. Upton, The tuberculosis drug discovery and development pipeline and emerging drug targets. Cold Spring Harb Perspect Med, 2015.

A. M. Schmalstieg, The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance, Antimicrob Agents Chemother, vol.56, issue.9, pp.4806-4821, 2012.

A. R. Flores, L. M. Parsons, and M. S. Pavelka, Genetic analysis of the beta-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to beta-lactam antibiotics, Microbiology, issue.151, pp.521-553, 2005.

S. Borrell and S. Gagneux, Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis, Int J Tuberc Lung Dis, vol.13, issue.12, pp.1456-66, 2009.

E. C. Bottger and B. Springer, Tuberculosis: drug resistance, fitness, and strategies for global control, Eur J Pediatr, vol.167, issue.2, pp.141-149, 2008.

T. Song, Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the beta' subunit of RNA polymerase, Mol Microbiol, vol.91, issue.6, pp.1106-1125, 2014.

H. Nebenzahl-guimaraes, Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis, J Antimicrob Chemother, vol.69, issue.2, pp.331-373, 2014.

C. Sala and R. C. Hartkoorn, Tuberculosis drugs: new candidates and how to find more, Future Microbiol, vol.6, issue.6, pp.617-650, 2011.

K. Pethe, A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy, Nat Commun, vol.1, p.57, 2010.

A. L. Hopkins and C. R. Groom, The druggable genome, Nat Rev Drug Discov, vol.1, issue.9, pp.727-757, 2002.

A. P. Russ and S. Lampel, The druggable genome: an update, Drug Discov Today, issue.10, pp.1607-1617, 2005.

T. Roemer and C. Boone, Systems-level antimicrobial drug and drug synergy discovery, Nat Chem Biol, issue.9, pp.222-253, 2013.

A. C. Cheng, Structure-based maximal affinity model predicts small-molecule druggability, Nat Biotechnol, vol.25, issue.1, pp.71-76, 2007.

B. O. Villoutreix, A leap into the chemical space of proteinprotein interaction inhibitors, Curr Pharm Des, vol.18, issue.30, pp.4648-67, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00828202

B. Lechartier, Tuberculosis drug discovery in the post-postgenomic era, EMBO Mol Med, vol.6, issue.2, pp.158-68, 2014.

A. Kling, Antibiotics. Targeting DnaN for tuberculosis therapy using novel griselimycins, Science, vol.348, issue.6239, pp.1106-1118, 2015.

T. Christophe, High content screening identifies decaprenylphosphoribose 2' epimerase as a target for intracellular antimycobacterial inhibitors, PLoS Pathog, vol.5, issue.10, p.1000645, 2009.

N. Willand, Synthetic EthR inhibitors boost antituberculous activity of ethionamide, Nat Med, vol.15, issue.5, pp.537-581, 2009.

H. Myllykallio, An alternative flavin-dependent mechanism for thymidylate synthesis, Science, vol.297, issue.5578, pp.105-112, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00836930

D. F. Warner, J. C. Evans, and V. Mizrahi, Nucleotide Metabolism and DNA Replication. Microbiol Spectr, issue.2, 2014.

V. Mathys, Molecular genetics of para-aminosalicylic acid resistance in clinical isolates and spontaneous mutants of Mycobacterium tuberculosis, Antimicrob Agents Chemother, vol.53, issue.5, pp.2100-2109, 2009.

H. Zhang, Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance, Nat Genet, vol.45, issue.10, pp.1255-60, 2013.

M. Merker, Whole genome sequencing reveals complex evolution patterns of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients, PLoS One, vol.8, issue.12, p.82551, 2013.

S. Skouloubris, Targeting of Helicobacter pylori thymidylate synthase ThyX by non-mitotoxic hydroxy-naphthoquinones, Open Biol, vol.5, issue.6, p.150015, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01168931

T. Bollenbach, Antimicrobial interactions: mechanisms and implications for drug discovery and resistance evolution, Curr Opin Microbiol, vol.27, pp.1-9, 2015.

A. Raju, Antifolate Activity of Plant Polyphenols against Mycobacterium tuberculosis, Phytother Res, vol.29, issue.10, pp.1646-51, 2015.

