High-performance computing and numerical simulation for laser wakefield acceleration with realistic laser profiles - École polytechnique Accéder directement au contenu
Thèse Année : 2020

High-performance computing and numerical simulation for laser wakefield acceleration with realistic laser profiles

Calcul haute-performance et simulation numérique pour l'accélération d'électrons par sillage laser avec des profils laser réalistes

Résumé

The advent of ultra-short high-intensity lasers has paved the way to new and promising, yet challenging, areas of research in laser-plasma interaction physics. The success of building petawatt femtosecond lasers offers a promising path for designing future particle accelerators and light sources.Achieving this goal intrinsically relies on the combination of experiments and numerical modeling. So far, Particle-In-Cell (PIC) codes have been the ultimate tool to accurately describe the laser-plasma interaction especially in the field of Laser WakeField Acceleration (LWFA). Nevertheless, the numerical modeling of laser-plasma accelerators in 3D can be a very challenging task due to their high computational cost.A useful approach to speed up such simulations consists of employing reduced numerical modes which simplify the problem while retaining a high fidelity.Among these models, Fourier field decomposition in azimuthal modes for the cylindrical geometry is particularly well suited for physical problems with close to cylindrical symmetry, which is the case in LWFA.During my Ph.D., I first implemented this method in the open-source code SMILEI in the Finite Difference Time Domain (FDTD) discretization scheme for the Maxwell solver. However, this kind of solvers may suffer from numerical Cherenkov radiation (NCR). To mitigate this artifact, I also implemented Maxwell’s solver in the Pseudo Spectral Analytical Domain (PSATD) scheme which offers better accuracy of the results.This method is then employed to study the impact of realistic laser profiles from the Apollon facility on the quality of the accelerated electron beam. Its ability to correctly model the involved physical processes is investigated by determining the optimal number of modes and benchmarking its results with full 3D Cartesian simulations. It is shown that the imperfections in the laser pulse lead to differences in the results compared to theoretical profiles. They degrade the performance of laser-plasma accelerators especially in terms of the quantity of injected charge. These simulations, insightful for the future experiments of LWFA that will be held soon with the Apollon laser, put forward the importance of including realistic lasers in the simulation to obtain reliable results.
Le développement des lasers ultra-courts à de hautes intensités a permis l’émergence de nouveaux domaines de recherche en relation avec l’interaction laser-plasma. En particulier, les lasers petawatt femtoseconde ont ouvert la voie vers la possibilité de concevoir une nouvelle génération d’accélérateurs de particules. La modélisation numérique a largement contribué à l’essor de ce domaine d’accélération des électrons par sillage laser. Dans ce contexte, les codes Particle-In-Cell sont les plus répandus dans la communauté. Ils permettent une description fiable de l’interaction laser plasma et surtout de l’accélération par sillage laser.Cependant, une modélisation précise de la physique en jeu nécessite de recourir à des simulations 3D particulièrement coûteuses. Une manière pour accélérer efficacement ce type de simulations est l’utilisation de modèles réduits qui, tout en assurant un gain en temps de calcul très important, garantissent une modélisation fiable du problème. Parmi ces modèles, la décomposition des champs en modes de Fourier dans la direction azimutale est particulièrement adaptée à l’accélération laser plasma.Dans le cadre de ma thèse, j’ai implémenté ce modèle dans le code open-source SMILEI, dans un premier temps, avec un schéma différences finies (FDTD) pour discrétiser les équations de Maxwell. Néanmoins, ce type de solveur peut induire un effet de Cherenkov numérique qui corrompt les résultats de la simulation. Pour mitiger cet artéfact, j’ai également implémenté une version pseudo-spectrale du solveur de Maxwell qui présente de nombreux avantages en termes de précision numérique.Cette méthode est ensuite mise en oeuvre pour étudier l’impact de profils de lasers réalistes sur la qualité du faisceau d’électrons en exploitant des mesures réalisées sur le laser Apollon. Sa capacité à modéliser correctement les processus physiques présents est analysée en déterminant le nombre de modes nécessaires et en comparant les résultats avec ceux issus des simulations 3D en géométrie Cartésienne. Cette étude montre qu’inclure les défauts du laser mène à des différences dans les résultats et que ces derniers dégradent la performance des accélérateurs-laser plasma notamment en termes de quantité de charge injectée. Ces simulations, instructives pour les futures expériences d’accélération d’électrons par le laser Apollon, mettent en avant la nécessité d’inclure les mesures expérimentales dans la simulation et particulièrement celle du front de phase, pour aboutir à des résultats précis.
Fichier principal
Vignette du fichier
95055_ZEMZEMI_2020_archivage.pdf (14.97 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03155101 , version 1 (01-03-2021)

Identifiants

  • HAL Id : tel-03155101 , version 1

Citer

Imene Zemzemi. High-performance computing and numerical simulation for laser wakefield acceleration with realistic laser profiles. Plasma Physics [physics.plasm-ph]. Institut Polytechnique de Paris, 2020. English. ⟨NNT : 2020IPPAX111⟩. ⟨tel-03155101⟩
241 Consultations
86 Téléchargements

Partager

Gmail Facebook X LinkedIn More