Skip to Main content Skip to Navigation
Theses

Rare Event Estimation and Robust Optimization Methods with Application to ORC Turbine Cascade

Résumé : Cette thèse vise à formuler des méthodes innovantes de quantification d'incertitude (UQ) à la fois pour l'optimisation robuste (RO) et l'optimisation robuste et fiable (RBDO). L’application visée est l’optimisation des turbines supersoniques pour les Cycles Organiques de Rankine (ORC).Les sources d'énergie typiques des systèmes d'alimentation ORC sont caractérisées par une source de chaleur et des conditions thermodynamiques entrée/sortie de turbine variables. L'utilisation de composés organiques, généralement de masse moléculaire élevée, conduit à des configurations de turbines sujettes à des écoulements supersoniques et des chocs, dont l'intensité augmente dans les conditions off-design; ces caractéristiques dépendent également de la forme locale de la pâle, qui peut être influencée par la variabilité géométrique induite par les procédures de fabrication. Il existe un consensus sur la nécessité d’inclure ces incertitudes dans la conception, nécessitant ainsi des méthodes UQ et un outil permettant l'optimisation de form adapté.Ce travail est décomposé en deux parties principales. La première partie aborde le problème de l’estimation des événements rares en proposant deux méthodes originales pour l'estimation de probabilité de défaillance (metaAL-OIS et eAK-MCS) et un pour le calcul quantile (QeAK-MCS). Les trois méthodes reposent sur des stratégies d’adaptation basées sur des métamodèles (Kriging), visant à affiner directement la région dite Limit-State-Surface (LSS), contrairement aux methodes de type Subset Simulation (SS). En effet, ces dernières considèrent différents seuils intermédiaires associés à des LSSs devant être raffinés. Cette propriété de raffinement direct est cruciale, car elle permet la compatibilité de couplage à des méthodes RBDO existantes.En particulier, les algorithmes proposés ne sont pas soumis à des hypothèses restrictives sur le LSS (contrairement aux méthodes de type FORM/SORM), tel que le nombre de modes de défaillance, cependant doivent être formulés dans l’espace standard. Les méthodes eAK-MCS et QeAK-MCS sont dérivées de la méthode AK-MCS, et d'un échantillonnage adaptatif et parallèle basé sur des algorithmes de type K-Means pondéré. MetaAL-OIS présente une stratégie de raffinement séquentiel plus élaborée basée sur des échantillons MCMC tirés à partir d'une densité d'échantillonage d'importance (ISD) quasi optimale. Par ailleurs, il propose la construction d’une ISD de type mélange de gaussiennes, permettant l’estimation précise de petites probabilités de défaillance lorsqu’un grand nombre d'échantillons (plusieurs millions) est disponible, comme alternative au SS. Les trois méthodes sont très performantes pour des exemples analytiques 2D à 8D classiques, tirés de la littérature sur la fiabilité des structures, certaines présentant plusieurs modes de défaillance, et tous caractérisés par une très faible probabilité de défaillance/niveau de quantile. Des estimations précises sont obtenues pour les cas considérés en un nombre raisonnable d'appels à la fonction de performance.
Complete list of metadatas

Cited literature [210 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02895974
Contributor : Abes Star :  Contact
Submitted on : Friday, July 10, 2020 - 11:36:10 AM
Last modification on : Saturday, July 11, 2020 - 3:53:30 AM

File

104432_RAZAALY_2019_archivage....
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02895974, version 1

Collections

Citation

Nassim Razaaly. Rare Event Estimation and Robust Optimization Methods with Application to ORC Turbine Cascade. Modeling and Simulation. Université Paris Saclay (COmUE), 2019. English. ⟨NNT : 2019SACLX027⟩. ⟨tel-02895974⟩

Share

Metrics

Record views

50

Files downloads

97