, Global Energy & CO2 Status Report, 2017.

, Renewable energy: Catalyst for a clean energy transition, p.13, 2018.

B. Beetz and I. Clover, 2017: The PV year in review, 2017.

D. Amouzou, P. Guaino, L. Fourdrinier, J. Richir, F. Maseri et al., Dielectric and diffusion barrier multilayer for Cu(In,Ga)Se2 solar cells integration on stainless steel sheet, Thin Solid Films, vol.542, pp.270-275, 2013.

G. Chiu, T. Subburaj, S. Som, C. Ou, and C. Lu, Influence of doping iron ions into Cu (In, Ga) Se2 films in the morphology and photovoltaic properties of thin-film solar cells, J. Ceram. Process. Res, vol.18, issue.10, pp.754-759, 2017.

F. Birol, World Energy Prospects and Challenges, 2005.

, Gas Market Report, 2017.

, International Energy Agency, 2017.

, Global Renewable Generation Continues its Strong Growth, New IRENA Capacity Data Shows, p.8, 2018.

B. L. Cohen, Breeder reactors: A renewable energy source, Am J Phys, vol.51, issue.1, p.78, 1983.

, World Nuclear Association, Nuclear Power in the World Today, 2018.

, Nuclear Power, vol.17, p.17, 2018.

, United Nations Climate Change

, Renewable energy: Catalyst for a clean energy transition, p.13, 2018.

, Paris Agreement -Status of Ratification, p.13, 2018.

. Lazard, Lazard's Levelized Cost of Energy Analysis -Version 11.0, 2017.

B. Beetz and I. Clover, 2017: The PV year in review, 2017.

A. Jaeger-waldau and E. Centre, PV status report, 2017.

I. Ademe, National Survey Report of PV Power Applications in FRANCE, 2016.

K. Ranabhat, L. Patrikeev, A. Antal'evna-revina, K. Andrianov, V. Lapshinsky et al.,

. Sofronova, An introduction to solar cell technology, Istraz. Proj. Za Privredu, vol.14, issue.4, pp.481-491, 2016.

J. L. Shay, S. Wagner, and H. M. Kasper, Efficient CuInSe2/CdS solar cells, Appl. Phys. Lett, vol.27, issue.2, pp.89-90, 1975.

M. Powalla, Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu, vol.3, pp.445-451, 2017.

T. Feurer, Progress in thin film CIGS photovoltaics -Research and development, manufacturing, and applications: Progress in thin film CIGS photovoltaics, Prog. Photovolt. Res. Appl, 2016.

, Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency of 22.9%, p.18, 2018.

S. Wiedeman, Manufacturing ramp-up of flexible CIGS PV, 2010 35th IEEE Photovoltaic Specialists Conference, pp.3485-003490, 2010.

&. Miasolé and . Miasolé,

, Technology

S. Aksu, S. Pethe, A. Kleiman-shwarsctein, S. Kundu, and M. Pinarbasi, Recent advances in electroplating based CIGS solar cell fabrication, 2012 38th IEEE Photovoltaic Specialists Conference, pp.3092-003097, 2012.

P. Reinhard, Review of Progress Toward 20% Efficiency Flexible CIGS Solar Cells and Manufacturing Issues of Solar Modules, IEEE J. Photovolt, vol.3, issue.1, pp.572-580, 2013.

M. Powalla, CIGS Cells and Modules With High Efficiency on Glass and Flexible Substrates, IEEE J. Photovolt, vol.4, issue.1, pp.440-446, 2014.

T. Nakada, T. Yagioka, T. Kuraishi, and T. Mise, CIGS thin film solar cells on flexible foils, pp.2425-2428, 2009.

F. Pianezzi, Electronic properties of Cu(In,Ga)Se 2 solar cells on stainless steel foils without diffusion barrier: Electronic properties of CIGS solar cells, Prog. Photovolt. Res. Appl, vol.20, issue.3, pp.253-259, 2012.

M. A. Contreras, Progress Toward 20% Efficiency in Cu, p.2

, Polycrystalline Thin-film Solar Cells, Prog. Photovolt. Res. Appl, vol.7, pp.311-316, 1999.

W. Thongkham, A. Pankiew, K. Yoodee, and S. Chatraphorn, Enhancing efficiency of Cu(In,Ga)Se2 solar cells on flexible stainless steel foils using NaF co-evaporation, Sol. Energy, vol.92, pp.189-195, 2013.

