Instability of a magnetoelastic layer resting on a non-magnetic substrate - Archive ouverte HAL Access content directly
Journal Articles Journal of the Mechanics and Physics of Solids Year : 2014

Instability of a magnetoelastic layer resting on a non-magnetic substrate

(1) , (1)
1
Kostas Danas

Abstract

Magnetorheological elastomers (MREs) are ferromagnetic particle impregnated rubbers whose mechanical properties are altered by the application of external magnetic fields. Due to their coupled magneto-mechanical response, MREs are finding an increasing number of engineering applications. One such application is in haptics, where the goal is to actively control surface roughness. One way to achieve this is by exploiting the unstable regime of MRE substrate/layer assemblies subjected to transverse magnetic fields. In this work, we study the response of such an assembly subjected to a transverse magnetic field and in-plane stress. The layer is made up of a transversely isotropic MRE material, whose energy density has been obtained experimentally, while the substrate is a non-magnetic isotropic pure polymer/gel. An analytical solution to this problem based on a general, finite strain, 2D continuum modeling for both the MRE layer and the substrate, shows that for adequately soft substrates there is a finite-wavelength buckling mode under a transverse magnetic field. Moreover, the critical magnetic field can be substantially reduced in the presence of a compressive stress of the assembly, thus opening the possibility for haptic applications operating under low magnetic fields.
Fichier principal
Vignette du fichier
FS_DT_2013.pdf (973.08 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00995717 , version 1 (21-12-2017)

Identifiers

  • HAL Id : hal-00995717 , version 1

Cite

Kostas Danas, Nicolas Triantafyllidis. Instability of a magnetoelastic layer resting on a non-magnetic substrate. Journal of the Mechanics and Physics of Solids, 2014, 69, pp.67-83. ⟨hal-00995717⟩
146 View
213 Download

Share

Gmail Facebook Twitter LinkedIn More