J. Jia, Mechanisms of drug combinations: interaction and network perspectives, Nat Rev Drug Discov, vol.8, issue.2, pp.111-139, 2009.

E. C. Guzman and C. M. Martin, Thymineless death, at the origin. Front Microbiol, vol.6, p.499, 2015.

A. Khodursky, E. C. Guzman, and P. C. Hanawalt, Thymineless Death Lives On: New Insights into a Classic Phenomenon, Annu Rev Microbiol, 2015.

T. Abeysinghe and A. Kohen, Role of long-range protein dynamics in different thymidylate synthase catalyzed reactions, Int J Mol Sci, vol.16, issue.4, pp.7304-7323, 2015.

C. W. Carreras and D. V. Santi, The catalytic mechanism and structure of thymidylate synthase, Annu Rev Biochem, vol.64, pp.721-62, 1995.

D. Leduc, Functional evidence for active site location of tetrameric thymidylate synthase X at the interphase of three monomers, Proc Natl Acad Sci U S A, vol.101, issue.19, pp.7252-7259, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00831844

J. E. Ulmer, Functional analysis of the Mycobacterium tuberculosis FAD-dependent thymidylate synthase, ThyX, reveals new amino acid residues contributing to an extended ThyX motif, J Bacteriol, vol.190, issue.6, pp.2056-64, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00205032

T. V. Mishanina, J. M. Corcoran, and A. Kohen, Substrate activation in flavin-dependent thymidylate synthase, J Am Chem Soc, vol.136, issue.30, pp.10597-600, 2014.

T. V. Mishanina, Trapping of an intermediate in the reaction catalyzed by flavin-dependent thymidylate synthase, J Am Chem Soc, vol.134, issue.9, pp.4442-4450, 2012.

J. A. Conrad, Detection of intermediates in the oxidative halfreaction of the FAD-dependent thymidylate synthase from Thermotoga maritima: carbon transfer without covalent pyrimidine activation, Biochemistry, vol.53, issue.32, pp.5199-207, 2014.

P. Sampathkumar, Structure of the Mycobacterium tuberculosis flavin dependent thymidylate synthase (MtbThyX) at 2.0A resolution, J Mol Biol, vol.352, issue.5, pp.1091-104, 2005.

H. F. Becker, Substrate interaction dynamics and oxygen control in the active site of thymidylate synthase ThyX, Biochem J, vol.459, issue.1, pp.37-45, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01086044

S. P. Laptenok, Ultrafast real-time visualization of active site flexibility of flavoenzyme thymidylate synthase ThyX, Proc Natl Acad Sci U S A, vol.110, issue.22, pp.8924-8933, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00942352

E. M. Koehn, Folate binding site of flavin-dependent thymidylate synthase, Proc Natl Acad Sci, vol.109, issue.39, pp.15722-15729, 2012.

S. Graziani, Catalytic mechanism and structure of viral flavin-dependent thymidylate synthase ThyX, J Biol Chem, vol.281, issue.33, pp.24048-57, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00431698

T. Basta, Mechanistic and structural basis for inhibition of thymidylate synthase ThyX, Open Biol, vol.2, issue.10, p.120120, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00817165

K. Ollinger and A. Brunmark, Effect of hydroxy substituent position on 1,4-naphthoquinone toxicity to rat hepatocytes, J Biol Chem, vol.266, issue.32, pp.21496-503, 1991.

Y. Kumagai, The chemical biology of naphthoquinones and its environmental implications, Annu Rev Pharmacol Toxicol, vol.52, pp.221-268, 2012.

S. H. Wang, Synthesis and Biological Evaluation of Lipophilic 1,4-Naphthoquinone Derivatives against Human Cancer Cell Lines, Molecules, vol.20, issue.7, pp.11994-2015, 2015.

R. Inagaki, Synthesis, Characterization, and Antileukemic Properties of Naphthoquinone Derivatives of Lawsone, ChemMedChem, vol.10, issue.8, pp.1413-1436, 2015.

D. C. Schuck, Biological evaluation of hydroxynaphthoquinones as anti-malarials, Malar J, vol.12, p.234, 2013.

S. C. Cho, M. Z. Sultan, and S. S. Moon, Anti-acne activities of pulsaquinone, hydropulsaquinone, and structurally related 1, 4quinone derivatives, Arch Pharm Res, vol.32, issue.4, pp.489-94, 2009.

