L. Nag, P. Sournia, H. Myllykallio, U. Liebl, and M. H. Vos, Identification of the TyrOH?+ Radical Cation in the Flavoenzyme TrmFO, Journal, vol.139, pp.11500-11505, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01617697

I. Mcconnell, G. Li, and G. W. Brudvig, Energy Conversion in Natural and Artificial Photosynthesis, Chemistry & Biology, vol.17, pp.434-447, 2010.

P. Brzezinski and G. Larsson, Redox-driven proton pumping by heme-copper oxidases, Biochimica et Biophysica Acta, vol.1605, pp.1-13, 2003.
DOI : 10.1016/s0005-2728(03)00079-3

URL : https://doi.org/10.1016/s0005-2728(03)00079-3

S. Johnsen and K. J. Lohmann, Magnetoreception in animais, Physics today, vol.61, pp.29-35, 2008.

S. Weber, Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase, Biochimica et Biophysica Acta, vol.1707, pp.1-23, 2005.

T. Lötzbeyer, W. Schuhmann, H. Schmidt, and . Minizymes, A new strategy for the development of reagentless amperometric biosensors based on direct electrontransfer processes, Bioelectrochemistry and Bioenergetics, vol.42, pp.1-6, 1997.

J. H. Alstrum-acevedo, M. K. Brennaman, and T. J. Meyer, Chemical Approaches to Artificial Photosynthesis. 2. Inorganic Chemistry, vol.44, pp.6802-6827, 2005.

M. Hambourger, G. F. Moore, D. M. Kramer, D. Gust, A. L. Moore et al., Biology and technology for photochemical fuel production, Chemical Society Reviews, vol.38, pp.25-35, 2009.

N. Sutin, Annual Review of Nuclear Science, vol.12, pp.285-328, 1962.

C. C. Page, C. C. Moser, X. Chen, and P. L. Dutton, Natural engineering principles of electron tunnelling in biological oxidation-reduction, Nature, vol.402, pp.47-52, 1999.

L. Michaelis and T. Enzymes, Chemistry and Mechanism of Action, vol.2, 1951.

B. Chance and G. R. Williams, The respiratory chain and oxidative phosphorylation., eng Advances in enzymology and related subjects of biochemistry, CONCLUSIONS AND PERSPECTIVES, vol.17, issue.12, pp.65-134, 1956.

H. B. Gray and J. R. Winkler, Electron tunneling through proteins, Quarterly Reviews of Biophysics, vol.36, pp.341-372, 2003.

R. A. Marcus, On the Theory of OxidationReduction Reactions Involving Electron Transfer. I. The Journal of Chemical Physics, vol.24, pp.966-978, 1956.

R. Marcus and N. Sutin, Electron transfers in chemistry and biology, Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics, vol.811, pp.265-322, 1985.

R. A. Marcus, Chemical and Electrochemical Electron-Transfer Theory. Annual Review of Physical Chemistry, vol.15, pp.155-196, 1964.

J. Halpern, Mechanisms of electron transfer and related processes in solution, Quarterly Reviews, Chemical Society, vol.15, pp.207-236, 1961.

H. Taube, Advances in Inorganic Chemistry and Radiochemistry, vol.1, pp.1-53, 1959.

N. S. Hush, Adiabatic theory of outer sphere electron-transfer reactions in solution, Transactions of the Faraday Society, vol.57, pp.557-580, 1961.

R. Dogonadze, A. Kuznetsov, and V. Levich, Theory of hydrogen-ion discharge on metals: Case of high overvoltages, Electrochimica Acta, vol.13, pp.1025-1044, 1968.

J. J. Hopfield, Electron Transfer Between Biological Molecules by Thermally Activated Tunneling, Proceedings of the National Academy of Sciences, p.3640, 1974.

A. De-la-lande, N. Gillet, S. Chen, and D. R. Salahub, Progress and challenges in simulating and understanding electron transfer in proteins, Archives of Biochemistry and Biophysics, vol.582, pp.28-41, 2015.

, Mechanism for electron transfer within and between proteins. Current Opinion in Chemical Biology, vol.7, pp.551-556, 2003.

J. Stubbe, D. G. Nocera, C. S. Yee, and M. C. Chang, Radical Initiation in the Class I Ribonucleotide Reductase: Long-Range Proton-Coupled Electron Transfer?, Chemical Reviews, vol.103, pp.2167-2202, 2003.