M. Lee, Highly efficient flexible CuIn0.7Ga0.3Se2 solar cells with a thick Na/Mo layer deposited directly on stainless steel, Appl. Surf. Sci, vol.346, pp.562-566, 2015.

A. Chiril?, Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells, Nat. Mater, vol.12, issue.12, pp.1107-1111, 2013.

K. Herz, A. Eicke, F. Kessler, R. Wächter, and M. Powalla, Diffusion barriers for CIGS solar cells on metallic substrates, Thin Solid Films, pp.392-397, 2003.

W. K. Batchelor, I. L. Repins, J. Schaefer, and M. E. Beck, Impact of substrate roughness on CuInxGa1?xSe2 device properties, Sol. Energy Mater. Sol. Cells, vol.83, issue.1, pp.67-80, 2004.

K. Kim, Effect of Metal Barrier Layer for Flexible Solar Cell Devices on Stainless Steel Substrates, Appl. Sci. Converg. Technol, vol.26, issue.1, pp.16-19, 2017.

T. Eisenbarth, R. Caballero, C. A. Kaufmann, A. Eicke, and T. Unold, Influence of iron on defect concentrations and device performance for Cu(In,Ga)Se2 solar cells on stainless steel substrates: Influence of iron on Cu(In,Ga)Se2 solar cells, Prog. Photovolt. Res. Appl, vol.20, issue.5, pp.568-574, 2012.

F. Pianezzi, Influence of Ni and Cr impurities on the electronic properties of Cu(In,Ga)Se 2 thin film solar cells: Influence of Ni and Cr impurities in CIGS, Prog. Photovolt. Res. Appl, vol.23, issue.7, pp.892-900, 2015.

C. Roger, Developpement de cellules photovoltaïques à base de CIGS sur substrats métalliques, 2013.

P. Blösch, Diffusion barrier properties of Mo back contacts for Cu(In,Ga)Se2 solar cells on stainless steel foils, J. Appl. Phys, vol.113, issue.5, p.54506, 2013.

R. Wuerz, CIGS thin-film solar cells on steel substrates, Thin Solid Films, vol.517, issue.7, pp.2415-2418, 2009.

R. Schlesiger, Design of a laser-assisted tomographic atom probe at Münster University, Rev. Sci. Instrum, vol.81, issue.4, p.43703, 2010.

C. Tablero, Ionization Levels of Doped Copper Indium Sulfide Chalcopyrites, J. Phys. Chem. A, vol.116, issue.5, pp.1390-1395, 2012.

P. Blösch, Comparative Study of Different Back-Contact Designs for High-Efficiency CIGS Solar Cells on Stainless Steel Foils, IEEE J. Photovolt, vol.1, issue.2, pp.194-199, 2011.

J. Hedstrom, ZnO/CdS/Cu (In, Ga) Se/sub 2/thin film solar cells with improved performance, Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE, pp.364-371, 1993.

D. Rudmann, Effects of sodium on growth and properties of Cu(In,Ga)Se? thin films and solar cells, 2004.

Y. Sun, Review on Alkali Element Doping in Cu(In,Ga)Se 2 Thin Films and Solar Cells, vol.3, pp.452-459, 2017.

V. Fjallstrom, Potential-Induced Degradation of CuIn$_{1-x} \hbox{Ga}_{x}$Se$_{2}$ Thin Film Solar Cells, IEEE J. Photovolt, vol.3, issue.3, pp.1090-1094, 2013.

M. Gerngro\s-s and J. Reverey, CIS/CIGS based Thin-film solar cells, 2008.

A. Chiril?, Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films, Nat. Mater, vol.10, issue.11, pp.857-861, 2011.

, Mo Technical Data, p.22, 2018.

P. Huang, C. Huang, M. Lin, C. Chou, C. Hsu et al., The Effect of Sputtering Parameters on the Film Properties of Mo Back Contact for CIGS Solar Cells, Int. J. Photoenergy, vol.2013, pp.1-8, 2013.

M. Jubault, L. Ribeaucourt, E. Chassaing, G. Renou, D. Lincot et al., Optimization of Mo thin films for electrodeposited CIGS solar cells, Sol. Energy Mater. Sol. Cells, vol.95, pp.26-31, 2011.

K. Orgassa, H. W. Schock, and J. H. Werner, Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells, Thin Solid Films, pp.387-391, 2003.