J. H. Hunter, Kinetics and ligand-binding preferences of Mycobacterium tuberculosis thymidylate synthases, ThyA and ThyX, PLoS One, vol.3, issue.5, p.2237, 2008.

S. Graziani, Functional analysis of FAD-dependent thymidylate synthase ThyX from Paramecium bursaria Chlorella virus-1, J Biol Chem, vol.279, issue.52, pp.54340-54347, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00831843

M. Kogler, Synthesis and evaluation of 5-substituted 2'deoxyuridine monophosphate analogues as inhibitors of flavindependent thymidylate synthase in Mycobacterium tuberculosis, J Med Chem, vol.54, issue.13, pp.4847-62, 2011.

Y. Mehellou, J. Balzarini, and C. Mcguigan, Aryloxy phosphoramidate triesters: a technology for delivering monophosphorylated nucleosides and sugars into cells, ChemMedChem, vol.4, issue.11, pp.1779-91, 2009.

C. Mcguigan, ProTides of N-(3-(5-(2'-deoxyuridine))prop-2ynyl)octanamide as potential anti-tubercular and anti-viral agents, Bioorg Med Chem, vol.22, issue.9, pp.2816-2840, 2014.

F. Esra-onen, Design, synthesis and evaluation of potent thymidylate synthase X inhibitors, Bioorg Med Chem Lett, vol.18, issue.12, pp.3628-3659, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00297137

A. Mattevi, To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes, Trends Biochem Sci, vol.31, issue.5, pp.276-83, 2006.

J. A. Imlay, The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium, Nat Rev Microbiol, issue.11, pp.443-54, 2013.

T. Yamada, H. Onimatsu, and J. L. Van-etten, Chlorella viruses, Adv Virus Res, vol.66, pp.293-336, 2006.

Z. Wang, Oxidase activity of a flavin-dependent thymidylate synthase, FEBS J, vol.276, issue.10, pp.2801-2811, 2009.

T. Fenchel and B. Finlay, Oxygen and the spatial structure of microbial communities, Biol Rev Camb Philos Soc, vol.83, issue.4, pp.553-69, 2008.

R. Wolfenden, Transition state analog inhibitors and enzyme catalysis, Annu Rev Biophys Bioeng, vol.5, pp.271-306, 1976.

D. Leduc, Flavin-dependent thymidylate synthase ThyX activity: implications for the folate cycle in bacteria, J Bacteriol, vol.189, issue.23, pp.8537-8582, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00195200

A. Kumar, Redox homeostasis in mycobacteria: the key to tuberculosis control?, Expert Rev Mol Med, vol.13, p.39, 2011.

R. A. Copeland, Conformational adaptation in drug-target interactions and residence time, Future Med Chem, vol.3, issue.12, pp.1491-501, 2011.

A. Mason, A lag-phase in the reduction of flavin dependent thymidylate synthase (FDTS) revealed a mechanistic missing link, Chem Commun (Camb), issue.16, pp.1781-1784, 2006.

A. Chernyshev, The relationships between oxidase and synthase activities of flavin dependent thymidylate synthase (FDTS), Chem Commun (Camb), issue.27, pp.2861-2864, 2007.

N. Agrawal, Mechanistic studies of a flavin-dependent thymidylate synthase, Biochemistry, vol.43, issue.32, pp.10295-301, 2004.

E. M. Koehn, An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene, Nature, vol.458, issue.7240, pp.919-942, 2009.

P. R. Meylan, D. D. Richman, and R. S. Kornbluth, Reduced intracellular growth of mycobacteria in human macrophages cultivated at physiologic oxygen pressure, Am Rev Respir Dis, vol.145, issue.4, pp.947-53, 1992.

J. A. Imlay, Cellular defenses against superoxide and hydrogen peroxide, Annu Rev Biochem, vol.77, pp.755-76, 2008.

A. Signore, Can we produce an image of bacteria with radiopharmaceuticals?, Eur J Nucl Med Mol Imaging, vol.35, issue.6, pp.1051-1056, 2008.

C. M. Czekster, A. Vandemeulebroucke, and J. S. Blanchard, Two parallel pathways in the kinetic sequence of the dihydrofolate reductase from Mycobacterium tuberculosis, Biochemistry, vol.50, issue.32, pp.7045-56, 2011.