C. Lambert, G. Nöll, and J. Schelter, Bridge-mediated hopping or superexchange electron-transfer processes in bis(triarylamine) systems, Nature Materials, p.69, 2001.

S. S. Isied, M. Y. Ogawa, and J. F. Wishart, Peptide-mediated intramolecular electron transfer: long-range distance dependence, Chemical Reviews, vol.92, pp.381-394, 1992.

J. J. Warren, M. E. Ener, A. Vl?ek, J. R. Winkler, and H. B. Gray, Electron hopping through proteins. Coordination chemistry reviews, CONCLUSIONS AND PERSPECTIVES (27), vol.256, pp.2478-2487, 2012.

J. Jortner, M. Bixon, T. Langenbacher, and M. E. Michel-beyerle, Charge transfer and transport in DNA, Proceedings of the National Academy of Sciences Oct, p.12759, 1998.

W. B. Davis, M. A. Ratner, and M. R. Wasielewski, Dependence of electron transfer dynamics in wire-like bridge molecules on donor-bridge energetics and electronic interactions, Chemical Physics, vol.281, pp.333-346, 2002.

S. V. Jovanovic, A. Harriman, and M. G. Simic, Electron-transfer reactions of tryptophan and tyrosine derivatives. The Journal of Physical Chemistry, vol.90, pp.1935-1939, 1986.

A. Harriman, Further comments on the redox potentials of tryptophan and tyrosine. The Journal of Physical Chemistry, vol.91, pp.6102-6104, 1987.

J. Stubbe and W. A. Van-der-donk, Protein Radicals in Enzyme Catalysis, Chemical Reviews, vol.98, pp.705-762, 1998.

C. Tommos, J. J. Skalicky, D. L. Pilloud, A. J. Wand, and P. L. Dutton, De Novo Proteins as Models of Radical Enzymes, Biochemistry, vol.38, pp.9495-9507, 1999.

P. Hosseinzadeh and Y. Lu, Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics. Biodesign for Bioenergetics-the design and engineering of electron transfer cofactors, pp.557-581, 1857.

R. E. Blankenship, Origin and early evolution of photosynthesis, vol.33, pp.91-111, 1992.

F. Rappaport and B. A. Diner, Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in Photosystem II. The Role of Manganese in Photosystem II, vol.252, pp.259-272, 2008.

E. Pilet, A. Jasaitis, U. Liebl, and M. H. Vos, Electron transfer between hemes in mammalian cytochrome c oxidase, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.16198-16203, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00831841

A. Sancar, Structure and function of DNA photolyase, Biochemistry, vol.33, pp.2-9, 1994.

D. Sorigué, Electron Hopping through the 15Å15Å Triple Tryptophan Molecular Wire in DNA Photolyase Occurs within 30 ps, CONCLUSIONS AND PERSPECTIVES, vol.357, issue.40, pp.14394-14395, 2008.

M. Byrdin, S. Villette, A. Espagne, A. P. Eker, and K. Brettel, Polarized Transient Absorption To Resolve Electron Transfer between Tryptophans in DNA Photolyase, The Journal of Physical Chemistry B, vol.112, pp.6866-6871, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00512461

M. Byrdin, A. P. Eker, M. H. Vos, and K. Brettel, Dissection of the triple tryptophan electron transfer chain in Escherichia coli DNA photolyase: Trp382 is the primary donor in photoactivation, Proceedings of the National Academy of Sciences, vol.100, p.8676, 2003.

M. Byrdin, S. Villette, A. P. Eker, and K. Brettel, Observation of an Intermediate Tryptophanyl Radical in W306F Mutant DNA Photolyase from Escherichia coli Supports Electron Hopping along the Triple Tryptophan Chain, Biochemistry, vol.46, pp.10072-10077, 2007.

W. R. Briggs and E. Huala, Blue-Light Photoreceptors in Higher Plants. Annual Review of Cell and Developmental Biology, vol.15, pp.33-62, 1999.

M. A. Van-der-horst and K. J. Hellingwerf, Star Actors of Modern Times": A Review of the Functional Dynamics in the Structure of Representative Members of Six Di?erent Photoreceptor Families. Accounts of Chemical Research, vol.37, pp.13-20, 2004.

L. Rizzini, J. Favory, C. Cloix, D. Faggionato, A. ;-o'hara et al., Perception of UV-B by the Arabidopsis UVR8 Protein, vol.332, p.103, 2011.