O. Lundberg, M. Bodeg\a-ard, J. Malmström, and L. Stolt, Influence of the Cu (In, Ga) Se2 thickness and Ga grading on solar cell performance, Prog. Photovolt. Res. Appl, vol.11, issue.2, pp.77-88, 2003.

F. Mollica, Optimization of ultra-thin Cu(In,Ga)Se2 based solar cells with alternative back-contacts, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01545671

G. Gordillo, F. Mesa, and C. Calderón, Electrical and morphological properties of low resistivity Mo thin films prepared by magnetron sputtering, Braz. J. Phys, vol.36, issue.3B, pp.982-985, 2006.

T. Klinkert, Comprehension and optimisation of the co-evaporation deposition of Cu (In, Ga) Se2 absorber layers for very high efficiency thin film solar cells, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01130052

D. H. Shin, Y. M. Shin, J. H. Kim, B. T. Ahn, and K. H. Yoon, Control of the Preferred Orientation of Cu(In,Ga)Se2 Thin Film by the Surface Modification of Mo Film, J. Electrochem. Soc, vol.159, issue.1, pp.1-5, 2012.

E. J. Friedrich, R. Fernández-ruiz, J. M. Merino, and M. León, X-ray diffraction data and Rietveld refinement of CuGaxIn1-xSe2 (x=0.15 and 0.50), Powder Diffr, vol.25, issue.03, pp.253-257, 2010.

B. Grzeta-plenkovic, S. Popovic, B. Celustka, and B. Santic, Crystal data for AgGaxIn1 _ xSe2 and CuGaxIn1-xSe2, J Appl Cryst, vol.13, pp.311-315, 1980.

C. Insignares-cuello, C. Broussillou, V. Bermúdez, E. Saucedo, A. Pérez-rodríguez et al., Raman scattering analysis of electrodeposited Cu(In,Ga)Se 2 solar cells: Impact of ordered vacancy compounds on cell efficiency, Appl. Phys. Lett, vol.105, issue.2, p.21905, 2014.

W. Witte, R. Kniese, and M. Powalla, Raman investigations of Cu(In,Ga)Se2 thin films with various copper contents, Thin Solid Films, vol.517, issue.2, pp.867-869, 2008.

K. Zhang, Fabricating highly efficient Cu(In,Ga)Se2 solar cells at low glass-substrate temperature by active gallium grading control, Sol. Energy Mater. Sol. Cells, vol.120, pp.253-258, 2014.

H. Mönig, Gallium gradients in chalcopyrite thin films: Depth profile analyses of films grown at different temperatures, J. Appl. Phys, vol.110, issue.9, p.93509, 2011.

F. Kessler and D. Rudmann, Technological aspects of flexible CIGS solar cells and modules, Sol. Energy, vol.77, issue.6, pp.685-695, 2004.

H. Wang, Effect of substrate temperature on the structural and electrical properties of CIGS films based on the one-stage co-evaporation process, Semicond. Sci. Technol, vol.25, issue.5, p.55007, 2010.

P. Jackson, High quality baseline for high efficiency, Cu(In1?x,Gax)Se2 solar cells, Prog. Photovolt. Res. Appl, vol.15, issue.6, pp.507-519, 2007.

H. Tanino, Raman Spectra of CuGaxIn1-xSe2, Jpn. J. Appl. Phys, vol.32, pp.436-438, 1993.

C. Rincón, Raman spectra of the ordered vacancy compounds CuIn 3 Se 5 and CuGa

, Se 5, Appl. Phys. Lett, vol.73, issue.4, pp.441-443, 1998.

C. Xu, Composition dependence of the Raman A 1 mode and additional mode in tetragonal Cu-In-Se thin films, Semicond. Sci. Technol, vol.19, issue.10, pp.1201-1206, 2004.

J. Hedstrom, ZnO/CdS/Cu (In, Ga) Se/sub 2/thin film solar cells with improved performance, Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE, pp.364-371, 1993.

Y. Sun, Review on Alkali Element Doping in Cu(In,Ga)Se 2 Thin Films and Solar Cells, vol.3, pp.452-459, 2017.

A. Urbaniak, Effects of Na incorporation on electrical properties of Cu(In,Ga)Se2-based photovoltaic devices on polyimide substrates, Sol. Energy Mater. Sol. Cells, vol.128, pp.52-56, 2014.

. Leeor, D. Kronik, H. W. Cahen, and . Schock, Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance, Adv. Mater, vol.10, issue.1, pp.31-36, 1998.