A. Trivedi, Redox biology of tuberculosis pathogenesis, Adv Microb Physiol, vol.60, pp.263-324, 2012.
DOI : 10.1016/b978-0-12-398264-3.00004-8

C. A. Lipinski, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv Drug Deliv Rev, vol.46, issue.1-3, pp.3-26, 2001.
DOI : 10.1016/j.addr.2012.09.019

S. Ekins and B. A. Bunin, The Collaborative Drug Discovery (CDD) database, Methods Mol Biol, vol.993, pp.139-54, 2013.
DOI : 10.1007/978-1-62703-342-8_10

J. Dziadek, Conditional expression of Mycobacterium smegmatis ftsZ, an essential cell division gene. Microbiology, vol.149, pp.1593-603, 2003.
DOI : 10.1099/mic.0.26023-0

URL : http://mic.microbiologyresearch.org/deliver/fulltext/micro/149/6/1593.pdf?itemId=/content/journal/micro/10.1099/mic.0.26023-0&mimeType=pdf&isFastTrackArticle=

M. Altaf, Evaluation of the Mycobacterium smegmatis and BCG models for the discovery of Mycobacterium tuberculosis inhibitors, Tuberculosis (Edinb), vol.90, issue.6, pp.333-340, 2010.

V. Singh, The complex mechanism of antimycobacterial action of 5-fluorouracil, Chem Biol, vol.22, issue.1, pp.63-75, 2015.

G. M. Buyse, Idebenone as a novel, therapeutic approach for Duchenne muscular dystrophy: results from a 12 month, doubleblind, randomized placebo-controlled trial, Neuromuscul Disord, vol.21, issue.6, pp.396-405, 2011.
DOI : 10.1016/j.nmd.2011.02.016

J. Rybniker, Lansoprazole is an antituberculous prodrug targeting cytochrome bc1, Nat Commun, vol.6, p.7659, 2015.
DOI : 10.1038/ncomms8659

URL : http://www.nature.com/articles/ncomms8659.pdf

P. M. Wilson, P. V. Danenberg, P. G. Johnston, H. J. Lenz, and R. D. Ladner, Standing the test of time: targeting thymidylate biosynthesis in cancer therapy, Nat. Rev. Clin. Oncol, vol.11, pp.282-298, 2014.

A. Gangjee, S. Kurup, and O. Namjoshi, Dihydrofolate reductase as a target for chemotherapy in parasites, Curr. Pharm. Des, vol.13, pp.609-639, 2007.
DOI : 10.2174/138161207780162827

S. Hawser, S. Lociuro, and K. Islam, Dihydrofolate reductase inhibitors as antibacterial agents, 2006.
DOI : 10.1016/j.bcp.2005.10.052

, Biochem. Pharmacol, vol.71, pp.941-948

C. W. Carreras and D. V. Santi, The catalytic mechanism and structure of thymidylate synthase, 1995.

, Annu. Rev. Biochem, vol.64, pp.721-762

S. G. Gattis and B. A. Palfey, Direct observation of the participation of flavin in product formation by thyX-encoded thymidylate synthase, 2005.

, J. Am. Chem. Soc, vol.127, pp.832-833

S. Graziani, Catalytic mechanism and structure of viral flavin-dependent thymidylate synthase ThyX, J. Biol. Chem, vol.281, pp.48-72, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00431698

E. M. Koehn, T. Fleischmann, J. A. Conrad, B. A. Palfey, S. A. Lesley et al., An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene, Nature, vol.458, pp.919-923, 2009.

T. V. Mishanina, E. M. Koehn, J. A. Conrad, B. A. Palfey, S. A. Lesley et al., Trapping of an rsob.royalsocietypublishing.org Open Biol. 5: 150015 intermediate in the reaction catalyzed by flavindependent thymidylate synthase, J. Am. Chem. Soc, vol.134, pp.4442-4448, 2012.