E. Huala, P. W. Oeller, E. Liscum, I. Han, E. Larsen et al., Arabidopsis NPH1: A Protein Kinase with a Putative Redox-Sensing Domain, Science, 1997.

S. Crosson and K. Mo?at, Structure of a flavin-binding plant photoreceptor domain: Insights into light-mediated signal transduction, Proceedings of the National Academy of Sciences of the United States of America, vol.98, pp.2995-3000, 2001.

T. E. Swartz, S. B. Corchnoy, J. M. Christie, J. W. Lewis, I. Szundi et al., The Photocycle of a Flavin-binding Domain of the Blue Light Photoreceptor Phototropin, Journal of Biological Chemistry, vol.276, pp.36493-36500, 2001.

J. T. Kennis, S. Crosson, M. Gauden, I. H. Van-stokkum, K. Mo?at et al., Primary Reactions of the LOV2 Domain of Phototropin, a Plant Blue-Light Photoreceptor, CONCLUSIONS AND PERSPECTIVES (50), vol.42, pp.3385-3392, 2003.

S. Crosson, S. Rajagopal, and K. Mo?at, The LOV Domain Family: Photoresponsive Signaling Modules Coupled to Diverse Output Domains, Biochemistry, vol.42, pp.2-10, 2003.

J. M. Christie, M. Salomon, K. Nozue, M. Wada, and W. R. Briggs, LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): Binding sites for the chromophore flavin mononucleotide, Proceedings of the National Academy of Sciences, vol.96, p.8779, 1999.

M. Gomelsky and G. Klug, BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms, Trends in Biochemical, vol.27, pp.497-500, 2002.

M. Gomelsky and W. D. Ho?, Light helps bacteria make important lifestyle decisions, Trends in Microbiology Sept, vol.19, pp.441-448, 2011.
DOI : 10.1016/j.tim.2011.05.002

B. Fiedler, T. Börner, and A. Wilde, Phototaxis in the Cyanobacterium Synechocystis sp. PCC 6803: Role of Di?erent Photoreceptors. Photochemistry and Photobiology, vol.81, pp.1481-1488, 2007.

M. Ntefidou, M. Iseki, M. Watanabe, M. Lebert, and D. Häder, Photoactivated Adenylyl Cyclase Controls Phototaxis in the Flagellate Euglena gracilis, Plant Physiology, vol.133, p.1517, 2003.

S. Masuda and C. E. Bauer, AppA Is a Blue Light Photoreceptor that Antirepresses Photosynthesis Gene Expression in Rhodobacter sphaeroides, Cell, vol.110, pp.613-623, 2002.

S. Braatsch, M. Gomelsky, S. Kuphal, and G. Klug, A single flavoprotein, AppA, integrates both redox and light signals in Rhodobacter sphaeroides, Molecular Microbiology, vol.45, pp.827-836, 2002.

N. Tschowri, S. Busse, and R. Hengge, The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli, Genes &, vol.23, pp.522-534, 2009.

M. A. Mussi, J. A. Gaddy, M. Cabruja, B. A. Arivett, A. M. Viale et al., The Opportunistic Human Pathogen Acinetobacter baumannii Senses and Responds to Light, Journal of Bacteriology, p.6336, 2010.

R. Brust, Ultrafast Structural Dynamics of BlsA, a Photoreceptor from the Pathogenic Bacterium Acinetobacter baumannii. The Journal of Physical Chemistry Letters, vol.5, pp.220-224, 2014.

Y. Fukushima, K. Okajima, Y. Shibata, M. Ikeuchi, and S. Itoh, Primary Intermediate in the Photocycle of a Blue-Light Sensory BLUF FAD-Protein, Tll0078, of Thermosynechococcus elongatus BP-1, vol.44, pp.5149-5158, 2005.

A. Penzkofer, M. Stierl, P. Hegemann, and S. Kateriya, Photo-dynamics of the BLUF domain containing soluble adenylate cyclase (nPAC) from the amoeboflagellate Naegleria gruberi NEG-M strain, Chemical Physics, vol.387, pp.25-38, 2011.

S. Masuda, K. Hasegawa, A. Ishii, and T. Ono, Light-Induced Structural Changes in a Putative Blue-Light Receptor with a Novel FAD Binding Fold Sensor of BlueLight Using FAD

, Slr1694 of Synechocystis sp. PCC6803. Biochemistry, vol.43, pp.5304-5313, 2004.