F. Pianezzi, Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells, Phys. Chem. Chem. Phys, vol.16, issue.19, p.8843, 2014.

D. W. Niles, K. Ramanathan, F. Hasoon, and R. Noufi, Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy, J. Vac. Sci. Technol. A, vol.15, issue.6, 1997.

S. Wei, S. B. Zhang, and A. Zunger, Effects of Na on the electrical and structural properties of CuInSe2, J. Appl. Phys, vol.85, issue.10, pp.7214-7218, 1999.

D. Rudmann, D. Brémaud, H. Zogg, and A. N. Tiwari, Na incorporation into Cu(In,Ga)Se[sub 2] for high-efficiency flexible solar cells on polymer foils, J. Appl. Phys, vol.97, issue.8, p.84903, 2005.

D. Rudmann, Effects of sodium on growth and properties of Cu(In,Ga)Se? thin films and solar cells, 2004.

A. Chiril?, Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells, Nat. Mater, vol.12, issue.12, pp.1107-1111, 2013.

D. Shin, Effects of the incorporation of alkali elements on Cu(In,Ga)Se 2 thin film solar cells, Sol. Energy Mater. Sol. Cells, vol.157, pp.695-702, 2016.

I. Shogo, Alkali incorporation control in Cu(In,Ga)Se2 thin films using silicate thin layers and applications in enhancing flexible solar cell efficiency, Appl. Phys. Lett, vol.93, issue.12, 2008.

D. Rudmann, Efficiency enhancement of Cu(In,Ga)Se[sub 2] solar cells due to postdeposition Na incorporation, Appl. Phys. Lett, vol.84, issue.7, p.1129, 2004.

M. Saadat, M. Moradi, and M. Zahedifar, CIGS absorber layer with double grading Ga profile for highly efficient solar cells, Superlattices Microstruct, vol.92, pp.303-307, 2016.

K. Decock, J. Lauwaert, and M. Burgelman, Characterization of graded CIGS solar cells, Energy Procedia, vol.2, issue.1, pp.49-54, 2010.

T. M. Friedlmeier, High-efficiency Cu(In,Ga)Se2 solar cells, Thin Solid Films, 2016.

N. E. Gorji, U. Reggiani, and L. Sandrolini, A simple model for the photocurrent density of a graded band gap CIGS thin film solar cell, Sol. Energy, vol.86, issue.3, pp.920-925, 2012.

S. Schleussner, U. Zimmermann, T. Wätjen, K. Leifer, and M. Edoff, Effect of gallium grading in Cu(In,Ga)Se2 solar-cell absorbers produced by multi-stage coevaporation, Sol. Energy Mater. Sol. Cells, vol.95, issue.2, pp.721-726, 2011.

W. Witte, Gallium gradients in Cu(In,Ga)Se 2 thin-film solar cells: Gallium gradients in CIGS thin-film solar cells, Prog. Photovolt. Res. Appl, vol.23, issue.6, pp.717-733, 2015.

M. Stanley, M. Jubault, F. Donsanti, and N. Naghavi, Flexible Cu (In, Ga) Se2 Based Solar Cells Using Mo Foils as Substrate, Phys. Status Solidi C, vol.14, issue.10, 2017.

K. Orgassa, U. Rau, Q. Nguyen, H. W. Schock, and J. H. Werner, Role of the CdS buffer layer as an active optical element in Cu (In, Ga) Se2 thin-film solar cells, Prog. Photovolt. Res. Appl, vol.10, issue.7, pp.457-463, 2002.

M. A. Contreras, Optimization of CBD CdS process in high-efficiency Cu(In,Ga)Se2-based solar cells, Thin Solid Films, pp.204-211, 2002.

O. Lundberg, M. Edoff, and L. Stolt, The effect of Ga-grading in CIGS thin film solar cells, Thin Solid Films, pp.520-525, 2005.

T. Dullweber, U. Rau, M. A. Contreras, R. Noufi, and H. Schock, Photogeneration and carrier recombination in graded gap Cu (In, Ga) Se 2 solar cells, IEEE Trans. Electron Devices, vol.47, issue.12, pp.2249-2254, 2000.

T. Eisenbarth, R. Caballero, C. A. Kaufmann, A. Eicke, and T. Unold, Influence of iron on defect concentrations and device performance for Cu(In,Ga)Se2 solar cells on stainless steel substrates: Influence of iron on Cu(In,Ga)Se2 solar cells, Prog. Photovolt. Res. Appl, vol.20, issue.5, pp.568-574, 2012.

