Global stability of swept flow around a parabolic body: The neutral curve
Abstract
The onset of transition in the leading-edge region of a swept blunt body depends crucially on the stability characteristics of the flow. Modelling this flow configuration by swept compressible flow around a parabolic body, a global approach is taken to extract pertinent stability information via a DNS-based iterative eigenvalue solver. Global modes combining features from boundary-layer and acoustic instabilities are presented. A parameter study, varying the spanwise disturbance wavenumber and the sweep Reynolds number, showed the existence of unstable boundary-layer and acoustic modes. The corresponding neutral curve displays two overlapping regions of exponential growth and two critical Reynolds numbers, one for boundary-layer instabilities and one for acoustic instabilities. The employed global approach establishes a first neutral curve, delineating stable from unstable parameter configurations, for the complex flow about a swept parabolic body with corresponding implications for swept leading-edge flow. © 2011 Cambridge University Press.
Origin : Publisher files allowed on an open archive
Loading...