T. Mathes and J. P. Götze, A proposal for a dipole-generated BLUF domain mechanism. Frontiers in Molecular Biosciences, vol.2, p.62, 2015.

A. A. Gil, S. P. Laptenok, J. N. Iuliano, A. Lukacs, A. Verma et al., Photoactivation of the BLUF Protein PixD Probed by the Site-Specific Incorporation of Fluorotyrosine Residues, Journal, vol.139, pp.14638-14648, 2017.

A. Lukacs, R. Brust, A. Haigney, S. P. Laptenok, K. Addison et al., BLUF Domain Function Does Not Require a Metastable Radical Intermediate State, Journal, vol.136, pp.4605-4615, 2014.
DOI : 10.1021/ja4121082

URL : https://doi.org/10.1021/ja4121082

K. Maeda, A. J. Robinson, K. B. Henbest, H. J. Hogben, T. Biskup et al., Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor, Proceedings of the National Academy of Sciences, vol.109, p.4774, 2012.
DOI : 10.1073/pnas.1118959109

URL : https://hal.archives-ouvertes.fr/hal-01545373

C. Aubert, M. H. Vos, P. Mathis, A. P. Eker, and K. Brettel, Intraprotein radical transfer during photoactivation of DNA photolyase, Nature, p.586, 2000.
DOI : 10.1038/35014644

URL : https://hal.archives-ouvertes.fr/hal-00837017

I. Chaves, R. Pokorny, M. Byrdin, N. Hoang, T. Ritz et al., The Cryptochromes: Blue Light Photoreceptors in Plants and Animals, Annual Review of Plant Biology, vol.62, pp.335-364, 2011.
DOI : 10.1146/annurev-arplant-042110-103759

URL : https://hal.archives-ouvertes.fr/hal-00720048

I. Solov'yov, P. J. Hore, T. Ritz, and K. Schulten, Chemical compass for bird navigation, eng Quantum E?ects in Biology, pp.218-236, 2014.

, CONCLUSIONS AND PERSPECTIVES (72) Solov'yov, I. A.; Mouritsen, H.; Schulten, K. Acuity of a Cryptochrome and VisionBased Magnetoreception System inBirds, Biophysical Journal, vol.99, pp.40-49, 2010.

E. C. Minnihan, D. G. Nocera, J. Stubbe, and . Reversible, Long-Range Radical Transfer in E. coli Class Ia Ribonucleotide Reductase. Accounts of Chemical Research, vol.46, pp.2524-2535, 2013.

J. Geng, K. Dornevil, V. L. Davidson, and A. Liu, Tryptophan-mediated chargeresonance stabilization in the bis-Fe(IV) redox state of MauG, Proceedings of the National Academy of Sciences, vol.110, pp.9639-9644, 2013.

J. R. Winkler and H. B. Gray, Long-Range Electron Tunneling, Journal, vol.136, pp.2930-2939, 2014.
DOI : 10.1021/ja500215j

URL : https://doi.org/10.1021/ja500215j

A. Bacher, B. Illarionov, W. Eisenreich, and M. Fischer, Flavins and Flavoproteins: Methods and Protocols, pp.65-78, 2014.

P. Macheroux, B. Kappes, and S. E. Ealick, Flavogenomics-a genomic and structural view of flavin-dependent proteins, The FEBS Journal, vol.278, pp.2625-2634, 2011.

A. W. Blyth and . Lvi, The composition of cows' milk in health and disease, Journal of the Chemical Society, vol.1879, pp.530-539

M. Barile,

T. A. Giancaspero,

C. Brizio,

C. Panebianco,

, Cesare Indiveri

M. Galluccio;-lodovica and . Vergani,

, Ivano Eberini and Elisabetta Gianazza Biosynthesis of Flavin Cofactors in Man: Implications in Health and Disease, Current Pharmaceutical Design, vol.19, pp.2649-2675, 2013.

M. Schramm, K. Wiegmann, S. Schramm, A. Gluschko, M. Herb et al., Riboflavin (vitamin B2) deficiency impairs NADPH oxidase 2 (Nox2) priming and defense against Listeria monocytogenes, European Journal of Immunology, vol.44, pp.728-741, 2013.
DOI : 10.1002/eji.201343940

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/eji.201343940

M. Derrien and P. Veiga, Rethinking Diet to Aid Human-Microbe Symbiosis, Trends in Microbiology, vol.25, pp.100-112, 2017.