R. Wuerz, A. Eicke, F. Kessler, and F. Pianezzi, Influence of iron on the performance of CIGS thinfilm solar cells, Sol. Energy Mater. Sol. Cells, vol.130, pp.107-117, 2014.

D. Cho, Photovoltaic performance of flexible Cu(In,Ga)Se2 thin-film solar cells with varying Cr impurity barrier thickness, Curr. Appl. Phys, vol.13, issue.9, pp.2033-2037, 2013.

F. Pianezzi, Electronic properties of Cu(In,Ga)Se 2 solar cells on stainless steel foils without diffusion barrier: Electronic properties of CIGS solar cells, Prog. Photovolt. Res. Appl, vol.20, issue.3, pp.253-259, 2012.

, Thermal Conductivity of Metals

A. M. Helmenstine, Table of Electrical Resistivity and Conductivity, 2018.

P. Blösch, Comparative Study of Different Back-Contact Designs for High-Efficiency CIGS Solar Cells on Stainless Steel Foils, IEEE J. Photovolt, vol.1, issue.2, pp.194-199, 2011.

L. Li, X. Zhang, Y. Huang, W. Yuan, and Y. Tang, Investigation on the performance of Mo2N thin film as barrier layer against Fe in the flexible Cu(In,Ga)Se2 solar cells on stainless steel substrates, J. Alloys Compd, vol.698, pp.194-199, 2017.

G. Chiu, T. Subburaj, S. Som, C. Ou, and C. Lu, Influence of doping iron ions into Cu (In, Ga) Se2 films in the morphology and photovoltaic properties of thin-film solar cells, J. Ceram. Process. Res, vol.18, issue.10, pp.754-759, 2017.

J. Sim, S. Lee, J. Kim, K. Jeong, H. Ahn et al., Efficiency enhancement of CIGS compound solar cell fabricated using homomorphic thin Cr 2 O 3 diffusion barrier formed on stainless steel substrate, Appl. Surf. Sci, vol.389, pp.645-650, 2016.

D. Kim, K. Kim, M. Kim, and C. Jeon, Effect of the Mo Structure on CIGS Solar Cells Fabricated on Stainless Steel Substrates, Isr. J. Chem, vol.55, issue.10, pp.1064-1069, 2015.

L. Zortea, Cu(In,Ga)Se2 solar cells on low cost mild steel substrates, Sol. Energy, vol.175, pp.25-30, 2018.

R. Wuerz, A. Eicke, F. Kessler, S. Paetel, S. Efimenko et al., CIGS thin-film solar cells and modules on enamelled steel substrates, Sol. Energy Mater. Sol. Cells, vol.100, pp.132-137, 2012.

K. Herz, Dielectric barriers for flexible CIGS solar modules, Thin Solid Films, vol.403, pp.384-389, 2002.

B. Li, J. Li, L. Wu, W. Liu, Y. Sun et al., Barrier effect of AlN film in flexible Cu(In,Ga)Se2 solar cells on stainless steel foil and solar cell, J. Alloys Compd, vol.627, pp.1-6, 2015.

Y. D. Chung, The thickness effect of SiOx layer in CIGS thin-film solar cells fabricated on stainless-steel substrate, 2010 35th IEEE Photovoltaic Specialists Conference, pp.3401-003402, 2010.

P. Blösch, Diffusion barrier properties of Mo back contacts for Cu(In,Ga)Se2 solar cells on stainless steel foils, J. Appl. Phys, vol.113, issue.5, p.54506, 2013.

M. S. Kim, R. B. Chalapathy, K. H. Yoon, and B. T. Ahn, Grain Growth Enhancement and Ga Distribution of Cu, Ga Metal Precursor, vol.157, p.154, 2010.

M. M. Islam, Effect of Ga/Cu Ratio on Polycrystalline Thin Film Solar Cell, Adv. Optoelectron, vol.2011, pp.1-6, 2011.

M. Raghuwanshi, Influence of Grain Boundary Chemistry on the properties of CIGS photovoltaic cells, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01252605

X. Liang, Substrate temperature optimization for Cu(In, Ga)Se 2 solar cells on flexible stainless steels, Appl. Surf. Sci, vol.368, pp.464-469, 2016.