H. Myllykallio, G. Lipowski, D. Leduc, J. Filee, P. Forterre et al., An alternative flavin-dependent mechanism for thymidylate synthesis, Science, vol.297, pp.105-107, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00836930

H. Myllykallio, D. Leduc, J. Filee, and U. Liebl, Life without dihydrofolate reductase FolA, Trends Microbiol, vol.11, p.101, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00836432

T. Basta, Mechanistic and structural basis for inhibition of thymidylate synthase ThyX, Open Biol, vol.2, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00817165

M. Kogler, R. Busson, S. De-jonghe, J. Rozenski, K. Van-belle et al., Synthesis and evaluation of 6-Aza-2'deoxyuridine monophosphate analogs as inhibitors of thymidylate synthases, and as substrates or inhibitors of thymidine monophosphate kinase in Mycobacterium tuberculosis, Chem. Biodiv, vol.9, pp.536-556, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00705897

M. Kogler, Synthesis and evaluation of 5-substituted 2'-deoxyuridine monophosphate analogues as inhibitors of flavin-dependent thymidylate synthase in Mycobacterium tuberculosis, 2011.

, J. Med. Chem, vol.54, pp.4847-4862, 2004688.

I. I. Mathews, A. M. Deacon, J. M. Canaves, D. Mcmullan, S. A. Lesley et al., Functional analysis of substrate and cofactor complex structures of a thymidylate synthase-complementing protein, Structure, vol.11, pp.97-99, 2003.

H. F. Becker, K. Djaout, I. Lamarre, J. E. Ulmer, D. Schaming et al., , 2014.

, Substrate interaction dynamics and oxygen control in the active site of thymidylate synthase ThyX, Biochem. J, vol.459, pp.37-45

F. Esra-onen, Y. Boum, C. Jacquement, M. V. Spanedda, N. Jaber et al.,

, Design, synthesis and evaluation of potent thymidylate synthase X inhibitors, Bioorg. Med. Chem. Lett, vol.18, pp.3628-3631

V. Singh, The complex mechanism of antimycobacterial action of 5-fluorouracil, Chem. Biol, vol.22, pp.63-75, 2014.

P. Dandawate, Synthesis, characterization, molecular docking and cytotoxic activity of novel plumbagin hydrazones against breast cancer cells, Bioorg. Med. Chem. Lett, vol.22, pp.3104-3108, 2012.

P. Dandawate, A. Ahmad, J. Deshpande, K. V. Swamy, E. M. Khan et al., , 2014.

, Anticancer phytochemical analogs 37: synthesis, characterization, molecular docking and cytotoxicity of novel plumbagin hydrazones against breast cancer cells, Bioorg. Med. Chem. Lett, vol.24, pp.2900-2904

R. Borges-argaez, C. I. Canche-chay, L. M. Pena-rodriguez, S. Said-fernandez, and G. M. Molina-salinas, , 2007.

, Antimicrobial activity of Diospyros anisandra, Fitoterapia, vol.78, pp.370-372

V. Kuete, J. G. Tangmouo, J. J. Meyer, and N. Lall, , 2009.

. Diospyrone, crassiflorone and plumbagin: three antimycobacterial and antigonorrhoeal naphthoquinones from two Diospyros spp, Int. J. Antimicrob. Agents, vol.34, pp.322-325

N. Lall, D. Sarma, M. Hazra, B. Meyer, and J. J. , Antimycobacterial activity of diospyrin derivatives and a structural analogue of diospyrin against Mycobacterium tuberculosis in vitro, J. Antimicrob. Chemother, vol.51, pp.435-438, 2003.

A. L. Baggish and D. R. Hill, Antiparasitic agent atovaquone, Antimicrob. Agents Chemother, vol.46, pp.1163-1173, 2002.

S. Karkare, T. T. Chung, C. F. Mitchenall, L. A. Mckay, A. R. Greive et al., The naphthoquinone diospyrin is an inhibitor of DNA gyrase with a novel mechanism of action, J. Biol. Chem, vol.288, pp.5149-5156, 2013.

W. Knecht, J. Henseling, and M. Loffler, Kinetics of inhibition of human and rat dihydroorotate dehydrogenase by atovaquone, lawsone derivatives, brequinar sodium and polyporic acid, Chem. Biol. Interact, vol.124, pp.144-145, 2000.

J. Guo, W. Song, F. Ding, J. Zhang, and Z. Sun, Study on cytotoxicity and structure-activity relationship of HL-7702 cell exposed to naphthoquinones, Environ. Toxicol. Pharmacol, vol.33, pp.408-413, 2012.