K. S. Conrad, C. C. Manahan, and B. R. Crane, Photochemistry of flavoprotein light sensors, Nature Chemical Biology, vol.10, p.801, 2014.

B. Liu, H. Liu, D. Zhong, and C. Lin, Searching for a photocycle of the cryptochrome photoreceptors. Current Opinion in Plant Biology, vol.13, pp.578-586, 2010.

A. Edwards, Flavins and Flavoproteins: Methods and Protocols, pp.3-13, 2014.

R. Porra, W. Thompson, and P. Kriedemann, Determination of accurate extinction coecients and simultaneous equations for assaying chlorophylls a and b extracted with four di?erent solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy, CONCLUSIONS AND PERSPECTIVES (85), vol.975, pp.384-394, 1989.

E. Antonini and M. Brunori, Hemoglobin and Myoglobin in Their Reactions with Ligands, vol.178, p.296, 1971.

M. S. Kritsky, T. A. Telegina, Y. L. Vechtomova, and A. A. Buglak, Why Flavins Are not Competitors of Chlorophyll in the Evolution of Biological Converters of Solar Energy, International Journal of Molecular Sciences, vol.14, pp.575-593, 2013.

D. A. Proshlyakov, M. A. Pressler, C. Demaso, J. F. Leykam, D. L. Dewitt et al., Oxygen Activation and Reduction in Respiration: Involvement of Redox-Active Tyrosine 244, Science, 1588.

C. Aubert, P. Mathis, A. P. Eker, and K. Brettel, Intraprotein electron transfer between tyrosine and tryptophan in DNA photolyase from Anacystis nidulans, Proceedings of the National Academy of Sciences, vol.96, pp.5423-5427, 1999.

J. J. Warren, T. A. Tronic, and J. M. Mayer, The Thermochemistry of ProtonCoupled Electron Transfer Reagents and its Implications, Chemical reviews, vol.110, pp.6961-7001, 2010.

P. S. Rao and E. Hayon, Correlation between ionization constants of organic free radicals and electrochemical properties of parent compounds. Analytical Chemistry, vol.48, pp.564-568, 1976.

W. T. Dixon and D. Murphy, Kinetic e?ects in the electron spin resonance spectra of some semiquinones, Molecular and Chemical Physics, vol.2, pp.135-142, 1976.

J. Butler, E. J. Land, W. A. Prütz, and A. Swallow, Charge transfer between tryptophan and tyrosine in proteins, Biochimica et Biophysica Acta (BBA)Protein Structure and Molecular, vol.705, pp.150-162, 1982.

M. R. Defelippis, C. P. Murthy, F. Broitman, D. Weinraub, M. Faraggi et al., Electrochemical properties of tyrosine phenoxy and tryptophan indolyl radicals in peptides and amino acid analogs, The Journal of Physical Chemistry, vol.95, pp.3416-3419, 1991.

P. Dongare, S. Maji, and L. Hammarström, Direct Evidence of a Tryptophan Analogue Radical Formed in a Concerted ElectronProton Transfer Reaction in Water, Journal of the American Chemical Society, vol.138, pp.2194-2199, 2016.

A. Gräslund, M. Sahlin, and B. Sjöberg, The tyrosyl free radical in ribonucleotide reductase, vol.64, p.139, 1985.

T. Irebo, S. Y. Reece, M. Sjödin, D. G. Nocera, and L. Hammarström, Proton-Coupled Electron Transfer of Tyrosine Oxidation: Bu?er Dependence and Parallel Mechanisms, Journal, vol.129, pp.15462-15464, 2007.

P. Müller, J. Bouly, K. Hitomi, V. Balland, E. D. Getzo? et al., ATP Binding Turns Plant Cryptochrome Into an Ecient Natural Photoswitch, Scientific Reports, vol.4, 2015.

J. Brazard, A. Usman, F. Lacombat, C. Ley, M. M. Martin et al., SpectroTemporal Characterization of the Photoactivation Mechanism of Two New Oxidized Cryptochrome/Photolyase Photoreceptors, Journal, vol.132, pp.4935-4945, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00476826

A. Lukacs, R. Zhao, A. Haigney, R. Brust, G. M. Greetham et al., Excited State Structure and Dynamics of the Neutral and Anionic Flavin Radical Revealed by Ultrafast Transient Mid-IR to Visible Spectroscopy, The Journal of Physical Chemistry B, vol.116, pp.5810-5818, 2012.

