Global Solutions of the Boltzmann Equation over R D near Global Maxwellians with Small Mass

Abstract : We study the dynamics defined by the Boltzmann equation set in the Euclidean space RD in the vicinity of global Maxwellians with finite mass. A global Maxwellian is a special solution of the Boltzmann equation for which the collision integral vanishes identically. In this setting, the dispersion due to the advection operator quenches the dissipative effect of the Boltzmann collision integral. As a result, the large time limit of solutions of the Boltzmann equation in this regime is given by noninteracting, freely transported states and can be described with the tools of scattering theory.
Type de document :
Article dans une revue
Communications in Mathematical Physics, Springer Verlag, 2016, 346 (2), pp.435-467. 〈10.1007/s00220-016-2687-7〉
Liste complète des métadonnées

https://hal-polytechnique.archives-ouvertes.fr/hal-01060894
Contributeur : François Golse <>
Soumis le : jeudi 4 septembre 2014 - 14:53:49
Dernière modification le : jeudi 10 mai 2018 - 01:57:28
Document(s) archivé(s) le : vendredi 5 décembre 2014 - 10:28:59

Fichiers

GlobalBoltzR3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Claude Bardos, Irene Gamba, François Golse, C.David Levermore. Global Solutions of the Boltzmann Equation over R D near Global Maxwellians with Small Mass. Communications in Mathematical Physics, Springer Verlag, 2016, 346 (2), pp.435-467. 〈10.1007/s00220-016-2687-7〉. 〈hal-01060894〉

Partager

Métriques

Consultations de la notice

466

Téléchargements de fichiers

189