Skip to Main content Skip to Navigation
Journal articles

Ultrafast photocurrents at the surface of the three-dimensional topological insulator Bi 2 Se 3

Abstract : Three-dimensional topological insulators are fascinating materials with insulating bulk yet metallic surfaces that host highly mobile charge carriers with locked spin and momentum. Remarkably, surface currents with tunable direction and magnitude can be launched with tailored light beams. To better understand the underlying mechanisms, the current dynamics need to be resolved on the timescale of elementary scattering events (B10 fs). Here, we excite and measure photocurrents in the model topological insulator Bi 2 Se 3 with a time resolution of 20 fs by sampling the concomitantly emitted broadband terahertz (THz) electromagnetic field from 0.3 to 40 THz. Strikingly, the surface current response is dominated by an ultrafast charge transfer along the Se–Bi bonds. In contrast, photon-helicity-dependent photocurrents are found to be orders of magnitude smaller than expected from generation scenarios based on asymmetric depopulation of the Dirac cone. Our findings are of direct relevance for broadband optoelectronic devices based on topological-insulator surface currents.
Document type :
Journal articles
Complete list of metadata

Cited literature [50 references]  Display  Hide  Download
Contributor : Marcin Konczykowski Connect in order to contact the contributor
Submitted on : Tuesday, January 24, 2017 - 11:03:10 PM
Last modification on : Tuesday, July 6, 2021 - 3:19:12 AM
Long-term archiving on: : Tuesday, April 25, 2017 - 6:21:51 PM


Publisher files allowed on an open archive



Lukas Braun, Gregor Mussler, Andrzej Hruban, Marcin Konczykowski, Thomas Schumann, et al.. Ultrafast photocurrents at the surface of the three-dimensional topological insulator Bi 2 Se 3. Nature Communications, Nature Publishing Group, 2016, 7, pp.13259. ⟨10.1038/ncomms13259⟩. ⟨hal-01445495⟩



Record views


Files downloads