S. P. Laptenok, L. Bouzhir-sima, J. Lambry, H. Myllykallio, U. Liebl et al., Ultrafast real-time visualization of active site flexibility of flavoenzyme thymidylate synthase ThyX, Proceedings of the National Academy of Sciences, vol.110, pp.8924-8929, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00942352

J. S. Finer-moore, D. V. Santi, and R. M. Stroud, Lessons and Conclusions from Dissecting the Mechanism of a Bisubstrate Enzyme: Thymidylate Synthase Mutagenesis, Function, and Structure, Biochemistry, vol.42, pp.248-256, 2003.

H. Myllykallio, An Alternative Flavin-Dependent Mechanism for Thymidylate Synthesis, Science, vol.297, pp.105-107, 2002.
DOI : 10.1126/science.1072113

URL : https://hal.archives-ouvertes.fr/hal-00836930

J. Urbonavicius, Identification of a novel gene encoding a flavin-dependent tRNA:m5U methyltransferase in bacteria-evolutionary implications, Nucleic Acids Research, vol.33, pp.3955-3964, 2005.

P. Sournia, La méthylation flavine-dépendante d'acides nucléiques : aspectsévolutifs aspectsévolutifs, métaboliques, biochimiques et spectroscopiques., Thèse de doctorat dirigée par Liebl, 2016.

D. Zhong and A. H. Zewail, Femtosecond dynamics of flavoproteins: charge separation and recombination in riboflavine (vitamin B2)-binding protein and in glucose oxidase enzyme, Proceedings of the National Academy of Sciences, vol.98, pp.11867-11872, 2001.

N. Mataga, H. Chosrowjan, Y. Shibata, and F. Tanaka, Ultrafast Fluorescence Quenching Dynamics of Flavin Chromophores in Protein Nanospace, CONCLUSIONS AND PERSPECTIVES (107), vol.102, pp.7081-7084, 1998.

S. P. Laptenok, I. H. Van-stokkum, J. W. Borst, B. Van-oort, A. J. Visser et al., Disentangling Picosecond Events That Complicate the Quantitative Use of the Calcium Sensor YC3.60. The Journal of Physical Chemistry B, vol.116, pp.3013-3020, 2012.

I. H. Van-stokkum, B. Van-oort, F. Van-mourik, B. Gobets, and H. Van-amerongen, Biophysical Techniques in Photosynthesis, pp.223-240, 2008.

A. Cannizzo, O. Bräm, G. Zgrablic, A. Tortschano?, A. A. Oskouei et al., Femtosecond fluorescence upconversion setup with broadband detection in the ultraviolet, Optics Letters, vol.32, pp.3555-3557, 2007.

X. Zhang, C. Würth, L. Zhao, U. Resch-genger, N. P. Ernsting et al., Femtosecond broadband fluorescence upconversion spectroscopy: Improved setup and photometric correction, Review of Scientific Instruments, vol.82, p.63108, 2011.
DOI : 10.1063/1.3597674

S. Arzhantsev and M. Maroncelli, Design and Characterization of a Femtosecond Fluorescence Spectrometer Based on Optical Kerr Gating, Applied Spectroscopy, vol.59, pp.206-220, 2005.

R. Nakamura and Y. Kanematsu, Femtosecond spectral snapshots based on electronic optical Kerr e?ect. Review of Scientific Instruments, vol.75, pp.636-644, 2004.
DOI : 10.1063/1.1646739

S. P. Laptenok, P. Nuernberger, A. Lukacs, and M. H. Vos, , pp.321-336, 2014.

I. H. Van-stokkum, D. S. Larsen, and R. Van-grondelle, Global and target analysis of time-resolved spectra, Biochimica et Biophysica Acta (BBA)-Bioenergetics, vol.1657, pp.82-104, 2004.

W. A. Eaton, J. Hofrichter, M. W. Makinen, R. D. Andersen, and M. L. Ludwig, Optical spectra and electronic structure of flavine mononucleotide in flavodoxin crystals, Biochemistry, vol.14, pp.2146-2151, 1975.

H. Nishimasu, R. Ishitani, K. Yamashita, C. Iwashita, A. Hirata et al., Atomic structure of a folate/FAD-dependent tRNA T54 methyltransferase, Proceedings of the National Academy of Sciences, vol.106, pp.8180-8185, 2009.