B. R. Pinho, M. M. Santos, A. Fonseca-silva, P. Valentao, P. B. Andrade et al., How mitochondrial dysfunction affects zebrafish development and cardiovascular function: an in vivo model for testing mitochondria-targeted drugs, Br. J. Pharmacol, vol.169, pp.1072-1090, 2013.

D. Birth, W. C. Kao, and C. Hunte, Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action, Nat. Commun, vol.5, p.4029, 2014.

N. R. Salama, M. L. Hartung, and A. Muller, Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori, Nat. Rev. Microbiol, vol.11, pp.385-399, 2013.

J. F. Tomb, The complete genome sequence of the gastric pathogen Helicobacter pylori, Nature, vol.388, pp.539-547, 1997.

A. Lee, J. O'rourke, D. Ungria, M. C. Robertson, B. Daskalopoulos et al., A standardized mouse model of Helicobacter pylori infection: introducing the Sydney strain, Gastroenterology, vol.112, pp.1386-1397, 1997.

D. Leduc, S. Graziani, G. Lipowski, C. Marchand, L. Marechal et al., Functional evidence for active site location of tetrameric thymidylate synthase X at the interphase of three monomers, Proc. Natl Acad. Sci. USA, vol.101, pp.7252-7257, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00831844

X. L. Zhang, J. Y. Zhang, X. H. Mao, Q. M. Zou, Y. L. Hu et al., Crystallization and preliminary crystallographic studies of a flavin-dependent thymidylate synthase from Helicobacter pylori, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, vol.66, pp.513-515, 2010.

X. L. Zhang, J. Y. Zhang, G. Guo, X. H. Mao, Y. L. Hu et al., Crystal structure of a flavin-dependent thymidylate synthase from Helicobacter pylori strain 26695, Prot. Pept. Lett, vol.19, pp.1225-1230, 2012.

L. Schrödinger, The PyMOL molecular graphics system, v. 1.3r1, 2010.

D. Seeliger and B. L. De-groot, Ligand docking and binding site analysis with PyMOL and Autodock/ Vina, J. Comput. Aided Mol. Des, vol.24, pp.417-422, 2010.

O. Trott and A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem, vol.31, pp.455-461, 2010.

S. Bury-mone, S. Skouloubris, A. Labigne, and H. De-reuse, UreI: a Helicobacter pylori protein essential for resistance to acidity and for the early steps of murine gastric mucosa infection, Gastroenterol. Clin. Biol, vol.25, pp.659-663, 2001.

M. Bonini, S. Rossi, G. Karlsson, M. Almgren, L. Nostro et al., Self-assembly of betacyclodextrin in water. Part 1: cryo-TEM and dynamic and static light scattering, Langmuir, vol.22, pp.1478-1484, 2006.

S. Skouloubris, J. M. Thiberge, A. Labigne, and H. De-reuse,

, The Helicobacter pylori UreI protein is not involved in urease activity but is essential for bacterial survival in vivo, Infect. Immunol, vol.66, pp.4517-4521

F. Megraud, S. Coenen, A. Versporten, M. Kist, M. Lopezbrea et al., Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption, Gut, vol.62, pp.34-42, 2013.

A. Mordente, G. E. Martorana, G. Minotti, and B. Giardina, Antioxidant properties of 2,3-dimethoxy-5methyl-6-(10-hydroxydecyl)-1,4-benzoquinone (idebenone), Chem. Res. Toxicol, vol.11, pp.54-63, 1998.

P. J. Jenks, R. L. Ferrero, J. Tankovic, J. M. Thiberge, and A. Labigne, Evaluation of nitrofurantoin combination therapy of metronidazole-sensitive and-resistant Helicobacter pylori infections in mice, Antimicrob. Agents Chemother, vol.44, pp.2623-2629, 2000.

C. R. Silva, V. Michel, S. Genovese, M. C. Prevost, F. Epifano et al., Anti-Helicobacter pylori activities of natural isopentenyloxycinnamyl derivatives from Boronia pinnata, Nat. Prod. Commun, vol.7, pp.1347-1350, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01737658

, rsob.royalsocietypublishing.org Open Biol, vol.5, p.150015