H. Wang, Effect of substrate temperature on the structural and electrical properties of CIGS films based on the one-stage co-evaporation process, Semicond. Sci. Technol, vol.25, issue.5, p.55007, 2010.

W. Thongkham, R. Sakdanuphab, C. Chityuttakan, and S. Chatraphorn, Effect of diffusion barrier and substrate temperature on the physical properties of flexible Cu (In, Ga) Se2 thin film solar cells, J Met. Mater. Miner, vol.20, pp.61-65, 2010.

T. Klinkert, Comprehension and optimisation of the co-evaporation deposition of Cu, p.2
URL : https://hal.archives-ouvertes.fr/tel-01130052

, absorber layers for very high efficiency thin film solar cells, 2015.

D. H. Shin, Y. M. Shin, J. H. Kim, B. T. Ahn, and K. H. Yoon, Control of the Preferred Orientation of Cu(In,Ga)Se2 Thin Film by the Surface Modification of Mo Film, J. Electrochem. Soc, vol.159, issue.1, pp.1-5, 2012.

J. Yoon, W. Kim, J. Park, Y. Baik, T. Seong et al., Control of the preferred orientations of Cu(In,Ga)Se 2 films and the photovoltaic conversion efficiency using a surfacefunctionalized Mo back contact: Control of the preferred orientation of CIGS films, Prog. Photovolt. Res. Appl, vol.22, issue.1, pp.69-76, 2014.

T. Schlenker, V. Laptev, H. W. Schock, and J. H. Werner, Substrate influence on on Cu(In1-x,Gax)Se2 film texture, pp.29-32, 2005.

W. Witte, R. Kniese, and M. Powalla, Raman investigations of Cu(In,Ga)Se2 thin films with various copper contents, Thin Solid Films, vol.517, issue.2, pp.867-869, 2008.

H. Tanino, Raman Spectra of CuGaxIn1-xSe2, Jpn. J. Appl. Phys, vol.32, pp.436-438, 1993.

C. Rincón, Raman spectra of the ordered vacancy compounds CuIn 3 Se 5 and CuGa 3 Se 5, Appl. Phys. Lett, vol.73, issue.4, pp.441-443, 1998.

C. Insignares-cuello, C. Broussillou, V. Bermúdez, E. Saucedo, A. Pérez-rodríguez et al.,

. Izquierdo-roca, Raman scattering analysis of electrodeposited Cu(In,Ga)Se 2 solar cells: Impact of ordered vacancy compounds on cell efficiency, Appl. Phys. Lett, vol.105, issue.2, p.21905, 2014.

C. Xu, Composition dependence of the Raman A 1 mode and additional mode in tetragonal Cu-In-Se thin films, Semicond. Sci. Technol, vol.19, issue.10, pp.1201-1206, 2004.

W. K. Batchelor, Substrate and back contact effects in CIGS devices on steel foil, Photovoltaic Specialists Conference, pp.716-719, 2002.

F. Pianezzi, Influence of Ni and Cr impurities on the electronic properties of Cu(In,Ga)Se 2 thin film solar cells: Influence of Ni and Cr impurities in CIGS, Prog. Photovolt. Res. Appl, vol.23, issue.7, pp.892-900, 2015.

J. Schulte, Investigations of the reactive co-sputtering deposition of Cu (In, Ga)(S, Se) 2 absorber layers for thin film solar cells, 2014.

J. Kessler, C. Chityuttakan, J. Lu, J. Schöldström, and L. Stolt, Cu (In, Ga) Se2 thin films grown with a Cu-poor/rich/poor sequence: growth model and structural considerations, Prog. Photovolt. Res. Appl, vol.11, issue.5, pp.319-331, 2003.

P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte et al., Effects of heavy alkali elements in Cu(In,Ga)Se 2 solar cells with efficiencies up to 22.6%, Phys. Status Solidi RRL -Rapid Res. Lett, vol.10, issue.8, pp.583-586, 2016.

D. Kim, K. Kim, M. Kim, and C. Jeon, Effect of the Mo Structure on CIGS Solar Cells Fabricated on Stainless Steel Substrates, Isr. J. Chem, vol.55, issue.10, pp.1064-1069, 2015.

F. Pianezzi, Electronic properties of Cu(In,Ga)Se 2 solar cells on stainless steel foils without diffusion barrier: Electronic properties of CIGS solar cells, Prog. Photovolt. Res. Appl, vol.20, issue.3, pp.253-259, 2012.

D. Sur and . Metalliques,