D. Hamdane, E. Bruch, S. Un, M. Field, and M. Fontecave, Activation of a Unique Flavin-Dependent tRNA-Methylating Agent, CONCLUSIONS AND PERSPECTIVES (118), vol.52, pp.8949-8956, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01662525

D. Hamdane, M. Argentini, D. Cornu, B. Golinelli-pimpaneau, and M. Fontecave, FAD/Folate-Dependent tRNA Methyltransferase: Flavin as a New Methyl-Transfer Agent, Journal, vol.134, pp.19739-19745, 2012.
DOI : 10.1021/ja308145p

URL : https://hal.archives-ouvertes.fr/hal-00780984

N. Mataga, H. Chosrowjan, Y. Shibata, F. Tanaka, Y. Nishina et al., Dynamics and Mechanisms of Ultrafast Fluorescence Quenching Reactions of Flavin Chromophores in Protein Nanospace, The Journal of Physical Chemistry B, vol.104, pp.10667-10677, 2000.

P. A. Van-den-berg, K. A. Feenstra, A. E. Mark, H. J. Berendsen, and A. J. Visser, Dynamic Conformations of Flavin Adenine Dinucleotide: Simulated Molecular Dynamics of the Flavin Cofactor Related to the Time-Resolved Fluorescence Characteristics, The Journal of Physical Chemistry B, vol.106, pp.8858-8869, 2002.

R. Bensasson, E. Land, and T. Truscott, In Flash Photolysis and Pulse

. Pergamon, , pp.135-163, 1983.

L. Hammarström, Towards artificial photosynthesis: ruthenium-manganese chemistry mimicking photosystem II reactions. Current Opinion in Chemical Biology, vol.7, pp.666-673, 2003.

J. M. Mayer, Proton-coupled electron transfer: A Reaction Chemist's View. Annual Review of Physical Chemistry, vol.55, pp.363-390, 2004.
DOI : 10.1146/annurev.physchem.55.091602.094446

D. Hamdane, V. Guérineau, S. Un, and B. Golinelli-pimpaneau, A Catalytic Intermediate and Several Flavin Redox States Stabilized by Folate-Dependent tRNA Methyltransferase from Bacillus subtilis, Biochemistry, vol.50, pp.5208-5219, 2011.
DOI : 10.1021/bi1019463

URL : https://hal.archives-ouvertes.fr/hal-00606171

T. A. Gadosy, D. Shukla, and L. J. Johnston, Generation, Characterization, and Deprotonation of Phenol Radical Cations 1. The Journal of Physical Chemistry A, vol.103, pp.8834-8839, 1999.
DOI : 10.1021/jp992216x

R. Miura, Versatility and specificity in flavoenzymes: Control mechanisms of flavin reactivity, The Chemical Record, vol.1, pp.183-194, 2001.

M. Kundu, T. He, Y. Lu, L. Wang, and D. Zhong, Short-Range Electron Transfer in Reduced Flavodoxin: Ultrafast Nonequilibrium Dynamics Coupled with Protein Fluctuations, The Journal of Physical Chemistry Letters, vol.9, pp.2782-2790, 2018.
DOI : 10.1021/acs.jpclett.8b00882

L. H. Fornander, B. Feng, T. Beke-somfai, and B. Nordén, UV Transition Moments of Tyrosine. The Journal of Physical Chemistry B, vol.118, pp.9247-9257, 2014.
DOI : 10.1021/jp5065352

I. A. Rasiah, K. H. Sutton, F. L. Low, H. Lin, and J. A. Gerrard, Crosslinking of wheat dough proteins by glucose oxidase and the resulting e?ects on bread and croissants, Food Chemistry, vol.89, pp.325-332, 2005.

A. Crueger and W. Crueger, In Microbial Enzymes and Biotechnology, pp.177-226, 1990.

J. Afseth and G. Rølla, Clinical Experiments with a Toothpaste Containing Amyloglucosidase and Glucose Oxidase, Caries Research, vol.17, pp.472-475, 1983.
DOI : 10.1159/000260704

T. Chen, S. C. Barton, G. Binyamin, Z. Gao, Y. Zhang et al., A Miniature Biofuel Cell, Journal of the American Chemical Society, vol.123, pp.8630-8631, 2001.
DOI : 10.1021/ja0163164

S. B. Bankar, M. V. Bule, R. S. Singhal, and L. Ananthanarayan, Glucose oxidase-An overview, Biotechnology Advances, vol.27, pp.489-501, 2009.
DOI : 10.1016/j.biotechadv.2009.04.003

K. Akiya, I. Noriaki, M. Noboru, and T. Fumio, Picosecond laser photolysis studies of fluorescence quenching mechanisms of flavin: A direct observation of indole-flavin singlet charge transfer state formation in solutions and flavoenzymes, Photochemistry and Photobiology, vol.37, pp.495-502, 1982.

