The deployment of BEV and FCEV in 2015

Abstract : In Europe the transport sector contributes about 25% of total GHG emissions, 75% of which come from road transport. Contrarily to industrial emissions road emissions have increased over the period 1990-2015 in OECD countries: California (+26%), Germany (0%), France (+12%), Japan (+2%), Denmark (+30%). The number of registered vehicles on road in these countries amounts respectively to: California (33 million), Germany (61.5 million), France (38 million), Japan (77 million), Denmark (4 million). Even if these numbers are not expected to grow in the future this calls for major programs to reduce the corresponding GHG emissions in order to achieve the global GHG targets for 2050. The benefits from these programs will spread out to non OECD countries in which road emissions are bound to increase. Programs to promote zero emissions vehicles (ZEV) effectively started in the 2000’s through public private partnerships involving government agencies, manufacturers, utilities and fuel companies. These partnerships provided subsidies for R&D, pilot programs and infrastructure. Moreover, technical norms for emissions, global requirements for the portfolio of sales for manufacturers, rebates on the purchasing price for customers as well as various perks (driving bus lanes, free parking, etc.) are now in place. These multiple policy instruments constitute powerful incentives to orient the strategies of manufacturers and to stimulate the demand for ZEV. The carbon tax on the distribution of fossil fuels, whenever it exists, remains low and, at this stage, cannot be considered as an important driving force. The cases studies reveal important differences for the deployment of battery electric vehicle (BEV) versus fuel cell electric vehicle (FCEV). BEV is leading the game with a cheaper infrastructure investment cost and a lower cost for vehicle. The relatively low autonomy makes BEV mostly suited for urban use, which is a large segment of the road market. The current level of BEV vehicles on roads starts to be significant with California (70,000), Germany (25,000), France (31,000), Japan (608,000) Denmark (3,000), but they remain very low relative to the targets for 2020: California (1.5 million), Germany (1 million), France (2 million), Japan (0.8-1.1 million for ZEV new registrations), Denmark (0.25 million). The developments and efficiency gains in battery technology along with subsidies for battery charging public stations are expected to facilitate the achievement of the growth. The relative rates of equipment (number of publicly available stations / number of BEV) provide indirect evidence on the effort made in the different countries: California (3%), Germany (12%), France (28%), Japan (11%), and Denmark (61%). In some countries public procurement plays a significant role. In France Autolib (publicly available cars in towns) represents a large share of the overall BEV deployment (12%), and the government recently announced a 50% target for low emissions in all public vehicles new equipment. FCEV is still in an early deployment stage due to a higher infrastructure investment cost and a higher cost for vehicle. The relatively high autonomy combined with speed refueling make FCEV mostly suited for long distance and interurban usage. At present there are only a very limited numbers of HRS deployed: California (28), Germany (15), France (6), Japan (31), Japan (7), Denmark (7), and only a few units of H2 vehicles on road: California (300), Germany (125), France (60), Japan (7), Denmark (21). However, a detailed analysis of the current road maps suggests that FCEV has a large potential. Targets for the 2025-2030 horizons are significant in particular in Germany (4% in 2030), Denmark (4.5% in 2025) and Japan (15-20% for ZEV new registrations in 2020). The California ARB has recently redefined its program (subsidies and mandates) to provide higher incentives for FCEV. France appears to focus on specialized regional submarkets to promote FCEV (such as the use of H2 range extending light utility vehicles). The financing of the H2 infrastructure appears as a bottleneck for FCEV deployment. Roadmaps address this issue through progressive geographical expansion (clusters) and a high level of public subsidies hydrogen refueling station (HRS) in particular in all countries except France. At this stage of BEV and FCEV do not appear as direct competitors; they address distinct market segments. Unexpected delays in the development of infrastructure in FCEV, possible breakthroughs in battery technology, and the promotion of national champions may change the nature of this competition, making it more intense in the future.
Keywords : transports
Type de document :
[Research Report] Department of Economics, Ecole Polytechnique; CNRS. 2015
Liste complète des métadonnées
Contributeur : Mariame Seydi <>
Soumis le : samedi 10 octobre 2015 - 17:15:39
Dernière modification le : samedi 18 février 2017 - 01:13:11
Document(s) archivé(s) le : lundi 11 janvier 2016 - 10:02:09


The deployment of emission fre...
Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01212353, version 1


Julien Brunet, Alena Kotelnikova, Jean-Pierre Ponssard. The deployment of BEV and FCEV in 2015. [Research Report] Department of Economics, Ecole Polytechnique; CNRS. 2015. <hal-01212353>



Consultations de
la notice


Téléchargements du document