A. Fujiwara and Y. Mizutani, Photoinduced electron transfer in glucose oxidase: a picosecond time-resolved ultraviolet resonance Raman study, Journal of Raman Spectroscopy, vol.39, pp.1600-1605, 2008.

C. Tommos and G. T. Babcock, Proton and hydrogen currents in photosynthetic water oxidation, Biochimica et Biophysica Acta (BBA)-Bioenergetics, vol.1458, pp.199-219, 2000.
DOI : 10.1016/s0005-2728(00)00069-4

URL : https://doi.org/10.1016/s0005-2728(00)00069-4

J. Pan, M. Byrdin, C. Aubert, A. P. Eker, K. Brettel et al., ExcitedState Properties of Flavin Radicals in Flavoproteins: Femtosecond Spectroscopy of DNA Photolyase, Glucose Oxidase, and Flavodoxin, The Journal of Physical Chemistry B, vol.108, pp.10160-10167, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00831842

V. Massey, R. G. Matthews, G. P. Foust, L. G. Howell, C. H. Williams et al., Pyridine Nucleotide-Dependent Dehydrogenases: Proceedings of an Advanced Study Institute, pp.393-411, 1970.

Z. Liu, C. Tan, X. Guo, J. Li, L. Wang et al., Determining complete electron flow in the cofactor photoreduction of oxidized photolyase, Proceedings of the National Academy of Sciences, vol.110, pp.12966-12971, 2013.

H. B. Gray and J. R. Winkler, Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage, Proceedings of the National Academy of Sciences, vol.112, pp.10920-10925, 2015.

D. Seo, H. Naito, E. Nishimura, and T. Sakurai, Replacement of Tyr50 stacked on the si-face of the isoalloxazine ring of the flavin adenine dinucleotide prosthetic group modulates Bacillus subtilis ferredoxin-NADP+ oxidoreductase activity toward NADPH. Photosynthesis Research, vol.125, pp.321-328, 2015.

?. References-;-aubert, C. Vos, M. H. Mathis, P. Eker, A. P. Brettel et al., Biochemistry, vol.405, issue.1, pp.5208-5219, 1975.

J. Butler, E. J. Land, W. A. Pru?-tz, A. J. Swallow, L. H. Fornander et al., Proc. Natl. Acad, vol.705, pp.150-162, 1982.

. U. Sci, J. L. Dempsey, J. R. Winkler, H. B. Gray, S. Solar et al., Proc. Natl. Acad. Sci. U. S. A, vol.110, issue.9, pp.3639-3643, 1976.

. R. Trans, . Soc, J. M. Mayer, D. R. Weinberg, C. J. Gagliardi et al., Hammarstro? m, L, Curr. Opin. Chem. Biol, vol.55, issue.17, pp.666-673, 2003.

C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G. Mccafferty et al., Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 8924? 8929. (26), vol.112, pp.3955-3964, 2000.

D. M. Greenblatt, E. C. Meng, T. E. Ferrin, . Comput, S. P. Chem-;-laptenok et al., Methods in Molecular Biology, Fluorescence Spectroscopy and Microscopy: Methods and Protocols, vol.1076, pp.3251-3262, 1605.

B. Liu, H. Liu, D. Zhong, C. Lin, T. A. Gadosy et al., 865?872. (46) Sjo? din, M, vol.13, pp.8834-8839, 1983.

. Acad, . U. Sci, M. C. Martinez-rivera, B. W. Berry, K. G. Valentine et al., J. Am. Chem. Soc, vol.96, issue.48, pp.5423-5427, 1999.

T. Fujisawa, S. Takeuchi, S. Masuda, T. Tahara, M. Gauden et al., Proc. Natl. Acad. Sci, vol.287, pp.14761-14773, 2012.

U. S. Lukacs, A. Brust, R. Haigney, A. Laptenok, S. P. Addison et al., , vol.103, 2006.

A. Gil, M. Towrie, G. M. Greetham, P. J. Tonge, and S. R. Meech, 4605?4615. (55) Goyal, P.; Hammes-Schiffer, Journal of the American Chemical Society Article, vol.136, 1480.

X. , X. , and X. , J. Am. Chem. Soc